JP3677705B2 - Base isolation structure on soft ground - Google Patents

Base isolation structure on soft ground Download PDF

Info

Publication number
JP3677705B2
JP3677705B2 JP23182697A JP23182697A JP3677705B2 JP 3677705 B2 JP3677705 B2 JP 3677705B2 JP 23182697 A JP23182697 A JP 23182697A JP 23182697 A JP23182697 A JP 23182697A JP 3677705 B2 JP3677705 B2 JP 3677705B2
Authority
JP
Japan
Prior art keywords
foundation
ground
improvement body
ground improvement
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23182697A
Other languages
Japanese (ja)
Other versions
JPH1161849A (en
Inventor
克之 玉置
信博 竹間
毅芳 福武
吉昭 吉見
信夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP23182697A priority Critical patent/JP3677705B2/en
Publication of JPH1161849A publication Critical patent/JPH1161849A/en
Application granted granted Critical
Publication of JP3677705B2 publication Critical patent/JP3677705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は軟弱地盤上の免震構造基礎に係り、特に軟弱地盤における基礎部分の水平変位を抑えて基礎部分に設けられた免震装置を有効に機能させるようにした軟弱地盤上の免震構造基礎に関する。
【0002】
【従来の技術】
近年、ウォーターフロントと呼ばれる臨海地区において、中〜高層建物の建設が多く繰り広げられている。このような臨海地区は、過去に比較的浅海の沿岸範囲を埋め立てて造成した地域が多く、埋土及びその下層には、液状化のおそれのある砂質層や軟弱シルトや粘性土からなる軟弱地盤が厚く堆積していることが多い。
【0003】
ところで、地震時においてこれらの軟弱地盤では伝達される地震動のうち比較的長周期成分が卓越することが知られている。したがって、このような軟弱地盤上に免震構造基礎を備えた建物等を構築した場合、軟弱地盤において卓越した長周期成分が建物の固有周期に近くなって共振現象が生じ、建物の振動が著しく増幅されるおそれがある。このため、免震構造基礎を備えた建物は比較的良質な地盤上に構築されることが必要であった。
【0004】
これに対して出願人は図8に示した連続地中壁60を基礎とする構造物50を提案した(特開平8−27810号公報参照)。この構造物50は地表51から表層地盤52を貫いて支持地盤53に達するような基礎杭54と連続地中壁60が設けられ、その連続地中壁60を基礎として上部構造体(建物)を支持するようになっている。さらに連続地中壁60と上部構造体61の間に介在させた免震装置62の剛性を、上部構造体61の共振振動数が表層地盤52の共振振動数と異なるように設定した。
この結果、図示した連続地中壁60を有する構造物では、基礎杭54を囲むようにして設けられた連続地中壁60により基礎全体の剛性が高められ、連続地中壁60に囲まれた地盤部分の周期成分を短くできる一方、上部構造体61の下部に所定剛性を備えた公知の免震装置62(積層ゴムアイソレータ)を配置することにより上部構造体61の固有周期を長くし、共振振動数が一致するのを防止できる。
【0005】
【発明が解決しようとする課題】
ところが、図8に示した基礎は多数の基礎杭54を囲むようにして鉄筋コンクリートの連続地中壁60を設けるため大規模な建物のように上部構造体61の重量が大きいものでは特に有効となるが、比較的小さな建物では基礎の建設コストが過大になるという問題がある。また、連続地中壁60と基礎杭との複合基礎のうち、壁厚が薄い連続地中壁60を精度よく構築しなければならず、施工が面倒である。
【0006】
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、地震時における基礎地盤の短周期成分を卓越させ、建物の固有周期と共振しないようにし、免震効果が確実に得られるようにした軟弱地盤上の免震構造基礎を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は基礎杭と、該基礎杭のうちの複数本を包含するように造成されたブロック状の地盤改良体とで上部構造物を支持する複合基礎構造からなり、前記ブロック状の地盤改良体の上面に構築される2重基礎底版の下側底版との間にせん断抵抗体を設けるとともに、前記2重基礎底版の下側底版と上側底版との間に免震装置を配設し、前記上側底版上に構築される上部構造物を支持することを特徴とする。
【0008】
このとき、前記ブロック状の地盤改良体はセメント硬化材を使用した深層混合撹拌構造体とすることが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の軟弱地盤上の免震構造基礎の一実施の形態について添付図面を参照して説明する。
図1は、上部構造物10の基礎構造20として本発明による免震基礎構造を適用した例を示した概略構造断面図の一部である。同図に例示した地層では表層の埋土層の下に軟弱層が分布している。この軟弱層としては液状化発生のおそれがある沖積砂層や軟弱シルト層、粘性土層が位置している。さらにその下には支持層として機能する比較的硬い粘性土層、洪積砂層及び砂礫層がある。たとえば支持層としての砂礫層はN値が50以上が得られる。
上部構造物10の基礎底版11は2重構造からなり、2枚の底版11A、11Bに挟まれた免震層12内に免震装置13が装備されている。本実施の形態では、免震層12における水平剛性を低減するために免震装置13として公知の積層ゴムアイソレータ(以下、アイソレータ13と記す。)が平面的に均等な間隔をあけて配設されている。アイソレータ13は柱伏に一致させるように配置してもよいし、上側底版11Aの剛性が十分高ければ柱位置に関係なく配置することも可能である。
一方、杭基礎21の先端21aは支持層に所定根入れ長分だけ根入れされている。この杭基礎21は本実施の形態では所要支持力の大きさから場所打ち杭が採用されているが、杭種は鋼管杭、既製PC杭等種々のものを現場状況、用途に応じて使用することができる。
【0010】
図1には杭基礎のほぼ中央位置にある複数本(図では9本)の杭21を取り囲むように地盤改良体30が形成されている。この地盤改良体30はソイルセメントからなる小径の柱状体を密接した状態でブロックとして杭21の周囲を取り囲み、同図(b)に示した平面形状としたものである。その施工深さは軟弱層の下端近くまで達している。
このように軟弱地盤において支持層まで到達する複数本の杭21のほぼ中央位置に、地盤改良体30を各杭と一体的に造成することにより、地震時において、地盤改良体30は高い剛性を発揮して基礎地盤全体の水平変位を極力抑えるように挙動する。
このように、杭基礎と地盤改良体30を含む基礎地盤は比較的短周期成分が卓越するように改良される。一方、図1(a)に示したように、上部構造物10は免震層12に配設されたアイソレータ13によって支持されている。このため、上部構造物10を支持する基礎部分の水平方向の剛性が低く押さえられ、上部構造物10の固有周期が比較的大きくなる。この結果、地震動のような短周期振動成分に対しての応答加速度は著しく小さくなり、上部構造物10の振動は大幅に改善される。
【0011】
なお、免震層12に配設されるアイソレータ13の基本構造、寸法、水平剛性等の特性は上部構造の規模等によって適宜設定でき、また減衰機構としての各種ダンパー(図示せず)を併設させることも可能である。
【0012】
以下、図1(a)の免震装置が据え付けられている基礎底版11下に施工された地盤改良体30の構成について説明する。図の簡略化のために杭21の符号を一部のみに付した。
地盤改良体30は、図1(a)、(b)に示したように、平面視して複数本の杭21を含むように底面のほぼ中央でマッシブなブロック形状をなしている。このため施工が容易で、また施工範囲の品質のばらつきも抑えることができる。地盤改良体30としての強度的な信頼性も高い。
【0013】
図2(a)は地盤改良体30を基礎底版11に対して2つのブロックで構築したものである。図示したように2つのブロックに分けることにより地震時に杭21の杭頭に作用するモーメントを分散させて基礎底版11の応力を小さくすることができ、部材厚等を薄くすることができる。また、図2(b)に示したように改良範囲を平面形状が円形をなし、全体が円筒形状となるように地盤改良体30を施工することも好ましい。この場合、改良体の強度、変位抵抗性における異方性をなくすることができ、地盤改良体30の地盤改良効果を全方向に対して発揮するようにできる。
【0014】
図3は図1に示した液状化の生じるおそれのある地盤において、上部構造物10の基礎底版11の外側にソイルセメント柱状体からなる外周壁31を構築した例を示したものである。同図に示したように外周壁31は、上部構造物10を支持する杭基礎21を取り囲むように閉合した状態で施工されている。
外周壁31は、当初は上部構造物10の地下部分の掘削段階から本体部分の構築の間、仮設構造として機能する。さらに本設時には液状化のおそれがある層の外周壁31内の地盤Ginと基礎周囲の地盤Goutとを分断するように機能する。このため地震動の継続する時間内に上部構造物10周辺の地盤Goutで局部的に上昇した過剰間隙水圧の範囲が、外周壁31に囲まれた地盤Gin内の範囲にまで及ぶのを阻止できる。したがって地盤Ginの範囲での過剰間隙水圧の上昇は周囲の地下水の影響を受けないため、最小限に抑えることができ、液状化の発生を防止ないしは軽減することができ、基礎の水平抵抗力の低下を防止できる。
【0015】
本実施の形態では、外周壁31として地盤改良体30と同等のソイルセメント柱列壁が使用されている。ソイルセメント柱列壁は、オーガー等を用いて、所定径に削孔された地盤部分の原位置土にセメント系硬化材を混合し、その混合部内にH形鋼等の応力負担材を挿入してソイルセメント部と応力負担材とを一体化させた柱状体を形成し、さらに柱状体を列方向に配列して1枚の壁体としたものである。
【0016】
図4は集合住宅のように、一方向に細長い平面形状をなす構造物の基礎に地盤改良体30を適用した例を示した概略平面図である。同図に示したように建物基礎の両端の妻部分に地盤改良体30を構築することにより偏心水平力によるねじれ挙動に対しても有効に作用することが可能である。
【0017】
なお、上述した地盤改良体30を構築するには、いわゆるセメント系深層混合工法であれば、ソイルセメントで形成する以外に、原位置攪拌式の他、噴射混合、置換式等の改良体形成方法の適用が可能である。また杭体を連結して構成されるブロックの形成手順、オーバーラップ量等についても従来の柱列壁あるいはブロックの構築の例と同様に行うことができる。
ソイルセメントに使用するセメント系硬化材としては、ポルトランドセメント、高炉セメントが一般的であるが、対象地盤の土の性状によってはシリカセメント、フライアッシュセメント等の混合セメントを使用することが可能である。
また、混和剤として遅延型のAE減水剤を使用して、セメントスラリーの状態を比較的長く保持させたり、ベントナイトを混和材として使用することも可能である。
【0018】
ところで、常時には上部構造物としての建物の荷重はそのほとんどが杭基礎によって負担されているため、地盤改良体が負担する建物鉛直荷重は小さく設定されている。このとき地震時に建物基礎底面から地盤改良体に伝達されるせん断力は、地盤改良体上面に作用する鉛直荷重に比例するので、地盤改良体が負担するせん断力が小さな値になることが予想される。そこで、あらかじめ建物底面と地盤改良体との間にせん断力を確実に伝達するためのせん断抵抗体を設けることが好ましい。これにより地震時のせん断力を建物底面から地盤改良体に確実に伝達することができるようになる。
【0019】
以下、建物基礎底面と地盤改良体の上面との間の接合面に形成されるせん断抵抗体の実施例を図5〜図7を参照して説明する。
図5(a)は地盤改良体上面30aに建物の基礎底版11の一部からなる突起41を突設させるようにしたものである。本例においては、地盤改良体30の最上層を打設する際に、所定形状の箱型枠を配設して改良体上面30aの所定位置に凹所を形成しておき、この凹所に基礎底版11を打設して突起41を形成するようになっている。同図(b)は、反対に地盤改良体上面30aに突起42を形成するようにした変形例である。本変形例では、地盤改良体30の最上層を打設する際に、所定形状に配設された型枠内も一体的に打設し、改良体からなる突起42とすれば良い。
このように建物基礎底面11aと地盤改良体上面30aとの間の接合面に所定形状の凹凸面が噛合した状態のせん断抵抗体が形成される。これにより建物基礎底面11aと地盤改良体上面30aとの一体化が図られることになる。この凹凸形状の噛合面の平面形状の例としては、図6の各図に示したような形状の他種々の形状とすることができる。いずれの形状もせん断力の作用方向(地震力入力方向)に対してせん断抵抗性の強弱の差が少なくなる形状が好ましい。そのため、地盤改良体上面30a全面にわたり、同心円状や格子状をなす凹凸形状のせん断抵抗体とすることが好ましい(図6(a)、(b)参照)。なお、この凹凸形状部は建物基礎の杭の施工間隔より細かくなるように設定することが好ましい。
【0020】
図5(c)はせん断抵抗体として、ダボ(dowel)を配設した例を示したものである。ダボ43は、まず位置決めのために下半分が地盤改良体30の最上層に所定間隔で埋設され、その状態で建物基礎底版11が地盤改良体30上に打設されるようになっている。このようにせん断抵抗体としてのダボ43全体が建物基礎底面11aと地盤改良体30との間の接合面位置に埋設されるので、建物からのせん断力が確実に地盤改良体30に伝達される。ダボとしては、短尺に切断したH形鋼、鋼管、コンクリート中詰め鋼管、プレキャストコンクリート(PCa)管、PCaパイル等を使用することができる。また、ダボの配列形状は図6(c)のように縦横にほぼ等間隔となるようにするのが好ましい。
【0021】
また、図7(a)、(b)に示したように地盤改良体30の上端外周を取り囲むように建物基礎底版11を構築することも可能である。この場合、既施工部分である地盤改良体30の外周側面の一部30bが型枠となるので、表面の汚れや付着物を除去するとともに、表面を目粗ししておくことが好ましい。このように建物基礎底面11aから包囲壁45を突設させ、地盤改良体30の上端部分を拘束することにより上部構造部としての建物10からのせん断力を確実に地盤改良体30に伝達することができる。なお、図5、図7の正面図では、図の簡単化のために一部の免震装置13及び杭21の図示を省略している。
【発明の効果】
以上の説明から明らかなように、本発明によれば、地盤剛性を高めることにより、基礎地盤において、地震時に比較的短周期成分が卓越するようになり、建物の固有周期との共振を防止し、建物の免震効果を確実に発揮させることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明による軟弱地盤上の免震構造基礎の一実施の形態を示した正面図、平面図。
【図2】軟弱地盤上の免震構造基礎の他の実施の形態を示した平面図。
【図3】軟弱地盤上の免震構造基礎の他の実施の形態を示した平面図。
【図4】軟弱地盤上の免震構造基礎の他の実施の形態を示した平面図。
【図5】基礎底版と地盤改良体との間のせん断抵抗体を一部断面で示した正面図。
【図6】図5に示したせん断抵抗体の平面形状の例を示した部分平面図。
【図7】地盤改良体の上端部分の包囲壁の構成を示した部分正面図、平面図。
【図8】従来の軟弱地盤上の免震構造基礎の一例を示した正面図。
【符号の説明】
10 上部構造物
11 基礎底版
12 免震層
13 アイソレータ(免震装置)
20 基礎構造
21 杭
30 地盤改良体
31 外周壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base-isolated structure foundation on soft ground, and in particular, a base-isolated structure on soft ground in which the horizontal displacement of the base portion in soft ground is suppressed to effectively function the base-isolated device provided on the base section. Regarding the basics.
[0002]
[Prior art]
In recent years, construction of medium to high-rise buildings has been developed in a coastal area called the waterfront. Many of these coastal areas have been constructed by reclaiming relatively shallow coastal areas in the past, and the buried soil and its lower layer are soft sands, soft silts, and clay soils that can be liquefied. The ground is often thickly deposited.
[0003]
By the way, it is known that relatively long-period components of seismic motion transmitted in these soft grounds during earthquakes are dominant. Therefore, when a building with a seismic isolation foundation is constructed on such soft ground, the long-period component outstanding in the soft ground is close to the natural period of the building, causing a resonance phenomenon, and the vibration of the building is remarkable. There is a risk of amplification. For this reason, buildings with seismic isolation structures had to be constructed on relatively good quality ground.
[0004]
On the other hand, the applicant has proposed a structure 50 based on the continuous underground wall 60 shown in FIG. 8 (see Japanese Patent Laid-Open No. 8-27810). This structure 50 is provided with a foundation pile 54 and a continuous underground wall 60 that extend from the ground surface 51 through the surface ground 52 to the support ground 53, and the upper structure (building) is formed on the basis of the continuous underground wall 60. It comes to support. Furthermore, the rigidity of the seismic isolation device 62 interposed between the continuous underground wall 60 and the upper structure 61 was set so that the resonance frequency of the upper structure 61 was different from the resonance frequency of the surface ground 52.
As a result, in the structure having the illustrated continuous underground wall 60, the rigidity of the entire foundation is enhanced by the continuous underground wall 60 provided so as to surround the foundation pile 54, and the ground portion surrounded by the continuous underground wall 60. While the known seismic isolation device 62 (laminated rubber isolator) having a predetermined rigidity is disposed below the upper structure 61, the natural period of the upper structure 61 is lengthened, and the resonance frequency is reduced. Can be prevented from matching.
[0005]
[Problems to be solved by the invention]
However, since the foundation shown in FIG. 8 is provided with a continuous underground wall 60 of reinforced concrete so as to surround a large number of foundation piles 54, it is particularly effective when the weight of the upper structure 61 is large as in a large-scale building. There is a problem that the construction cost of the foundation becomes excessive in a relatively small building. Moreover, the continuous underground wall 60 with thin wall thickness must be constructed | assembled accurately among the composite foundations of the continuous underground wall 60 and a foundation pile, and construction is troublesome.
[0006]
Therefore, the object of the present invention is to eliminate the above-mentioned problems of the prior art, make the short-period component of the foundation ground during an earthquake predominate, and not to resonate with the natural period of the building, ensuring a seismic isolation effect. It is to provide a seismic isolation structure foundation on soft ground.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises a composite foundation structure that supports an upper structure with a foundation pile and a block-like ground improvement body constructed so as to include a plurality of the foundation piles. In addition, a shear resistor is provided between the lower bottom plate of the double foundation bottom plate constructed on the upper surface of the block-shaped ground improvement body, and is exempted between the lower bottom plate and the upper bottom plate of the double foundation bottom plate. A seismic device is provided to support an upper structure constructed on the upper bottom plate .
[0008]
At this time, it is preferable that the block-like ground improvement body is a deep mixed stirring structure using a cement hardener.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a base isolation structure on soft ground according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a part of a schematic cross-sectional view showing an example in which the base isolation structure according to the present invention is applied as the base structure 20 of the upper structure 10. In the geological layer illustrated in the figure, soft layers are distributed under the surface buried layer. As this soft layer, there is an alluvial sand layer, a soft silt layer, and a cohesive soil layer that may cause liquefaction. Below that is a relatively hard cohesive soil layer that functions as a support layer, a dune sand layer and a gravel layer. For example, a gravel layer as a support layer has an N value of 50 or more.
The base bottom slab 11 of the upper structure 10 has a double structure, and a seismic isolation device 13 is provided in the seismic isolation layer 12 sandwiched between the two bottom slabs 11A and 11B. In the present embodiment, in order to reduce the horizontal rigidity in the seismic isolation layer 12, a known laminated rubber isolator (hereinafter referred to as an isolator 13) as a seismic isolation device 13 is disposed with a uniform spacing in a plane. ing. The isolator 13 may be arranged so as to coincide with the columnar shape, or can be arranged regardless of the column position if the upper bottom plate 11A has sufficiently high rigidity.
On the other hand, the tip 21a of the pile foundation 21 is embedded in the support layer by a predetermined insertion length. In this embodiment, a cast-in-place pile is adopted as the pile foundation 21 because of the required support force, but various pile types such as steel pipe piles and ready-made PC piles are used depending on the field situation and application. be able to.
[0010]
In FIG. 1, a ground improvement body 30 is formed so as to surround a plurality (9 in the figure) of piles 21 at substantially the center position of the pile foundation. This ground improvement body 30 surrounds the circumference | surroundings of the pile 21 as a block in the state which closely contacted the small diameter columnar body which consists of soil cement, and is set as the planar shape shown in the figure (b). The construction depth reaches near the lower end of the soft layer.
In this way, by forming the ground improvement body 30 integrally with each pile at the substantially central position of the plurality of piles 21 reaching the support layer in the soft ground, the ground improvement body 30 has high rigidity at the time of an earthquake. Demonstrate and act to suppress the horizontal displacement of the entire foundation ground as much as possible.
Thus, the foundation ground including the pile foundation and the ground improvement body 30 is improved so that a relatively short period component is dominant. On the other hand, as shown in FIG. 1A, the upper structure 10 is supported by an isolator 13 disposed on the seismic isolation layer 12. For this reason, the rigidity of the horizontal direction of the base part which supports the upper structure 10 is suppressed low, and the natural period of the upper structure 10 becomes comparatively large. As a result, the response acceleration with respect to short-period vibration components such as earthquake motion is remarkably reduced, and the vibration of the upper structure 10 is greatly improved.
[0011]
Note that the basic structure, dimensions, horizontal rigidity, and other characteristics of the isolator 13 disposed in the seismic isolation layer 12 can be set as appropriate depending on the scale of the upper structure and the like, and various dampers (not shown) are provided as damping mechanisms. It is also possible.
[0012]
Hereinafter, the structure of the ground improvement body 30 constructed under the foundation bottom slab 11 on which the seismic isolation device of FIG. For simplification of the figure, the reference numerals of the piles 21 are given to only a part.
As shown in FIGS. 1 (a) and 1 (b), the ground improvement body 30 has a massive block shape at substantially the center of the bottom surface so as to include a plurality of piles 21 in plan view. For this reason, construction is easy and variation in the quality of the construction range can be suppressed. The strength reliability as the ground improvement body 30 is also high.
[0013]
FIG. 2A shows the ground improvement body 30 constructed with two blocks with respect to the foundation bottom plate 11. By dividing into two blocks as illustrated, the moment acting on the pile head of the pile 21 at the time of an earthquake can be dispersed, the stress of the foundation bottom slab 11 can be reduced, and the member thickness and the like can be reduced. Moreover, as shown in FIG.2 (b), it is also preferable to construct the ground improvement body 30 so that a planar shape may be circular and the whole may become a cylindrical shape as shown in FIG.2 (b). In this case, anisotropy in the strength and displacement resistance of the improved body can be eliminated, and the ground improvement effect of the ground improved body 30 can be exhibited in all directions.
[0014]
FIG. 3 shows an example in which an outer peripheral wall 31 made of a soil cement columnar body is constructed outside the foundation bottom slab 11 of the upper structure 10 in the ground where liquefaction may occur as shown in FIG. As shown in the figure, the outer peripheral wall 31 is constructed in a closed state so as to surround the pile foundation 21 that supports the upper structure 10.
The outer peripheral wall 31 initially functions as a temporary structure during the construction of the main body portion from the excavation stage of the underground portion of the upper structure 10. Furthermore, at the time of the main installation, the ground Gin in the outer peripheral wall 31 of the layer that may be liquefied and the ground Gout around the foundation function are divided. For this reason, it is possible to prevent the range of the excess pore water pressure that has risen locally on the ground Gout around the upper structure 10 from reaching the range within the ground Gin surrounded by the outer peripheral wall 31 within the time when the earthquake motion continues. Therefore, the increase in excess pore water pressure in the ground Gin range is not affected by the surrounding groundwater, so it can be minimized and the occurrence of liquefaction can be prevented or reduced. Decline can be prevented.
[0015]
In the present embodiment, a soil cement column wall equivalent to the ground improvement body 30 is used as the outer peripheral wall 31. For the soil cement column wall, use an auger or the like to mix a cement-based hardener into the soil in the ground where the hole is drilled to a specified diameter, and insert a stress bearing material such as H-section steel into the mixed part. Thus, a columnar body in which the soil cement part and the stress bearing material are integrated is formed, and the columnar bodies are arranged in the column direction to form one wall body.
[0016]
FIG. 4 is a schematic plan view showing an example in which the ground improvement body 30 is applied to the foundation of a structure having a planar shape elongated in one direction like an apartment house. As shown in the figure, by constructing the ground improvement bodies 30 at the end portions of the ends of the building foundation, it is possible to effectively act against the torsional behavior due to the eccentric horizontal force.
[0017]
In addition, in order to build the ground improvement body 30 mentioned above, if it is what is called a cement-type deep-layer mixing construction method, in addition to forming with a soil cement, in addition to an in-situ stirring method, an improved body formation method such as a jet mixing, a replacement type, etc. Can be applied. Moreover, it can carry out similarly to the example of construction of the conventional column wall or block also about the formation procedure of a block comprised by connecting a pile body, the amount of overlap, etc.
Portland cement and blast furnace cement are generally used as cement-based hardeners for soil cement, but depending on the soil properties of the target ground, mixed cement such as silica cement and fly ash cement can be used. .
It is also possible to use a delayed AE water reducing agent as an admixture to keep the cement slurry in a relatively long state, or to use bentonite as an admixture.
[0018]
By the way, since most of the load of the building as an upper structure is always borne by the pile foundation, the building vertical load borne by the ground improvement body is set small. At this time, since the shear force transmitted from the bottom of the building foundation to the ground improvement body during an earthquake is proportional to the vertical load acting on the top surface of the ground improvement body, it is expected that the shear force borne by the ground improvement body will be a small value. The Therefore, it is preferable to previously provide a shearing resistor for reliably transmitting a shearing force between the building bottom and the ground improvement body. Thereby, the shear force at the time of an earthquake can be reliably transmitted to a ground improvement body from a building bottom face.
[0019]
Hereinafter, an example of the shear resistor formed on the joint surface between the bottom surface of the building foundation and the upper surface of the ground improvement body will be described with reference to FIGS.
FIG. 5A shows a protrusion 41 made of a part of the foundation bottom slab 11 of the building protruding from the upper surface 30a of the ground improvement body. In this example, when placing the uppermost layer of the ground improvement body 30, a box-shaped frame having a predetermined shape is disposed to form a recess at a predetermined position on the improvement body upper surface 30a. A protrusion 41 is formed by driving the foundation bottom plate 11. FIG. 5B shows a modification in which protrusions 42 are formed on the ground improvement body upper surface 30a. In this modification, when the uppermost layer of the ground improvement body 30 is driven, the inside of the mold frame arranged in a predetermined shape may be driven integrally to form the protrusion 42 made of the improved body.
In this way, a shear resistor is formed in a state in which the irregular surface of a predetermined shape is engaged with the joint surface between the building foundation bottom surface 11a and the ground improvement body upper surface 30a. Thereby, integration with the building foundation bottom face 11a and the ground improvement body upper surface 30a will be achieved. As examples of the planar shape of the concave and convex meshing surfaces, various shapes other than the shapes shown in the respective drawings of FIG. 6 can be used. Any of these shapes is preferably a shape in which the difference in strength of shear resistance with respect to the direction in which the shear force acts (the direction in which the seismic force is input) decreases. Therefore, it is preferable to use an uneven shear resistor having a concentric or lattice shape over the entire upper surface 30a of the ground improvement body (see FIGS. 6A and 6B). In addition, it is preferable to set this uneven | corrugated shaped part so that it may become finer than the construction interval of the pile of a building foundation.
[0020]
FIG. 5C shows an example in which dowels are provided as shear resistors. The dowels 43 are first embedded in the uppermost layer of the ground improvement body 30 at predetermined intervals for positioning, and the building foundation bottom slab 11 is placed on the ground improvement body 30 in this state. Thus, since the whole dowel 43 as a shear resistance body is embedded at the joint surface position between the building foundation bottom surface 11 a and the ground improvement body 30, the shearing force from the building is reliably transmitted to the ground improvement body 30. . As the dowels, H-shaped steel, steel pipe, concrete filled steel pipe, precast concrete (PCa) pipe, PCa pile, etc. cut into short lengths can be used. Further, it is preferable that the dowels are arranged at substantially equal intervals vertically and horizontally as shown in FIG.
[0021]
It is also possible to construct the building foundation bottom slab 11 so as to surround the outer periphery of the upper end of the ground improvement body 30 as shown in FIGS. In this case, a part 30b on the outer peripheral side surface of the ground improvement body 30, which is an already-constructed part, becomes a mold, so that it is preferable to remove the dirt and deposits on the surface and roughen the surface. Thus, the surrounding wall 45 protrudes from the building foundation bottom surface 11a, and the upper end portion of the ground improvement body 30 is restrained to reliably transmit the shearing force from the building 10 as the upper structure portion to the ground improvement body 30. Can do. In addition, in the front view of FIG. 5, FIG. 7, illustration of a part of seismic isolation apparatus 13 and the pile 21 is abbreviate | omitted for the simplification of a figure.
【The invention's effect】
As is apparent from the above description, according to the present invention, by increasing the ground rigidity, a relatively short period component becomes dominant in the foundation ground during an earthquake, and resonance with the natural period of the building is prevented. The effect is that the building's seismic isolation effect can be demonstrated with certainty.
[Brief description of the drawings]
FIG. 1 is a front view and plan view showing an embodiment of a seismic isolation structure foundation on soft ground according to the present invention.
FIG. 2 is a plan view showing another embodiment of the seismic isolation structure foundation on the soft ground.
FIG. 3 is a plan view showing another embodiment of the seismic isolation structure foundation on the soft ground.
FIG. 4 is a plan view showing another embodiment of the seismic isolation structure foundation on the soft ground.
FIG. 5 is a front view showing a partial cross section of a shear resistance body between a base bottom plate and a ground improvement body.
6 is a partial plan view showing an example of a planar shape of the shear resistor shown in FIG. 5. FIG.
FIG. 7 is a partial front view and a plan view showing the configuration of the surrounding wall of the upper end portion of the ground improvement body.
FIG. 8 is a front view showing an example of a seismic isolation structure foundation on a conventional soft ground.
[Explanation of symbols]
10 Superstructure 11 Base bottom 12 Seismic isolation layer 13 Isolator (Seismic isolation device)
20 foundation structure 21 pile 30 ground improvement body 31 outer peripheral wall

Claims (2)

基礎杭と、該基礎杭のうちの複数本を包含するように造成されたブロック状の地盤改良体とで上部構造物を支持する複合基礎構造からなり、前記ブロック状の地盤改良体の上面に構築される2重基礎底版の下側底版との間にせん断抵抗体を設けるとともに、前記2重基礎底版の下側底版と上側底版との間に免震装置を配設し、前記上側底版上に構築される上部構造物を支持することを特徴とする軟弱地盤上の免震構造基礎。It consists of a composite foundation structure that supports an upper structure with a foundation pile and a block-like ground improvement body constructed so as to include a plurality of the foundation piles, on the upper surface of the block-like ground improvement body A shear resistor is provided between the lower bottom plate of the double foundation bottom plate to be constructed, and a seismic isolation device is disposed between the lower bottom plate and the upper bottom plate of the double foundation bottom plate, Seismic isolation base on soft ground, characterized by supporting superstructure constructed in 前記ブロック状の地盤改良体はセメント硬化材を使用した深層混合攪拌構造体であることを特徴とする請求項1記載の軟弱地盤上の免震構造基礎。  2. The base isolation structure on soft ground according to claim 1, wherein the block-like ground improvement body is a deep mixed stirring structure using a cement hardener.
JP23182697A 1997-08-13 1997-08-13 Base isolation structure on soft ground Expired - Lifetime JP3677705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23182697A JP3677705B2 (en) 1997-08-13 1997-08-13 Base isolation structure on soft ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23182697A JP3677705B2 (en) 1997-08-13 1997-08-13 Base isolation structure on soft ground

Publications (2)

Publication Number Publication Date
JPH1161849A JPH1161849A (en) 1999-03-05
JP3677705B2 true JP3677705B2 (en) 2005-08-03

Family

ID=16929633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23182697A Expired - Lifetime JP3677705B2 (en) 1997-08-13 1997-08-13 Base isolation structure on soft ground

Country Status (1)

Country Link
JP (1) JP3677705B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151078B2 (en) * 2006-06-26 2013-02-27 株式会社大林組 Core material, underground continuous wall, soil cement wall, underground wall pile, soil cement wall pile, cast-in-place concrete pile
JP5124180B2 (en) * 2007-06-25 2013-01-23 株式会社竹中工務店 Pile foundation structure that distributes horizontal force to the ground improvement wall
JP6074158B2 (en) * 2012-04-27 2017-02-01 株式会社竹中工務店 Ground improvement body and ground improvement construction method
JP2015017421A (en) * 2013-07-11 2015-01-29 ミサワホーム株式会社 Building design method using on-site earthquake information
KR102305260B1 (en) * 2020-09-25 2021-09-27 유한회사 강남이앤씨 PC structure with residual settlement prevention function and construction method of PC structure using the same

Also Published As

Publication number Publication date
JPH1161849A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
EP1157169B1 (en) Short aggregate pier techniques
US5800090A (en) Apparatus and method for liquefaction remediation of liquefiable soils
CN213539081U (en) Equipment foundation vibration isolation structure
JP2000154550A (en) Vibration control footing structure in building and construction method therefor
US5746544A (en) Process and structure for reducing roadway construction period
JP3677705B2 (en) Base isolation structure on soft ground
JPH0547685B2 (en)
JP3385876B2 (en) Cast-in-place pile construction method just below the existing foundation
JPS62260919A (en) Small pile for reinforcing foundation ground to earthquake
JP3156067B2 (en) Liquefaction control basic structure
Andromalos et al. The application of various deep mixing methods for excavation support systems
JP5071852B2 (en) Structure subsidence suppression structure
JP4762618B2 (en) Pile foundation structure and construction method
JP3176530B2 (en) Liquefaction countermeasures
CN109577381B (en) Seismic isolation method for underground structure and seismic isolated underground structure
JPH1046619A (en) Foundation structure of construction in sand-layer ground
KR101858021B1 (en) Earthquake-proof type top-base pile, earthquake-proof type top-base foundation and construction method of the same
JPS61146910A (en) Method of preventing liquefaction of sand ground
JPH02132216A (en) Base for filled ground structure
JP3155456B2 (en) Pile structure to be joined to floor slab connected to foam resin material, and construction method of pile structure
JP2000282501A (en) Solidified ground for damping and preventing liquuefaction
JPH1181341A (en) Earthquake resistant pile construction method
Rabeler et al. High capacity drilled cast-in-place piles
JPH08128044A (en) Light-weight earth construction method and light-weight block
CN118030075A (en) Supporting structure and method suitable for excavation of vertical shafts of adjacent pipe gallery of existing pipeline

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term