JPH11315544A - Vibration isolation method for structure and construction of vibration isolation of structure - Google Patents

Vibration isolation method for structure and construction of vibration isolation of structure

Info

Publication number
JPH11315544A
JPH11315544A JP12340698A JP12340698A JPH11315544A JP H11315544 A JPH11315544 A JP H11315544A JP 12340698 A JP12340698 A JP 12340698A JP 12340698 A JP12340698 A JP 12340698A JP H11315544 A JPH11315544 A JP H11315544A
Authority
JP
Japan
Prior art keywords
liquefaction
ground
pile
seismic isolation
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12340698A
Other languages
Japanese (ja)
Other versions
JP2878273B1 (en
Inventor
Tomoyo Taniguchi
朋代 谷口
Takeru Hirakawa
長 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14859777&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11315544(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP12340698A priority Critical patent/JP2878273B1/en
Application granted granted Critical
Publication of JP2878273B1 publication Critical patent/JP2878273B1/en
Publication of JPH11315544A publication Critical patent/JPH11315544A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce damage by a ground liquefaction at the time of an earthquake, to attain base isolation by effectively utilizing the liquefaction and to omit soil improvement after the completion of the earthquake. SOLUTION: An enclosing wall 9 enclosing the outside of the foundation structural section 4 of the structure 1 while boring a liquefaction induction opening 8 is installed, liquefaction accelerating soil 10 is buried into the liquefaction induction opening 8, and the structure 1 is borne to grounds 11, 11a by a plurality of hollow piles 7. Excessively pressed water in the ground 11 causing liquefaction at the time of the generation of an earthquake is introduced into the enclosing wall 9 through the water introducing holes 13 of the piles 7, an internal passage and a communication passage, the liquefaction accelerating soil 10 is liquefied, and the structure 1 is vibration-isolated by the liquefaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、構造物用免震方
法及び構造物の免震構造に関し、特に地震発生時に地盤
内に発生する過剰に加圧された水を過剰間隙水圧を利用
して中空の杭を介して上方へ導いて少なくとも構造物の
基礎構造部の周辺部の土を液状化させて構造物を免震す
る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation method for a structure and a seismic isolation structure for a structure, and more particularly, to excessively pressurized water generated in the ground at the time of an earthquake by utilizing excess pore water pressure. The present invention relates to a technology for seismically isolating a structure by liquefying soil at least around a basic structure of the structure by guiding the soil upward through a hollow pile.

【0002】[0002]

【従来の技術】 種々の構造物(建物、橋脚、橋台、タ
ンク類等の種々の構造物)を支持する地盤の土質が液状
化し易い土質の場合には、地震発生時に軟弱な地盤が液
状化して構造物が傾いたり転倒したりすることは公知で
ある。地盤を構成する土には水と空気とが含まれ、粒子
が微細な土や、水分や空気の含有量が多い土や、締まり
の悪い土では、地震発生時に地盤に繰り返し振動が作用
すると地盤が液状化しやすい。
2. Description of the Related Art In the case of soil that supports various structures (various structures such as buildings, piers, abutments, tanks, etc.), if the soil is easily liquefied, the soft ground liquefies when an earthquake occurs. It is known that structures tilt and fall over. The soil that composes the ground contains water and air.Soils with fine particles, soils with high moisture or air content, or soils that are not tight can be affected by repeated vibrations on the ground during an earthquake. Easily liquefies.

【0003】ところで、兵庫県南部地震の際に観察され
た事実であるが、地震発生の初期の、200 〜300 ガル程
度の複数の地震波により地盤の液状化が生じ、一旦液状
化が発生すると、地震振動が構造物の基礎構造部へ伝達
されにくくなり、その後の構造物の振動が緩和される、
つまり地盤の液状化は構造物を免震する作用がある。従
来、埋立地等において地盤内の水を地表側へ吹き出させ
る為のサンドパイルが広く実用化されているが、サンド
パイル内の通路抵抗は非常に大きいため、サンドパイル
により地盤内の水を極く低速にて排水することは可能で
ある。しかし、地震発生時にサンドパイルを介して地盤
内の加圧状の水を急速に排水することは殆ど不可能であ
る。
[0003] By the way, it is a fact that was observed during the Hyogoken-Nanbu Earthquake. The ground liquefaction was caused by a plurality of seismic waves of about 200 to 300 gal at the beginning of the earthquake, and once the liquefaction occurred, Seismic vibrations are less likely to be transmitted to the foundation structure of the structure, and subsequent vibrations of the structure are reduced.
In other words, liquefaction of the ground has the effect of isolating the structure. Conventionally, sand piles for blowing water from the ground to the ground surface in landfills have been widely put into practical use.However, since the passage resistance in the sand piles is extremely large, the sand piles are used to minimize the water in the ground. It is possible to drain at very low speed. However, it is almost impossible to rapidly drain pressurized water in the ground through a sandpile when an earthquake occurs.

【0004】[0004]

【発明が解決しようとする課題】 埋立地等の軟弱地盤
に構築された構造物などの場合には、地震発生時に地盤
の液状化により、構造物が大きく傾いたり、構造物が転
倒したりして大きな被害が発生する。しかも、地震後
に、地盤を補修するとか、構造物の基礎構造を大幅に改
修したりするのに多額の費用がかかる。本発明の目的
は、地盤の液状化を有効活用して構造物を免震する技術
を提供すること、地盤の液状化による被害を少なくする
こと、地震時における地盤の液状化を防止すること、等
である。
[Problems to be Solved by the Invention] In the case of a structure constructed on soft ground such as a landfill, the structure is greatly inclined or the structure falls due to liquefaction of the ground when an earthquake occurs. Cause great damage. Moreover, after the earthquake, it takes a lot of money to repair the ground or make major changes to the foundation of the structure. An object of the present invention is to provide a technology for seismically isolating a structure by effectively utilizing ground liquefaction, to reduce damage due to ground liquefaction, to prevent ground liquefaction during an earthquake, And so on.

【0005】[0005]

【課題を解決するための手段】 請求項1の構造物用免
震方法は、構造物を免震する免震方法において、構造物
を支持する杭に地盤内の水を上方へ導く内部通路を予め
形成しておき、地震発生時に地盤内の過剰間隙水圧を利
用して前記杭とその内部通路を介して地盤内の被加圧水
を上方へ導き、少なくとも構造物の基礎構造部の周辺部
の土を液状化させて、構造物を免震することを特徴とす
るものである。
According to a first aspect of the present invention, there is provided a seismic isolation method for seismic isolation of a structure, wherein an internal passage for guiding water in the ground upward to a pile supporting the structure. It is formed in advance, and pressurized water in the ground is guided upward through the pile and its internal passage using the excess pore water pressure in the ground when an earthquake occurs, and at least the soil at the peripheral portion of the foundation structure portion of the structure. Is liquefied, and the structure is seismically isolated.

【0006】前記構造物とは、建物、橋脚、橋台、種々
のタンク類等の種々の構造物を意味するものであり、構
造物の基礎構造部を支持する杭に地盤内の水を上方へ導
く内部通路を予め形成しておくため、地震発生時に前記
杭とその内部通路を介して地盤内の地震振動で加圧され
た水を上方へ導くことができる。そして、地盤内から上
方へ導いた水で少なくとも構造物の基礎構造部の周辺部
の土を液状化させて構造物を免震することができる。但
し、構造物の基礎構造部の少なくとも周辺部の土の液状
化を促進する為に、その周辺部の土を囲繞する箱状の囲
繞壁を予め設けることが望ましい。
The above-mentioned structure means various structures such as buildings, piers, abutments, various tanks, etc., and the water in the ground is moved upward by piles supporting the basic structure of the structure. Since the internal passage for guiding is formed in advance, water pressurized by seismic vibration in the ground can be guided upward through the pile and the internal passage when an earthquake occurs. Then, at least the soil at the peripheral portion of the foundation structure portion of the structure is liquefied by the water guided upward from the ground, and the structure can be isolated. However, in order to promote liquefaction of the soil at least in the peripheral portion of the basic structure of the structure, it is desirable to provide a box-shaped surrounding wall surrounding the soil in the peripheral portion in advance.

【0007】請求項2の構造物の免震構造は、構造物を
免震する免震構造において、前記構造物の基礎構造部を
支承して構造物を地盤に支持する複数の中空の杭と、前
記構造物の基礎構造部の外側を液状化誘発間隙を空けて
囲繞する囲繞壁と、前記囲繞壁の内側の液状化誘発間隙
に埋め込んだ液状化促進土と、前記囲繞壁の外側におい
て各杭にその内部通路に連通状に形成した複数の水導入
穴と、前記中空の各杭の内部通路を液状化誘発間隙に連
通させる連通路とを備え、地震発生時に地盤内の過剰間
隙水圧を利用して地盤内の被加圧水を複数の杭を介して
液状化誘発間隙に導入し、液状化誘発間隙の液状化促進
土を液状化させて構造物を免震するように構成したもの
である。
According to a second aspect of the present invention, there is provided a seismic isolation structure for seismically isolating a structure, comprising a plurality of hollow piles for supporting a foundation structure of the structure and supporting the structure on the ground. A surrounding wall surrounding the outside of the basic structure of the structure with a liquefaction-inducing gap, a liquefaction-promoting soil embedded in the liquefaction-inducing gap inside the surrounding wall, and an outer wall of the surrounding wall. The pile includes a plurality of water introduction holes formed in communication with the internal passage of the pile, and a communication passage that communicates the internal passage of each hollow pile with the liquefaction-inducing gap, and reduces excess pore water pressure in the ground during an earthquake. Utilized water in the ground is introduced into the liquefaction-inducing gap via multiple piles, and the liquefaction-promoting soil in the liquefaction-inducing gap is liquefied to isolate the structure. .

【0008】前記構造物については請求項1と同様であ
る。複数の中空の杭が構造物の基礎構造部を支承して構
造物を支持している。囲繞壁が構造物の基礎構造部の外
側を液状化誘発間隙を空けて囲繞しており、この囲繞壁
の内側の液状化誘発間隙には液状化促進土が埋め込まれ
ている。囲繞壁の外側において各杭には、その内部通路
に連通状に形成した複数の水導入穴が形成され、中空の
各杭の内部通路を液状化誘発間隙に連通させる連通路が
形成されている。
[0008] The structure is the same as in the first aspect. A plurality of hollow piles support the structure by supporting the foundation of the structure. A surrounding wall surrounds the outside of the basic structure of the structure with a liquefaction-inducing gap, and liquefaction-promoting soil is embedded in the liquefaction-inducing gap inside the surrounding wall. Outside the surrounding wall, each pile is formed with a plurality of water introduction holes formed in communication with the internal passage of the pile, and a communication path is formed to communicate the internal passage of each hollow pile with the liquefaction-inducing gap. .

【0009】前記囲繞壁は、例えば鉄筋コンクリート製
の箱状の壁であり、囲繞壁内部の液状化による土圧と囲
繞壁外部からの地震時の土圧に耐える構造のものであ
る。それ故、地震発生時に地盤内の間隙水圧が増すと、
その水が各杭の複数の水導入穴から内部通路内へ流入
し、内部通路を通って上昇し、連通路から囲繞壁の内側
の液状化誘発間隙へ流入し、液状化誘発間隙に充填され
ている液状化促進土を液状化させて構造物を免震する。
The surrounding wall is a box-shaped wall made of, for example, reinforced concrete, and has a structure capable of withstanding earth pressure due to liquefaction inside the surrounding wall and earth pressure from the outside of the surrounding wall during an earthquake. Therefore, if the pore water pressure in the ground increases during an earthquake,
The water flows into the internal passage from the plurality of water introduction holes of each pile, rises through the internal passage, flows from the communication passage into the liquefaction-inducing gap inside the surrounding wall, and is filled in the liquefaction-inducing gap. Liquefies the liquefaction-promoting soil, which is seismically isolated.

【0010】一般に、地震発生直後に複数の200 〜300
ガル程度の地震波が伝播し、その後に一層大きな地震波
が伝播するケースが多いが、兵庫県南部地震での観測結
果から前記地震発生直後の地震波により、前記液状化誘
発間隙に充填されている液状化促進土を液状化させるこ
とができれば、その後の一層大きな地震波に対して構造
物を免震することが可能である。構造物の基礎構造部を
複数の杭で支承することで構造物を複数の杭で支持して
いるため、囲繞壁の内側の液状化誘発間隙に埋めた液状
化促進土が液状化しても、構造物が傾いたり転倒したり
することもない。しかも、囲繞壁の外側の杭の周辺の地
盤内の液状化の原因となる過剰な圧力を有する水は囲繞
壁の内側へ排出されるため、その地盤の液状化を確実に
防止することができる。
[0010] Generally, a plurality of 200 to 300
In many cases, a seismic wave of the order of galle propagates and then a larger seismic wave propagates.However, from the observation results of the Hyogoken Nanbu Earthquake, the seismic wave immediately after the occurrence of the liquefaction filled the liquefaction-induced gap. If the accelerating soil can be liquefied, the structure can be isolated from the subsequent larger seismic waves. Since the structure is supported by multiple piles by supporting the foundation structure of the structure with multiple piles, even if the liquefaction promoting soil buried in the liquefaction-induced gap inside the surrounding wall liquefies, The structure does not tilt or fall. In addition, since water having excessive pressure that causes liquefaction in the ground around the pile outside the surrounding wall is discharged to the inside of the surrounding wall, liquefaction of the ground can be reliably prevented. .

【0011】請求項3の構造物の免震構造は、請求項2
の発明において、前記構造物の基礎構造部の下面部のう
ちの杭の頂部の付近の部位に金属製の滑り板を設け、こ
の滑り板を低摩擦部材を介して杭で支持するように構成
したことを特徴とするものである。即ち、地震発生時
に、囲繞壁の内部の液状化促進土が液状化した状態で
は、複数の杭と地盤側とが構造物に対して相対的に変位
することになるので、構造物の基礎構造部の下面部のう
ちの杭の頂部の付近の部位に金属製の滑り板を設け、こ
の滑り板を低摩擦部材を介して杭で支持することで、複
数の杭と構造物との相対変位するときの挙動が円滑にな
り、免震性能が高まる。
The seismic isolation structure of the structure according to claim 3 is provided in claim 2.
In the invention of the above, a metal sliding plate is provided at a position near the top of the pile on the lower surface of the basic structure of the structure, and the sliding plate is supported by the pile via a low friction member. It is characterized by having done. That is, when the liquefaction-promoting soil inside the surrounding wall is liquefied at the time of the earthquake, the plurality of piles and the ground side are displaced relative to the structure, so that the basic structure of the structure is A metal slide plate is provided on the lower surface of the part near the top of the pile, and the slide plate is supported by the pile via a low friction member, so that the relative displacement between the plurality of piles and the structure is reduced. The behavior when performing is smooth, and the seismic isolation performance is enhanced.

【0012】請求項4の構造物の免震構造は、請求項2
の発明において、前記構造物の基礎構造部の下面部と各
杭の頂部との間に積層ゴム式免震支承装置を設けて構造
物と杭とに連結したことを特徴とするものである。地震
発生時に、囲繞壁の内部の液状化促進土が液状化した状
態では、複数の杭と地盤側とが構造物に対して相対的に
変位することになるが、その相対変位が発生するときに
構造物の基礎構造部の下面部と各杭の頂部との間に設け
た積層ゴム式免震支承装置が水平方向へ剪断変形し、地
震終結の際には複数の積層ゴム式免震支承装置の弾性復
原力で構造物がほぼ原位置に復帰するため、構造物と複
数の杭との相対位置が地震前とほぼ同じになる。
A seismic isolation structure for a structure according to claim 4 is provided in claim 2.
In the invention, the laminated rubber seismic isolation bearing is provided between the lower surface of the foundation structure of the structure and the top of each pile, and is connected to the structure and the pile. At the time of the earthquake, if the liquefaction-promoting soil inside the surrounding wall is liquefied, multiple piles and the ground side will be displaced relative to the structure, but when the relative displacement occurs At the end of the earthquake, a plurality of laminated rubber seismic isolation bearings were provided between the lower surface of the foundation of the structure and the top of each pile. Since the structure returns to almost the original position by the elastic restoring force of the device, the relative positions of the structure and the plurality of piles become almost the same as before the earthquake.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面に基づいて説明する。この実施形態は、5階程度
の中層ビルディングである構造物の免震構造及び免震方
法に本発明を適用した場合の一例である。図1、図2に
示すように、構造物1には、下端部の高剛性の底盤部2
と地下1階部3とを含む基礎構造部4と、地階部〜5階
部とを含む地上構造部5とが設けられている。底盤部2
は、鉄筋コンクリート製の高剛性の厚盤状に形成され、
地下1階部3の外壁部も鉄筋コンクリート製の高剛性に
形成されている。この構造物1の免震装置6は、構造物
1の基礎構造部4を支承して構造物1を支持する9本の
中空の杭7と、構造物1の基礎構造部4の外側を液状化
誘発間隙8を空けて囲繞する箱状の囲繞壁9と、囲繞壁
9の内側の液状化誘発間隙8に埋め込んだ液状化促進土
10とを備えている。
Next, embodiments of the present invention will be described with reference to the drawings. This embodiment is an example in which the present invention is applied to a seismic isolation structure and a seismic isolation method for a structure that is a middle-rise building of about five floors. As shown in FIGS. 1 and 2, the structure 1 has a high rigid bottom plate 2 at the lower end.
And a ground structure section 5 including a basement section to a fifth floor section. Bottom part 2
Is formed in the form of a high rigid slab made of reinforced concrete,
The outer wall of the first basement 3 is also made of reinforced concrete with high rigidity. The seismic isolation device 6 of the structure 1 includes nine hollow piles 7 that support the foundation 1 by supporting the foundation 4 of the structure 1, and that the outside of the foundation 4 of the structure 1 is liquid. It comprises a box-shaped surrounding wall 9 surrounding the liquefaction-inducing gap 8 and a liquefaction-promoting soil 10 embedded in the liquefaction-inducing gap 8 inside the surrounding wall 9.

【0014】図1、図2に示すように、前記9本の鉛直
の杭7は構造物1の底盤部2を均等に支持できるように
3行3列のマトリックス状に配設され、それら杭7は地
盤11内へ深く貫入されて、杭7の下端部は岩盤等の硬
質地盤11aに達している。図3に示すように、各杭7
は例えば鉄筋コンクリート製の中空の杭であり、その中
心部には水を流通させる為の内部通路12が形成される
とともに、囲繞壁9の外側において杭7には内部通路1
2に連通した多数の水導入穴13が形成され、囲繞壁9
の内側において杭7には内部通路12を液状化誘発間隙
8に連通させる複数の連通路14が形成されている。
As shown in FIGS. 1 and 2, the nine vertical piles 7 are arranged in a matrix of three rows and three columns so that the bottom part 2 of the structure 1 can be uniformly supported. 7 penetrates deeply into the ground 11, and the lower end of the pile 7 reaches a hard ground 11a such as a bedrock. As shown in FIG.
Is a hollow stake made of, for example, reinforced concrete. An inner passage 12 for flowing water is formed in the center of the stake, and an inner passage 1 is formed in the stake 7 outside the surrounding wall 9.
A large number of water introduction holes 13 communicating with the surrounding wall 9 are formed.
Inside the stake 7, a plurality of communication passages 14 are formed in the stake 7 to communicate the internal passage 12 with the liquefaction-inducing gap 8.

【0015】前記囲繞壁9は、所定の厚さを有し地震発
生時における囲繞壁内部の液状化による土圧と囲繞壁外
部からの地震時の土圧に耐える鉄筋コンクリート製の壁
で矩形の箱状に構成され、この囲繞壁9の内側の液状化
誘発間隙8には、シルト、砂、またはそれらの混合土を
主体とする液状化し易い液状化促進土10が埋め込まれ
ている。構造物1の底盤部2の下面部のうちの各杭7の
頂部の付近の部位に例えばステンレス鋼製の滑り板15
が設けられ、各杭7の上端部には二硫化モリブデン等の
固体潤滑材からなる低摩擦部材16が固定され、この低
摩擦部材16が滑り板15の下面に面接触させられ、構
造物1は9本の杭7により低摩擦的に支持されている。
The surrounding wall 9 is a rectangular box made of a reinforced concrete wall having a predetermined thickness and resistant to earth pressure due to liquefaction inside the surrounding wall when an earthquake occurs and earth pressure from the outside of the surrounding wall during an earthquake. In the liquefaction-inducing gap 8 inside the surrounding wall 9, a liquefaction-promoting soil 10 mainly containing silt, sand, or a mixture thereof is buried. A sliding plate 15 made of, for example, stainless steel is provided on a portion of the lower surface of the bottom portion 2 of the structure 1 near the top of each pile 7.
A low-friction member 16 made of a solid lubricant such as molybdenum disulfide is fixed to the upper end of each pile 7, and this low-friction member 16 is brought into surface contact with the lower surface of the sliding plate 15, and the structure 1 Are supported by nine piles 7 with low friction.

【0016】図1〜図4に示すように、地震時に、地盤
11,11aの振動により地盤11と囲繞壁9とが構造
物1と杭7に対して相対的に水平移動するのを許容する
ように、囲繞壁9のうちの各杭7が挿通する杭挿通穴1
7は杭7の周面との間に所定(例えば、約300mm)
の隙間18を残す大きさに形成されている。そして、図
3に示すように、囲繞壁9の内部に流入した水が杭挿通
穴17から外部へ逃げるのを防止する為に、杭挿通穴1
7は杭7に外嵌させたステンレス鋼製のカバー板19で
上側から封鎖されている。このカバー板19は杭挿通穴
17よりも大径であり、囲繞壁9に対して相対移動自在
に設けられている。
As shown in FIGS. 1 to 4, during the earthquake, the ground 11 and the surrounding wall 9 are allowed to move horizontally relative to the structure 1 and the pile 7 due to the vibration of the ground 11, 11a. Thus, the pile insertion hole 1 through which the respective piles 7 of the surrounding wall 9 are inserted
7 is predetermined (for example, about 300 mm) between the periphery of the pile 7
Is formed in such a size that a gap 18 is left. As shown in FIG. 3, in order to prevent the water flowing into the surrounding wall 9 from escaping from the pile insertion hole 17 to the outside, the pile insertion hole 1 is used.
Reference numeral 7 denotes a stainless steel cover plate 19 which is fitted over the pile 7 and is closed from above. The cover plate 19 has a larger diameter than the pile insertion hole 17 and is provided so as to be relatively movable with respect to the surrounding wall 9.

【0017】以上説明した構造物1の免震構造の作用に
ついて説明する。但し、その作用の説明は、免震方法の
説明も含むものである。通常の状態では、構造物1と9
本の杭7と囲繞壁9とは図1のようになっており、構造
物1は9本の杭7により地盤11,11aに支持されて
いる。地震発生時の初期の200 〜300 ガル程度の複数波
の地震振動により地盤11内の間隙水圧が大きくなる
と、図3に示すようにその過剰間隙水圧により地盤11
内の水が9本の杭7に形成された多数の水導入穴13か
ら各杭7の内部通路12へ導入されて内部通路12内を
上方へ流れ、各杭7の複数の連通路14から囲繞壁9の
内側の液状化誘発間隙8へ流入し、その液状化誘発間隙
8の液状化促進土10を液状化させる。
The operation of the seismic isolation structure of the structure 1 described above will be described. However, the description of the operation includes the description of the seismic isolation method. Under normal conditions, structures 1 and 9
The piles 7 and the surrounding wall 9 are as shown in FIG. 1, and the structure 1 is supported on the ground 11, 11 a by the nine piles 7. When the pore water pressure in the ground 11 becomes large due to the initial vibration of the plurality of waves of about 200 to 300 gal when the earthquake occurs, as shown in FIG.
The water in the inside is introduced into the internal passages 12 of each pile 7 from a number of water introduction holes 13 formed in the nine piles 7, flows upward through the internal passages 12, and flows from the plurality of communication passages 14 of each pile 7. It flows into the liquefaction-inducing gap 8 inside the surrounding wall 9 and liquefies the liquefaction-promoting soil 10 in the liquefaction-inducing gap 8.

【0018】その後、前記の液状化が進行した状態で、
例えば600 ガル以上の強力な地震振動が伝播してきて
も、構造物1の基礎構造部4の周囲の液状化促進土10
が既に液状化しており、その液状化した液状化促進土1
0を介しては地震振動が伝播しにくいため、構造物1が
効果的に免震されることになる。この免震作用により、
構造物1自体の損傷、構造物1の内部の設備や人員に対
する被害が極端に軽減されることになる。しかも、地震
発生の際、液状化の原因となる地盤11内の過剰に加圧
された水の大部分は9本の杭7を介して囲繞壁9の内部
へ排出されるため、地盤11内の間隙水圧を適正に保つ
ことができるので、地盤11の液状化を確実に防止する
ことができる。それ故、地震終結後に地盤11の補修の
必要がなく、地震後の土木費用を節減できる。
Thereafter, with the liquefaction proceeding,
For example, even if a strong seismic vibration of 600 gal or more propagates, the liquefaction-promoting soil 10 around the basic structure 4 of the structure 1
Is already liquefied, and the liquefied liquefaction-promoting soil 1
Since the seismic vibration hardly propagates through the zero, the structure 1 is effectively isolated. With this seismic isolation,
Damage to the structure 1 itself and damage to equipment and personnel inside the structure 1 are extremely reduced. Moreover, in the event of an earthquake, most of the excessively pressurized water in the ground 11 that causes liquefaction is discharged into the surrounding wall 9 through the nine piles 7. Therefore, the liquefaction of the ground 11 can be reliably prevented. Therefore, there is no need to repair the ground 11 after the end of the earthquake, and civil engineering costs after the earthquake can be reduced.

【0019】尤も、地震振動により、構造物1に対して
囲繞壁9も液状化促進土10も相対的に移動し、構造物
1に対して9本の杭7も相対的に移動する可能性がある
が、各杭7の上端の低摩擦部材16と滑り板15間が滑
り易くなっているため、9本の杭7から構造物1に大き
な水平方向の地震力が伝播することはない。図4におい
て実線の構造物1は地震発生前の状態のもの、鎖線の構
造物1は地震終結後のものの一例を示す。地震終結時
に、構造物1が鎖線のように、囲繞壁9及び9本の杭7
に対して相対的にずれる可能性がある。
However, there is a possibility that the surrounding wall 9 and the liquefaction-promoting soil 10 move relatively to the structure 1 due to the earthquake vibration, and the nine piles 7 move relatively to the structure 1. However, since the low friction member 16 at the upper end of each pile 7 and the sliding plate 15 are easily slipped, large horizontal seismic force does not propagate to the structure 1 from the nine piles 7. In FIG. 4, the solid-line structure 1 shows an example before the earthquake, and the chain-line structure 1 shows an example after the earthquake. At the end of the earthquake, the structure 1 has a surrounding wall 9 and nine
May be relatively deviated from

【0020】その場合の対策として、鎖線図示の構造物
1を実線図示の位置へ移動させる為のジャッキシステム
を、予め底盤部2や地下1階部3の内部に装備してお
き、ジャッキシステムの油圧ジャッキから囲繞壁9に力
を作用させるのに適した力伝達部材を液状化誘発間隙8
内に装備しておくことが望ましい。ここで、9本の杭7
は、その内部通路12に砂や土が詰まってしまわない限
り再使用可能である。そこで、内部通路12への土砂の
流入を抑制する為に全部の水導入穴13に金網製の丈夫
なフィルター部材を夫々装着することが望ましい。
As a countermeasure in such a case, a jack system for moving the structure 1 shown in the dashed line to the position shown in the solid line is provided in advance in the inside of the bottom part 2 or the first basement floor 3, and the jack system is provided. A liquefaction-inducing gap 8 is used to apply a force transmitting member suitable for applying a force to the surrounding wall 9 from the hydraulic jack.
It is desirable to equip it inside. Here, 9 piles 7
Can be reused as long as the internal passage 12 is not clogged with sand or soil. Therefore, in order to suppress the inflow of earth and sand into the internal passage 12, it is desirable to attach a durable wire mesh filter member to all the water introduction holes 13.

【0021】前記実施形態を部分的に変更した変更例に
ついて説明する。 1〕図5に示すように、構造物1の基礎構造部4の下面
部と各杭7の頂部との間に積層ゴム式免震支承装置20
を設けて構造物1と杭7とに連結してもよい。積層ゴム
式免震支承装置20は、既存周知のものとほぼ同様のも
ので、積層ゴム本体21と、下部連結部24と、上部連
結部26とを有する。積層ゴム本体21は、金属板と高
減衰性ゴム板とを交互に複数層積層したものである。下
部連結部24は筒部22と下側基盤23とでキャップ状
に構成されて杭7の頂部に固定されている。上部連結部
26は、複数のボルト25により底盤部2の下面に固定
された上側基盤で構成されている。
A description will be given of a modified example in which the above-described embodiment is partially modified. 1] As shown in FIG. 5, a laminated rubber seismic isolation bearing device 20 is provided between the lower surface of the foundation structure 4 of the structure 1 and the top of each pile 7.
May be connected to the structure 1 and the pile 7. The laminated rubber type seismic isolation bearing device 20 is substantially the same as an existing well-known one, and has a laminated rubber main body 21, a lower connecting portion 24, and an upper connecting portion 26. The laminated rubber main body 21 is formed by alternately laminating a plurality of metal plates and high-damping rubber plates. The lower connecting portion 24 is formed in a cap shape by the cylindrical portion 22 and the lower base 23 and is fixed to the top of the pile 7. The upper connecting part 26 is configured by an upper base fixed to the lower surface of the bottom part 2 by a plurality of bolts 25.

【0022】この積層ゴム式免震支承装置20は、鉛直
荷重支持性能に優れ、地震発生時に構造物1と杭7との
大きな相対水平変位を許容しつつ、水平方向の弾性復原
力を発揮するものである。それ故、このように、9組の
積層ゴム式免震支承装置20を適用する場合には、地震
終了時に構造物1が杭7に対して変位した位置に停止す
ることはなく、図4の実線の構造物1のように、構造物
1はほぼ初期位置に確実に復帰することになる。
The laminated rubber type seismic isolation bearing device 20 is excellent in vertical load supporting performance, and exhibits a horizontal elastic restoring force while allowing a large relative horizontal displacement between the structure 1 and the pile 7 in the event of an earthquake. Things. Therefore, when the nine sets of laminated rubber seismic isolation bearing devices 20 are applied as described above, the structure 1 does not stop at the position displaced with respect to the pile 7 at the end of the earthquake. Like the solid structure 1, the structure 1 will surely return to the initial position.

【0023】2〕前記実施形態では、9本の杭7を有効
活用して、その内部に内部通路を形成したが、地盤内の
水を囲繞壁9内の液状化誘発間隙8へ導く為の杭以外の
管状部材を前記の複数の杭7ととともに適用することも
可能である。 3〕前記実施形態では、9本の杭7を適用したが、杭7
の本数は構造物1の大きさや重量との関連において適宜
設定される。
2) In the above-described embodiment, the nine stakes 7 are effectively used to form the internal passage therein, but the water in the ground is guided to the liquefaction-inducing gap 8 in the surrounding wall 9. It is also possible to apply a tubular member other than the pile together with the plurality of piles 7. 3) In the above embodiment, nine piles 7 are applied.
Is appropriately set in relation to the size and weight of the structure 1.

【0024】 4〕前記実施形態の杭7は、岩盤等の硬質地盤11aに
達するように設けてあるが、複数の杭7は必ずしも岩盤
等の硬質地盤11aに達している必要はなく、下端が地
盤の途中に位置していてもよい。 5〕本発明の免震装置及び免震方法は、ビルディング以
外の種々の構造物(橋脚、橋台、種々のタンク類、タワ
ー類)にも適用可能であるし、前記実施形態に種々の変
更を負荷した態様で実施可能であることは勿論である。
4) The pile 7 of the embodiment is provided so as to reach the hard ground 11a such as a bedrock. However, the plurality of piles 7 do not necessarily have to reach the hard ground 11a such as a bedrock. It may be located in the middle of the ground. 5) The seismic isolation device and the seismic isolation method of the present invention can be applied to various structures (piers, abutments, various tanks, towers) other than buildings, and various modifications to the above embodiment can be made. Of course, it can be implemented in a loaded mode.

【0025】[0025]

【発明の効果】 請求項1の構造物用免震方法によれ
ば、構造物を支持する杭に地盤内の水を上方へ導く内部
通路を予め形成しておき、地震発生時に地盤内の過剰間
隙水圧を利用して前記杭とその内部通路を介して地盤内
の被加圧水を上方へ導き、少なくとも構造物の基礎構造
部の周辺部の土を液状化させて構造物を免震するため、
杭に内部通路を予め形成しておくという簡単な準備を介
して、少なくとも構造物の基礎構造部の周辺部の土を液
状化させて構造物を確実に免震することができる。地震
発生時に、液状化の原因となる構造物の下方の地盤内の
過剰に加圧された水は、杭とその水通路を介して上方へ
導かれ、構造物の下方の地盤内の間隙水圧が適正に保た
れるため、その地盤に液状化が生じることがなく、地震
後にその地盤を補修する等の対策をとる必要がなく、ま
た、杭を内部通路形成部材として有効活用するため、設
備コスト的に有利である。
According to the seismic isolation method for a structure according to the first aspect, an internal passage for guiding water in the ground upward is formed in a pile supporting the structure in advance, and an excess passage in the ground when an earthquake occurs. Utilizing pore water pressure to guide the pressurized water in the ground upward through the pile and its internal passage, to liquefy the soil at least in the periphery of the foundation structure of the structure, and to isolate the structure,
Through the simple preparation of forming the internal passage in the pile in advance, it is possible to liquefy the soil at least in the peripheral part of the foundation structure portion of the structure and to surely isolate the structure. When an earthquake occurs, excessively pressurized water in the ground below the structure that causes liquefaction is guided upward through the pile and its water passage, and the pore water pressure in the ground below the structure Because the soil is properly maintained, the ground does not liquefy, there is no need to take measures such as repairing the ground after the earthquake, and equipment is used to effectively use the pile as an internal passage forming member It is cost effective.

【0026】請求項2の構造物の免震構造によれば、複
数の杭として夫々内部通路を有する中空の杭を適用し、
構造物の基礎構造部の外側を液状化誘発間隙を空けて囲
繞する囲繞壁を設け、その内部の液状化誘発間隙に液状
化促進土を埋め込み、その囲繞壁の外側で各杭に複数の
水導入穴を形成し、各杭の内部通路を液状化誘発間隙に
連通させる連通路を設けるという簡単な構成により、地
震発生時に地盤内の過剰間隙水圧を利用して複数の杭と
その内部通路を介して地盤内の被加圧水を液状化誘発間
隙に導入し、液状化誘発間隙の液状化促進土を液状化さ
せて構造物をほぼ確実に免震することができる。
According to the seismic isolation structure of the structure of the present invention, hollow piles each having an internal passage are applied as a plurality of piles,
A surrounding wall is provided to surround the outside of the basic structure of the structure with a liquefaction-inducing gap, and liquefaction-promoting soil is buried in the liquefaction-inducing gap inside. With a simple configuration that forms an introduction hole and provides a communication path that connects the internal passage of each pile to the liquefaction-inducing gap, multiple piles and their internal passages are utilized by using excess pore water pressure in the ground during an earthquake. The pressurized water in the ground is introduced into the liquefaction-inducing gap through the liquefaction-inducing gap, and the liquefaction-promoting soil in the liquefaction-inducing gap is liquefied, so that the structure can be substantially isolated.

【0027】構造物の基礎構造部を複数の杭で支承する
ことで構造物を複数の杭で支持しているため、囲繞壁の
内側の液状化誘発間隙に埋めた液状化促進土が液状化し
ても、構造物が傾いたり転倒したりすることもない。し
かも、液状化の原因となる囲繞壁の外側の地盤内の過剰
に加圧された水が囲繞壁の内側へ抜き取られ地盤内の間
隙水圧を適正に保つことができるため、囲繞壁の外側の
地盤の液状化を確実に防止することができ、地震終結後
に地盤を補修する必要もない。
Since the structure is supported by a plurality of piles by supporting the foundation structure portion of the structure with the plurality of piles, the liquefaction-promoting soil buried in the liquefaction-induced gap inside the surrounding wall is liquefied. However, the structure does not tilt or fall. In addition, excessively pressurized water in the ground outside the surrounding wall that causes liquefaction is extracted to the inside of the surrounding wall and the pore water pressure in the ground can be appropriately maintained, so that the outside of the surrounding wall can be maintained. Liquefaction of the ground can be reliably prevented, and there is no need to repair the ground after the end of the earthquake.

【0028】請求項3の構造物の免震構造によれば、構
造物の基礎構造部の下面部のうちの杭の頂部の付近の部
位に金属製の滑り板を設け、この滑り板を低摩擦部材を
介して杭で支持するように構成したので、地震発生時に
おける複数の杭と構造物との相対変位の挙動が円滑にな
り、免震性能が高まる。その他、請求項2と同様の効果
を奏する。
According to the seismic isolation structure for a structure of the present invention, a metal sliding plate is provided at a position near the top of the pile on the lower surface of the basic structure of the structure, and the sliding plate is lowered. Since it is configured to be supported by the pile via the friction member, the behavior of the relative displacement between the plurality of piles and the structure during the occurrence of the earthquake becomes smooth, and the seismic isolation performance is enhanced. The other effects are the same as those of the second aspect.

【0029】請求項4の構造物の免震構造によれば、構
造物の基礎構造部の下面部と各杭の頂部との間に積層ゴ
ム式免震支承装置を設けて構造物と杭とに連結したの
で、地震発生時に、囲繞壁の内部の液状化促進土が液状
化した状態で、複数の杭と地盤側とが構造物に対して相
対的に変位しても、地震終結の際には複数の積層ゴム式
免震支承装置の弾性復原力で構造物がほぼ原位置に復帰
するため、構造物と複数の杭との相対位置が地震前とほ
ぼ同じになる。その他請求項2と同様の効果を奏する。
According to the seismic isolation structure of a structure of the present invention, a laminated rubber type seismic isolation bearing is provided between the lower surface of the foundation structure of the structure and the top of each pile, and the structure, the pile and In the event of an earthquake, even if multiple piles and the ground side are displaced relative to the structure with the liquefaction-promoting soil inside the surrounding wall liquefied during an earthquake, Since the structure returns to almost its original position by the elastic restoring force of a plurality of laminated rubber seismic isolation bearings, the relative positions of the structure and the plurality of piles are almost the same as before the earthquake. Other effects are the same as those of the second aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る構造物とその免震装置
の断面図である。
FIG. 1 is a sectional view of a structure according to an embodiment of the present invention and its seismic isolation device.

【図2】構造物と免震装置の平面図である。FIG. 2 is a plan view of a structure and a seismic isolation device.

【図3】免震装置の要部拡大断面図である。FIG. 3 is an enlarged sectional view of a main part of the seismic isolation device.

【図4】地震開始前の構造物と地震終結時の構造物とを
示す図1相当図。
FIG. 4 is a diagram corresponding to FIG. 1 showing a structure before the start of an earthquake and a structure at the end of the earthquake.

【図5】変更例に係る積層ゴム式免震支承装置を設けた
免震装置の要部側面図である。
FIG. 5 is a main part side view of a seismic isolation device provided with a laminated rubber type seismic isolation bearing device according to a modification.

【符号の説明】[Explanation of symbols]

1 構造物 2 底盤部 3 地下1階部 4 基礎構造部 6 免震装置 7 杭 8 液状化誘発間隙 9 囲繞壁 10 液状化促進土 11 地盤 12 内部通路 13 水導入穴 14 連通路 20 積層ゴム式免震支承装置 DESCRIPTION OF SYMBOLS 1 Structure 2 Bottom part 3 Basement 1st floor part 4 Foundation structure part 6 Seismic isolation device 7 Pile 8 Liquefaction induction gap 9 Surrounding wall 10 Liquefaction promoting soil 11 Ground 12 Internal passage 13 Water introduction hole 14 Communication passage 20 Laminated rubber type Seismic isolation bearing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 構造物を免震する免震方法において、 構造物を支持する杭に地盤内の水を上方へ導く内部通路
を予め形成しておき、 地震発生時に地盤内の過剰間隙水圧を利用して前記杭と
その内部通路を介して地盤内の被加圧水を上方へ導き、
少なくとも構造物の基礎構造部の周辺部の土を液状化さ
せて、構造物を免震することを特徴とする構造物用免震
方法。
In a seismic isolation method for seismically isolating a structure, an internal passage for guiding water in the ground upward is formed in advance on a pile supporting the structure, and an excessive pore water pressure in the ground when an earthquake occurs. Utilizing the pile and the pressurized water in the ground upward through the internal passage,
A seismic isolation method for a structure, comprising liquefying at least the soil around the basic structure of the structure to seismically isolate the structure.
【請求項2】 構造物を免震する免震構造において、 前記構造物の基礎構造部を支承し構造物を地盤に支持す
る複数の中空の杭と、 前記構造物の基礎構造部の外側を液状化誘発間隙を空け
て囲繞する囲繞壁と、 前記囲繞壁の内側の液状化誘発間隙に埋め込んだ液状化
促進土と、 前記囲繞壁の外側において各杭にその内部通路に連通状
に形成した複数の水導入穴と、 前記中空の各杭の内部通路を液状化誘発間隙に連通させ
る連通路とを備え、 地震発生時に地盤内の過剰間隙水圧を利用して地盤内の
被加圧水を複数の杭を介して液状化誘発間隙に導入し、
液状化誘発間隙の液状化促進土を液状化させて構造物を
免震するように構成したことを特徴とする構造物の免震
構造。
2. A seismic isolation structure for seismically isolating a structure, comprising: a plurality of hollow piles for supporting a foundation structure of the structure and supporting the structure on the ground; A surrounding wall surrounding the liquefaction-inducing gap, a liquefaction-promoting soil embedded in the liquefaction-inducing gap inside the surrounding wall, and an outer passage outside the surrounding wall formed in each stake in communication with its internal passage. A plurality of water introduction holes, and a communication passage for communicating the internal passage of each hollow pile with the liquefaction-inducing gap, and utilizing the excess pore water pressure in the ground when an earthquake occurs, a plurality of pressurized water in the ground Introduced into the liquefaction-induced gap via a stake,
A seismic isolation structure for a structure, wherein the structure is configured to liquefy the liquefaction-promoting soil in the liquefaction-inducing gap to isolate the structure.
【請求項3】 前記構造物の基礎構造部の下面部のうち
の杭の頂部の付近の部位に金属製の滑り板を設け、この
滑り板を低摩擦部材を介して杭で支持するように構成し
たことを特徴とする請求項2に記載の構造物の免震構
造。
3. A metal slide plate is provided at a position near the top of a pile on a lower surface portion of a foundation structure portion of the structure, and the slide plate is supported by the pile via a low friction member. The seismic isolation structure of a structure according to claim 2, wherein the structure is configured.
【請求項4】 前記構造物の基礎構造部の下面部と各杭
の頂部との間に積層ゴム式免震支承装置を設けて構造物
と杭とに連結したことを特徴とする請求項2に記載の構
造物の免震構造。
4. A laminated rubber seismic isolation bearing device is provided between a lower surface of a foundation structure of the structure and a top of each pile, and is connected to the structure and the pile. Seismic isolation structure of the structure described in.
JP12340698A 1998-05-06 1998-05-06 Seismic isolation method for structures and seismic isolation structure for structures Expired - Fee Related JP2878273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12340698A JP2878273B1 (en) 1998-05-06 1998-05-06 Seismic isolation method for structures and seismic isolation structure for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12340698A JP2878273B1 (en) 1998-05-06 1998-05-06 Seismic isolation method for structures and seismic isolation structure for structures

Publications (2)

Publication Number Publication Date
JP2878273B1 JP2878273B1 (en) 1999-04-05
JPH11315544A true JPH11315544A (en) 1999-11-16

Family

ID=14859777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12340698A Expired - Fee Related JP2878273B1 (en) 1998-05-06 1998-05-06 Seismic isolation method for structures and seismic isolation structure for structures

Country Status (1)

Country Link
JP (1) JP2878273B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331143B2 (en) * 2002-09-05 2008-02-19 Grant Hocking Seismic base isolation by electro-osmosis
JP2012180651A (en) * 2011-02-28 2012-09-20 Sumitomo Forestry Co Ltd Sensitivity control structure of seismic isolator
JP2013002076A (en) * 2011-06-14 2013-01-07 Taisei Corp Pile foundation structure
JP5148001B1 (en) * 2012-03-27 2013-02-20 美喜男 梅岡 Steel pipe piles for preventing levitation of underground objects, and methods for preventing levitation of underground objects using the same
CN104975617A (en) * 2015-07-15 2015-10-14 郑贤方 Waterproof construction method of basement foundation cast-in-place pile head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517534B (en) * 2020-11-19 2024-06-04 倪文兵 Shock insulation support with vibration liquefaction material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331143B2 (en) * 2002-09-05 2008-02-19 Grant Hocking Seismic base isolation by electro-osmosis
JP2012180651A (en) * 2011-02-28 2012-09-20 Sumitomo Forestry Co Ltd Sensitivity control structure of seismic isolator
JP2013002076A (en) * 2011-06-14 2013-01-07 Taisei Corp Pile foundation structure
JP5148001B1 (en) * 2012-03-27 2013-02-20 美喜男 梅岡 Steel pipe piles for preventing levitation of underground objects, and methods for preventing levitation of underground objects using the same
CN104975617A (en) * 2015-07-15 2015-10-14 郑贤方 Waterproof construction method of basement foundation cast-in-place pile head
CN104975617B (en) * 2015-07-15 2017-01-25 郑贤方 Waterproof construction method of basement foundation cast-in-place pile head

Also Published As

Publication number Publication date
JP2878273B1 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
Watanabe Damage to oil refinery plants and a building on compacted ground by the Niigata earthquake and their restoration
CN112726692A (en) Multi-defense line vibration control method for ancient building
JPH09203303A (en) Facilities built on bedrock covered with soil sediment
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
JP2878273B1 (en) Seismic isolation method for structures and seismic isolation structure for structures
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP7554501B2 (en) Rapid consolidation and compaction methods for remediation of various layers of soil and intermediate geological materials in soil piles.
CN211171579U (en) Take seamless antidetonation abutment of disconnect-type strap
KR19980035289A (en) Prevention method of disaster caused by liquefaction in soft sand or sandy ground during earthquake and restoration method of disaster ground
JPH0949239A (en) Foundation structure coping with liquefaction
JP3788245B2 (en) Temporary deadline construction method
Wang Field Test Investigation of the Pile Jacking Performance for Prefabricated Square Rigid‐Drainage Piles in Saturated Silt Sandy Soils
JPH08184064A (en) Foundation structure of building
JP3648646B2 (en) Structure liquefaction countermeasure structure
JP2991092B2 (en) Liquefaction countermeasure structures and ground liquefaction countermeasures
JPH1136608A (en) Construction method for foundation base isolation of existing structure
JPH09242046A (en) Reclamation construction method of the sea by soft earth and sand
JP3682667B2 (en) Ground formation structure
Heitz et al. Embankment project on soft subsoil with grouted stone columns and geogrids
CN109577381B (en) Seismic isolation method for underground structure and seismic isolated underground structure
JP3649140B2 (en) Liquefaction countermeasure structure and its construction method
Lewis et al. Design and construction of a sheet pile earth retention system in soft clays
JP7019905B2 (en) Pile foundation structure and reinforcement method for existing piles
JP4055838B2 (en) Improved foundation ground structure of existing structure
Araki EFFECTS OF LIQUEFACTION COUNTERMEASURE USING BURIED GABION INSTALLED TO SHALLOW FOUNDATIONS

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees