JP3673882B2 - Sludge treatment method and apparatus - Google Patents

Sludge treatment method and apparatus Download PDF

Info

Publication number
JP3673882B2
JP3673882B2 JP5708197A JP5708197A JP3673882B2 JP 3673882 B2 JP3673882 B2 JP 3673882B2 JP 5708197 A JP5708197 A JP 5708197A JP 5708197 A JP5708197 A JP 5708197A JP 3673882 B2 JP3673882 B2 JP 3673882B2
Authority
JP
Japan
Prior art keywords
sludge
layer
filtration
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5708197A
Other languages
Japanese (ja)
Other versions
JPH10235400A (en
Inventor
賢 山岡
憲二 端
修 清野
Original Assignee
独立行政法人農業工学研究所
社団法人日本農業集落排水協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業工学研究所, 社団法人日本農業集落排水協会 filed Critical 独立行政法人農業工学研究所
Priority to JP5708197A priority Critical patent/JP3673882B2/en
Publication of JPH10235400A publication Critical patent/JPH10235400A/en
Application granted granted Critical
Publication of JP3673882B2 publication Critical patent/JP3673882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は汚泥処理方法およびその装置に関し、特に、天日乾燥床により汚泥を処理する汚泥処理方法およびその装置に関するものである。
【0002】
【従来の技術】
下水、集落排水等の生活排水の浄化処理により生成される汚泥は、多量の水分を含み、体積が大きく取り扱いに不便である。このため、従来、汚泥の処理方法では、まず、第1段階で、予め汚泥を沈降および微生物処理によって濃縮消化し、この濃縮消化された汚泥を図7および図8に示すような汚泥処理装置としての天日乾燥床2に投入し、汚泥の脱水・乾燥を行うようにしている。天日乾燥床2は、床表面の砂層7で汚泥と水を濾過分離し、その後、日射、風などで脱水乾燥するもので、この天日乾燥床2は、図8に示すように、コンクリートの底部3Aと壁部3Bとを備えたコンクリート槽3の底に濾液排水管4を配置し、槽3の底に砂利6と砂7を順次投入して濾過層5を形成して構成される。濾液排水管4は、濾過層5により濾過された濾液が浸透する浸透口4Aを有するとともに排出端4Bが槽3の外部に延びている。コンクリート槽3には、図示していないが汚泥投入用の蛇口およびポンプが設けられる。固液分離装置としての天日乾燥床2は、外部から濾過層5上に濃縮消化された汚泥M1 が投入されると、濾過層5の表面5Aに濾し残された汚泥の固形分S1 が溜り、濾過され固形分S1 から分離された濾液は濾過層5内を浸透し、濾液排水管4の浸透口4Aを介して外部に排出されるようになっている。濾過層5の表面5Aに固形分S1 が堆積すると、固液分離性能が落ちてくるので、濾過表面の目詰まりを防ぐため、図9の(A)に示すように、クロスフローFを発生させて固形分S1 を除去するようにしている。また、図9の(B)に示すように、濾過方向と反対側から、すなわち、濾過層5の下側から上に向けて水流や気流BWを発生させ、濾過表面5A全体を洗浄する逆洗が行われる。逆洗時には、濾材6、7内部に多量の水量あるいは高圧のエアを下から上に通過させ濾過面5A全面を洗浄するようにしているため、濾過は行われない。
【0003】
【発明が解決しようとする課題】
従来の天日乾燥床2は、予め濃縮消化された汚泥に用いられることが一般的であり、低濃度の活性汚泥の処理には適していないという問題がある。すなわち、濃度の薄い汚泥水M2 (3,000 〜5,000 mg SS/L 程度)を天日乾燥床2により処理すると、図10のグラフに示すように、汚泥の固形分と水とを濾過分離するのに長時間を要するからである。つまり、低濃度の汚泥水M2 が天日乾燥床2に投入されると、濾過層5上の液状汚泥M2 では、濾過分離中に汚泥水M2 の固形分S1 が濾過層5の表面5Aに沈殿・堆積し、固形分S1 と分離された水がその沈殿・堆積された汚泥層S2 の上部に滞留してしまう。分離された水が濾過されて排出されるためには、濾過層5より透水性の悪い汚泥層S2 を通過しなければならない。このため、天日乾燥床2による処理に当たっては汚泥を予め濃縮消化しなければならず、時間がかかるだけでなく、コストアップを招くという問題がある。
【0004】
本発明は上記問題点を除くためになされたもので、天日乾燥床における固液分離性能を向上させ、低濃度の汚泥を効率的に汚泥処理することができる汚泥処理方法およびその装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明に係る汚泥処理方法は、槽内に濾過層を形成し、槽の底部に、浸透口を有するとともに排出端が上記槽の外部に延びる濾液排水管を配設し、この濾過層上に汚泥水を投入して濾過層により濾過し、この濾液を濾液排水管を介して外部に排水する汚泥処理方法において、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置し、複数の通気口を有する通気管を上記上側砂層内の所定の部位に埋設し、汚泥水の投入後、外部から通気管にエアを間欠的に送出して通気口からエアを放出させ、上昇する気泡に濾過層上面に徐々に沈殿する透水性の悪い汚泥層を通過させて汚泥層を排除し、汚泥の固形分と分離して汚泥層上に滞留する分離水と濾過層とを連通させつつ汚泥を処理するようにしたものである。
【0006】
本発明に係る汚泥処理方法は、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置し、複数の通気口を有する通気管を上記上側砂層内の所定の部位に埋設し、汚泥水の投入後、外部から通気管にエアを間欠的に送出して通気口からエアを放出させ、上昇する気泡に濾過層上面に徐々に沈殿する透水性の悪い汚泥層を通過させて汚泥層を排除し、汚泥の固形分と分離して汚泥層上に滞留する分離水と濾過層とを連通させつつ汚泥を処理するようにしているので、槽に外部から汚泥水が投入されると、まず初めに、固液混合状態の汚泥水は濾過層により濾過され、濾過された濾液は濾過層を浸透し濾液排水管を介して外部に排出される。濾過層上に滞留する汚泥水は、時間の経過とともに固形分と水とに分離して、固形分が濾過層上面に沈殿・堆積して汚泥層を形成する。汚泥は透水性が悪いため、分離水の濾過層への浸透性能を劣化させる。汚泥層が形成されると、外部から通気管にエアを送出し、通気口からエアを放出する。通気口から放出されたエアは気泡となって濾過層内を上昇し、濾過層上面から汚泥層を通過し、さらに分離水を経て大気に達する。気泡が汚泥層を通過する際、汚泥層の一部は気泡により排除され、濾過層と分離水とが連通されるので、分離水は汚泥層を介さず直接濾過層に浸透する。このため、汚泥水の濾過層への浸透性が高まり、分離水は効率よく外部に排出される。
【0007】
また、本発明に係る汚泥処理装置は、槽の内部に形成され投入された汚泥水を濾過する濾過層と、この槽の底部に配設された浸透口を有するとともに排出端が上記槽の外部に延びる濾液排水管とを備えた汚泥処理装置において、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置するとともに、通気口が上記上側砂層内の所定の部位に複数配された通気管と、この通気管に連通され外部からエアを間欠的に送出するエアポンプとからなるエア放出機構を設けたものである。
【0008】
本発明に係る汚泥処理装置は、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置するとともに、通気口が上記上側砂層内の所定の部位に複数配された通気管と、この通気管に連通され外部からエアを間欠的に送出するエアポンプとからなるエア放出機構を設けたことにより、槽に外部から汚泥水が投入されると、汚泥水は濾過層により濾過され、濾過された濾液は濾過層を浸透し濾液排水管を介して外部に排出される。濾過層上に滞留する汚泥水は、時間の経過とともに固形分と水とに分離して、固形分が濾過層上面に沈殿・堆積して汚泥層を形成する。この汚泥水の沈殿・濾過時、外部から通気管にエアを送出し、通気口からエアを放出すると、通気口から放出されたエアは気泡となって濾過層内を上昇し、濾過層上面から汚泥層を通過し分離水を経て大気に達する。気泡が汚泥層を通過する際、汚泥層の一部は気泡により排除され、濾過層と分離水とが連通されるので、分離水は汚泥層を介さず直接濾過層に浸透する。このため、汚泥水の濾過層への透水性が高まり、分離水は効率よく外部に排出される。
【0009】
【発明の実施の形態】
以下、図面に基いて本発明の実施の形態について説明する。図1は本発明の一実施例に係る汚泥処理装置を示す縦断面図、図2の(A)、(B)はそれぞれエアの非放出時および放出時の状態を示す説明図、図3は図1の汚泥処理装置の通気口の配置を示す横断面図である。上記従来の汚泥処理装置と同一または相当部分には同一符号を付してその説明を省略する。本実施例に係る汚泥処理装置(以下、天日乾燥床と称す)12は、図1に示すように、コンクリートの底部13Aと壁部13Bとを備えたコンクリート槽13と、このコンクリート槽13の底に配置された濾液排水管14と、コンクリート槽13に砂利6と砂7を順次投入して形成された下側砂利槽6と上側砂層7とからなる濾過層15とを備えるとともに、砂層7には、エア放出機構20が設けられる。天日乾燥床12には、汚泥投入側に図示しない汚泥の投入用蛇口およびポンプが設けられる。濾液排水管14は、濾過層15により濾過された濾液が浸透する浸透口14Aを有するとともに排出端14Bが槽13の外部に延びている。天日乾燥床12は、外部から濾過層15上に液状の汚泥水Mが投入されると、濾過層15により濾過された濾液が濾過層15内を浸透し、濾液排水管14の浸透口14Aを介して外部に排出されるようになっている。
【0010】
ところで、エア放出機構20は、図1に示すように、コンクリート槽13の外部に設置されたエアポンプ21と、一端がこのエアポンプ21に連通され、多数の通気口22が砂層7内にほぼ均等な密度で配置された通気管23とから構成される。通気管23は、図3に示すように、外部のエアポンプ21に接続された本管23Aと、この本管23Aから分岐して濾過層15の砂層7内に互いに平行に埋設された支管23Bとからなっている。通気口22は、図3に示すように、支管23の埋設部分に設けられる。各通気口22には、図示しない逆止弁が設けられ、濾過層成分としての砂または水がエアポンプ21側に侵入するのを阻止するようになっている。エアポンプ21は、図3に示すように、制御弁24を介して本管23Aに接続される。これらエアポンプ21と制御弁24はタイマを内蔵した制御装置25と電気的に接続される。制御装置25は、予め設定されたデータに基づいてエアポンプ21と制御弁24とを制御し、通気管23にエアを間欠的に送出するようになっている。
【0011】
次に、本発明の汚泥処理方法について、上記構成に係る汚泥処理装置(天日乾燥床)12の作用に基づいて説明する。天日乾燥床12に外部から低濃度(3,000 〜5,000 mg SS/L 程度)の汚泥水M2 を投入し、濾過層15上に滞留させると、汚泥水M2 は濾過層15により濾過され、濾過された濾液は濾過層15を浸透し浸透口14Aから濾液排水管14を介して外部に排出される。濾過層15上に滞留する汚泥水M2 は、時間の経過とともに固形分S1 と水Wとに分離して、固形分S1 が濾過層上面15Aに沈殿・堆積して汚泥層S2 を形成する(図2の(A)参照)。透水性の悪い汚泥層S2 の形成により、分離された水Wは濾過層15に浸透しにくくなる。この汚泥水M2 の沈殿・濾過時、制御装置25によりエアポンプ21と制御弁24とを動作させると、エアポンプ21は制御弁24を介して通気管23に所定圧のエアを送出する。エアは通気管23の本管23Aから支管23Bに分流され、通気口22から砂層7の内部に放出される。砂層7に放出されたエアは、図2の(B)に示すように、気泡26となって砂層7内を上昇し、濾過層上面15Aから汚泥層S2 を通過し、分離水Wを経て大気に達する。気泡26が汚泥層S2 を通過する際、汚泥層S2 の一部は気泡26により排除され、濾過層15と分離水Wとが連通される。このため、分離水Wは汚泥層S2 を介さず、直接濾過層15に浸透する。このように、本発明に係る汚泥処理方法では、汚泥水M2 の濾過層15への浸透性が高まり、分離水Wは濾液排水管14を介して効率よく外部に排出される。従って、低濃度の汚泥水であっても効率的に処理することができるので、従来のように、天日乾燥床による汚泥処理の前に、濃縮消化処理を行う必要がなく、直接低濃度の汚泥水を処理することができる。また、低濃度の汚泥水を効率的に処理できるので、コストダウンを図ることができる。
【0012】
また、上述のように汚泥水M2 の沈殿・堆積時、通気口22からエアを放出する際、気泡26が濾過層上面15Aに達した時、あるいは、気泡26が汚泥層S2 内を通過して上昇している時には、分離水Wは気泡26にブロックされて濾過層15側に浸透しにくい。このため、制御装置25により予め設定されたデータに基づいてエアポンプ21と制御弁24とを制御し、通気管23にエアを間欠的に送出し、気泡26により分離水Wと濾過層15とを連通させた後、しばらくエアの放出を停止すると、より浸透性が向上し、固液分離性能が高まる。エア送出時間とエア送出停止時間の設定は、汚泥水の濃度に応じて予め求められる沈殿速度(堆積速度)や投入水量により決定することができる。
【0013】
【実施例】
次に、上記構成に係る汚泥処理装置をモデル化した室内実験結果を示す。上記汚泥処理方法およびその装置の有効性を確認するため、本発明者らは、図4に示す室内実験装置112で実験を行った。室内実験装置112は、内径100mmの透明のアクリルパイプ112Aにアクリル板で底112Bを設けた。底部112Bに水道用蛇口114を取り付け排水口とした。この容器112の底部に網戸用の網部材を敷き下側に砂利106を、上側に細砂107を詰め、汚泥天日乾燥床を再現した。また、曝気濾過法を行うため、エアポンプ121と接続したエアーストーンを砂層107に埋めた。
【0014】
実験条件は次のとおりである。
RUN−1:実験装置112の上部から水道水を入れ、非曝気で濾過時間を測定した。
RUN−2:同じく水道水を入れ、曝気しながら濾過時間を測定した。
RUN−3:汚泥約1リットルを入れ、非曝気で濾過時間を測定した。
RUN−4:汚泥約1リットルを入れ、全曝気(濾過開始から終了まで連続的に曝気)で濾過時間を測定した。
RUN−5:汚泥約1リットルを入れ、間欠曝気(濾過開始後2分毎に15秒間曝気)で濾過時間を測定した。
RUN−6:汚泥約1リットルを入れ、途中曝気(濾過開始後砂層表面に汚泥層が形成され、濾過速度が著しく低下するまで非曝気で濾過し、その後濾過終了まで曝気)で濾過時間を測定した。
用いた汚泥は、茨城県美浦村内の農業集落排水施設から採取したもので、MLSS濃度は2,600mg/L 、沈降性の指標であるSV30は9%であった。また、RUN−3ないしRUN−6は、各RUN終了後、汚泥を取り出すため、汚泥とともに表面の砂も取り出し、その分の砂を新たに加えたため、砂層107の濾過特性が各RUN毎にちがってしまうことが懸念され、各RUN終了後に各RUN毎にRUN−1と同様の水道水による非曝気濾過試験を行った。これらをRUN−4’ないしRUN−6’という。また、RUN−3ないしRUN−6の測定条件を揃えるため、濾過速度測定開始前は、排水口の水道栓114を閉じ、砂層107表面まで水道水を満たした状態で、汚泥を入れ排水口を開いて濾過速度を測定した。
【0015】
実験結果を図5および図6に示す。RUN−1とRUN−2の結果では図5に示すように、RUN−1の濾過時間が短かった。水道水の砂層の通過では、曝気によるメリットはなく、流下面積が気泡によって減少する分だけ通過に時間がかかることが判明した。それに対して、汚泥を投入した場合の濾過は、図6に示すように、汚泥を非曝気で濾過したRUN−3に比べて、曝気を行ったRUN−4ないしRUN−6の濾過時間はいずれも短かった。濾過時間はRUN−4>RUN−6>RUN−5の順で短くなっており、曝気時間が短いRUN−5が、最も濾過時間が短かった。この理由として、RUN−4およびRUN−6では、気泡によって汚泥層の一部が破壊されても、その部分から気泡の上昇が続くので、水分の流下が速やかに行えない。また、気泡の上昇位置が時々移動して汚泥層の破壊された部分が残っても、曝気により汚泥層上部の水に多くの汚泥が混合され、汚泥層の破壊された部分が、侵入する水分の持ち込む汚泥ですぐに閉塞してしまう。特に、RUN−4にように、濾過開始当初から曝気を行うと、濾材の砂107が液中に送り込まれ、濾過終了後の汚泥層の上面に砂107が多く見られた。このため、間欠曝気により濾材表面に汚泥層が形成される毎に、汚泥層の一部を破壊するのが濾過時間短縮と省エネルギーに優れていた。汚泥投入前に砂層の条件を確認するために行ったRUN−4’ないしRUN−6’の結果は、図5に示すように、各RUN毎に相違はあるが、その差は汚泥を投入した場合の濾過時間の差に比べると無視できる程度である。なお、本実験では、濾過高さは8cm程度であるが、実用的には30cm以上の濾過高さが必要とされ、本願発明のようなエア放出機構を持たない従来の天日乾燥床では、図10に示すように、排水に4日程度を要したケースがあった。
【0016】
なお、上記実施例では、通気口22の形成された支管23Bを砂層に配置しているがこれに限られるものではなく、砂利層に配置してもよい。しかしながら、通気口22は、濾過層15の表面15A近くでかつ所定の厚さの濾過層を上側に確保して設けることが望ましい。また、制御装置25は予め設定されたデータに基づいてエアを通気管23に間欠的に送出するようにしているが、これに限られるものではなく、コンクリート槽内部に汚泥層の堆積厚さを検知するセンサを設け、このセンサからの検知信号に基づいて通気管23へのエアの送出のタイミングを制御するようにしてもよい。また、この検知信号に基づいてエアの送出量あるいは送出圧力を制御するようにしてもよい。さらに、上記実施例のように低濃度の汚泥水M2 の処理にあたっては、投入される低濃度の汚泥水M2 の固形分は濾過層15の上面15A全域にほぼ均等に沈殿・堆積するため、多数の通気口22を砂層7内でほぼ均等な密度で配置するようにしている。しかしながら、汚泥水M2 の投入条件等により、濾過層15の上面15Aに堆積する汚泥層の厚さに偏りが生じる場合、偏りに応じて通気口の配置数を場所により適宜変更し、通気口の密度を変えてもよいことは言うまでもない。また、上記実施例の説明において、濾過層からエアを放出し気泡を発生させることを曝気と称しているが、本願でいう曝気は液中へのエアの送気と同義であって、微生物処理に供するための酸素供給のためのものではない。
【0017】
【発明の効果】
以上述べたように本発明によれば、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置し、複数の通気口を有する通気管を上記上側砂層内の所定の部位に埋設し、汚泥水の投入後、外部から通気管にエアを間欠的に送出して通気口からエアを放出させ、上昇する気泡に濾過層上面に徐々に沈殿する透水性の悪い汚泥層を通過させて汚泥層を排除し、汚泥の固形分と分離して汚泥層上に滞留する分離水と濾過層とを連通させつつ汚泥を処理するようにしたことにより、汚泥水の沈殿・濾過時、濾過層上に汚泥層が形成されると、汚泥層を気泡により排除して分離水と濾過層とを連通させ、浸透性を向上させることができるので、固液分離性能を向上させて汚泥処理の作業時間を短縮することができる。また、従来、処理が困難であった低濃度の汚泥を汚泥処理することができるので、従来のように、天日乾燥床による汚泥処理の前に、濃縮消化処理を行う必要がなく、作業効率を向上させ、コストダウンを図ることができる。
【0018】
また、本発明によれば、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置するとともに、通気口が上記上側砂層内の所定の部位に複数配された通気管と、この通気管に連通され外部からエアを間欠的に送出するエアポンプとからなるエア放出機構を設けたことにより、汚泥水の沈殿・濾過時、濾過層上に形成される汚泥層を気泡により排除して分離水と濾過層とを連通させることができるので、固液分離性能を向上させて汚泥処理の作業時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る汚泥処理装置を示す縦断面図である。
【図2】(A)、(B)はそれぞれ図1の汚泥処理装置のエアの非放出時および放出時の状態を示す説明図である。
【図3】図1の汚泥処理装置の通気口の配置を示す横断面図である。
【図4】実験装置を示す斜視図である。
【図5】図4の実験装置を用いて水道水による濾過実験を行った結果を示すグラフである。
【図6】図4の実験装置を用いて汚泥による濾過実験を行った結果を示すグラフである。
【図7】従来の天日乾燥床を示す平面図である。
【図8】図7の天日乾燥床を示す縦断面図である。
【図9】(A)は従来の天日乾燥床におけるクロスフローの流れを示す説明図、(B)は従来の天日乾燥床における逆洗時の流れを示す説明図である。
【図10】従来の天日乾燥床における低濃度の汚泥処理に要した水層の厚さと経過日数との関係を示すグラフである。
【符号の説明】
12 天日乾燥床(汚泥処理装置)
13 コンクリート槽(槽)
13A コンクリート槽の底部
14 濾液排水管
14A 浸透口
14B 排出端
15 濾過層
20 エア放出機構
22 通気口
23 通気管
26 気泡
M、M2 汚泥水
2 汚泥層
W 分離水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge treatment method and apparatus, and more particularly to a sludge treatment method and apparatus for treating sludge with a sun-dried bed.
[0002]
[Prior art]
Sludge produced by purification treatment of domestic wastewater such as sewage and village wastewater contains a large amount of water, has a large volume, and is inconvenient to handle. Therefore, in the conventional sludge treatment method, first, in the first stage, sludge is concentrated and digested in advance by sedimentation and microbial treatment, and the concentrated and digested sludge is used as a sludge treatment apparatus as shown in FIG. 7 and FIG. Is put into the sun drying bed 2 and the sludge is dewatered and dried. The sun-dried floor 2 is one in which sludge and water are filtered and separated by a sand layer 7 on the floor surface, and then dehydrated and dried by sunlight, wind, etc. This sun-dried floor 2 is made of concrete as shown in FIG. The filtrate drain pipe 4 is arranged at the bottom of the concrete tank 3 having the bottom part 3A and the wall part 3B, and the gravel 6 and the sand 7 are sequentially added to the bottom of the tank 3 to form the filtration layer 5. . The filtrate drain pipe 4 has a permeation port 4 </ b> A through which the filtrate filtered by the filtration layer 5 penetrates, and a discharge end 4 </ b> B extends to the outside of the tank 3. Although not shown, the concrete tank 3 is provided with a faucet and a pump for introducing sludge. In the sun drying bed 2 as a solid-liquid separator, when sludge M 1 concentrated and digested on the filtration layer 5 is input from the outside, the solid content S 1 of the sludge left on the surface 5A of the filtration layer 5 is filtered. The filtrate separated from the solid content S 1 permeates through the filtration layer 5 and is discharged to the outside through the permeation port 4 A of the filtrate drain pipe 4. If the solid content S 1 is deposited on the surface 5A of the filtration layer 5, the solid-liquid separation performance deteriorates. Therefore, in order to prevent clogging of the filtration surface, a cross flow F is generated as shown in FIG. Thus, the solid content S 1 is removed. Further, as shown in FIG. 9B, backwashing that cleans the entire filtration surface 5A by generating a water flow or an air flow BW from the opposite side of the filtration direction, that is, from the lower side of the filtration layer 5 to the upper side. Is done. At the time of backwashing, filtration is not performed because a large amount of water or high-pressure air is passed through the filter media 6 and 7 from below to wash the entire filtration surface 5A.
[0003]
[Problems to be solved by the invention]
The conventional sun-dried bed 2 is generally used for sludge that has been concentrated and digested in advance, and has a problem that it is not suitable for the treatment of low-concentration activated sludge. That is, when sludge water M 2 having a low concentration (about 3,000 to 5,000 mg SS / L) is treated by the sun-dried bed 2, the solid content of sludge and water are separated by filtration as shown in the graph of FIG. This is because it takes a long time. That is, when the low-concentration sludge water M 2 is introduced into the sun drying bed 2, the solid content S 1 of the sludge water M 2 in the liquid sludge M 2 on the filtration layer 5 is reduced in the filtration layer 5 during the filtration separation. The water precipitated and deposited on the surface 5A and separated from the solid content S 1 stays in the upper part of the deposited and deposited sludge layer S 2 . In order for the separated water to be filtered and discharged, the water must pass through the sludge layer S 2 having a lower water permeability than the filtration layer 5. For this reason, the sludge must be concentrated and digested in advance for the treatment by the sun-dried bed 2, which is not only time consuming but also increases costs.
[0004]
The present invention has been made to eliminate the above-mentioned problems, and provides a sludge treatment method and apparatus capable of improving the solid-liquid separation performance in a sun-dried bed and efficiently treating sludge with a low concentration. It is intended to do.
[0005]
[Means for Solving the Problems]
In the sludge treatment method according to the present invention, a filtration layer is formed in a tank, a filtrate drain pipe having a permeation port and having a discharge end extending outside the tank is disposed at the bottom of the tank, and the filtration layer is formed on the filtration layer. In a sludge treatment method in which sludge water is introduced and filtered through a filtration layer, and the filtrate is drained to the outside through a filtrate drain pipe, the filtration layer is composed of a lower gravel layer and an upper sand layer, and the filtrate drain pipe is Arranged in the lower gravel layer, a ventilation pipe having a plurality of ventilation holes is embedded in a predetermined part in the upper sand layer , and after introducing sludge water, air is intermittently sent from the outside to the ventilation pipes. The separated water that is released from the air, passes through the sludge layer with poor water permeability that gradually settles on the upper surface of the filtration layer to the rising bubbles, eliminates the sludge layer, separates from the sludge solids, and stays on the sludge layer The sludge is treated while communicating with the filter layer.
[0006]
In the sludge treatment method according to the present invention, the filtration layer is composed of a lower gravel layer and an upper sand layer, a filtrate drain pipe is disposed in the lower gravel layer, and a vent pipe having a plurality of vents is provided in the upper sand layer . Of water permeability that is gradually deposited on the upper surface of the filtration layer in the rising air bubbles after intermittently sending air from the outside to the vent pipe to release air from the vent , Since the sludge layer is removed by passing the bad sludge layer and separated from the solid content of the sludge and separated water staying on the sludge layer is connected to the filtration layer, the sludge is treated outside the tank. When sludge water is introduced from the first, the sludge water in a solid-liquid mixed state is first filtered by the filtration layer, and the filtered filtrate permeates the filtration layer and is discharged to the outside through the filtrate drain pipe. The sludge water staying on the filtration layer is separated into solids and water as time passes, and the solids settle and deposit on the upper surface of the filtration layer to form a sludge layer. Since the sludge layer has poor water permeability, the permeation performance of the separated water into the filtration layer is deteriorated. When the sludge layer is formed, air is sent from the outside to the vent pipe, and the air is discharged from the vent. The air released from the vents becomes bubbles and rises in the filtration layer, passes through the sludge layer from the upper surface of the filtration layer, and further reaches the atmosphere through separated water. When the air bubbles pass through the sludge layer, a part of the sludge layer is excluded by the air bubbles, and the filtration layer and the separated water communicate with each other, so that the separated water penetrates directly into the filtration layer without passing through the sludge layer. For this reason, the permeability to the filtration layer of sludge water increases, and the separated water is efficiently discharged to the outside.
[0007]
Further, the sludge treatment apparatus according to the present invention has a filtration layer for filtering sludge water formed and introduced inside the tank, and a permeation port disposed at the bottom of the tank, and a discharge end is located outside the tank. In the sludge treatment apparatus provided with a filtrate drain pipe extending to the bottom , a filtration layer is constituted by a lower gravel layer and an upper sand layer, a filtrate drain pipe is disposed in the lower gravel layer, and a vent hole is provided in the upper sand layer . Provided with an air discharge mechanism comprising a plurality of vent pipes arranged at a predetermined portion and an air pump communicating with the vent pipe and intermittently sending air from the outside.
[0008]
In the sludge treatment apparatus according to the present invention, the filtration layer is composed of a lower gravel layer and an upper sand layer, a filtrate drain pipe is disposed in the lower gravel layer, and a vent is located at a predetermined site in the upper sand layer . By providing an air release mechanism comprising a plurality of vent pipes and an air pump that communicates with the vent pipe and intermittently sends air from the outside, sludge water is introduced into the tank from the outside. Is filtered by the filtration layer, and the filtrate filtered is permeated through the filtration layer and discharged to the outside through the filtrate drain pipe. The sludge water staying on the filtration layer is separated into solids and water as time passes, and the solids settle and deposit on the upper surface of the filtration layer to form a sludge layer. When this sludge water is precipitated and filtered, air is sent from the outside to the vent pipe, and when air is released from the vent, the air released from the vent becomes bubbles and rises in the filter layer, and from the upper surface of the filter layer It passes through the sludge layer and reaches the atmosphere through separated water. When the air bubbles pass through the sludge layer, a part of the sludge layer is excluded by the air bubbles, and the filtration layer and the separated water communicate with each other, so that the separated water penetrates directly into the filtration layer without passing through the sludge layer. For this reason, the water permeability to the filtration layer of sludge water increases, and separation water is efficiently discharged outside.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a sludge treatment apparatus according to one embodiment of the present invention, FIGS. 2A and 2B are explanatory views showing the state when air is not released and when air is released, respectively, and FIG. It is a cross-sectional view which shows arrangement | positioning of the vent of the sludge processing apparatus of FIG. The same or corresponding parts as those in the conventional sludge treatment apparatus are designated by the same reference numerals and the description thereof is omitted. As shown in FIG. 1, a sludge treatment apparatus (hereinafter referred to as a sun drying floor) 12 according to the present embodiment includes a concrete tank 13 having a concrete bottom 13 </ b> A and a wall 13 </ b> B, and the concrete tank 13. A filtrate drain pipe 14 arranged at the bottom, a filtration layer 15 composed of a lower gravel tank 6 and an upper sand layer 7 formed by sequentially putting gravel 6 and sand 7 into a concrete tank 13, and a sand layer 7 Is provided with an air discharge mechanism 20. The sun drying floor 12 is provided with a sludge charging faucet and a pump (not shown) on the sludge charging side. The filtrate drain pipe 14 has a permeation port 14 </ b> A through which the filtrate filtered by the filtration layer 15 penetrates, and a discharge end 14 </ b> B extends to the outside of the tank 13. In the sun-dried bed 12, when liquid sludge water M is introduced from the outside onto the filtration layer 15, the filtrate filtered by the filtration layer 15 permeates the filtration layer 15, and the permeation port 14A of the filtrate drain pipe 14 is obtained. It is designed to be discharged to the outside.
[0010]
By the way, as shown in FIG. 1, the air release mechanism 20 has an air pump 21 installed outside the concrete tank 13, one end communicating with the air pump 21, and a large number of vent holes 22 in the sand layer 7. It is comprised from the vent pipe 23 arrange | positioned by the density. As shown in FIG. 3, the ventilation pipe 23 includes a main pipe 23A connected to an external air pump 21, and branch pipes 23B branched from the main pipe 23A and embedded in the sand layer 7 of the filtration layer 15 in parallel with each other. It is made up of. As shown in FIG. 3, the air vent 22 is provided in the embedded portion of the branch pipe 23. Each vent port 22 is provided with a check valve (not shown) so as to prevent sand or water as a filtration layer component from entering the air pump 21 side. As shown in FIG. 3, the air pump 21 is connected to the main pipe 23 </ b> A via the control valve 24. The air pump 21 and the control valve 24 are electrically connected to a control device 25 having a built-in timer. The control device 25 controls the air pump 21 and the control valve 24 based on preset data, and intermittently sends air to the vent pipe 23.
[0011]
Next, the sludge treatment method of the present invention will be described based on the action of the sludge treatment apparatus (sun drying bed) 12 according to the above configuration. When sludge water M 2 having a low concentration (about 3,000 to 5,000 mg SS / L) is introduced into the sun-dried bed 12 and retained on the filtration layer 15, the sludge water M 2 is filtered by the filtration layer 15, The filtered filtrate permeates the filtration layer 15 and is discharged to the outside through the filtrate outlet pipe 14 from the permeation port 14A. The sludge water M 2 staying on the filtration layer 15 is separated into solid content S 1 and water W over time, and the solid content S 1 is precipitated and deposited on the upper surface 15A of the filtration layer to form the sludge layer S 2 . (See FIG. 2A). The formation of the sludge layer S 2 having poor water permeability makes it difficult for the separated water W to penetrate into the filtration layer 15. When the control device 25 operates the air pump 21 and the control valve 24 during the sedimentation and filtration of the sludge water M 2 , the air pump 21 sends air of a predetermined pressure to the vent pipe 23 via the control valve 24. Air is diverted from the main pipe 23 </ b> A of the vent pipe 23 to the branch pipe 23 </ b> B, and is discharged from the vent hole 22 into the sand layer 7. As shown in FIG. 2B, the air released to the sand layer 7 rises in the sand layer 7 as bubbles 26, passes through the sludge layer S 2 from the filtration layer upper surface 15A, and passes through the separated water W. Reach the atmosphere. When the bubble 26 passes through the sludge layer S 2, a portion of the sludge layer S 2 are eliminated by the bubble 26, it is passed through the filtration layer 15 separated water W are communicated. For this reason, the separated water W penetrates directly into the filtration layer 15 without passing through the sludge layer S 2 . Thus, in the sludge treatment method according to the present invention, the permeability of the sludge water M 2 to the filtration layer 15 is increased, and the separated water W is efficiently discharged to the outside through the filtrate drain pipe 14. Therefore, even low-concentration sludge water can be treated efficiently, so that it is not necessary to carry out concentration digestion treatment prior to sludge treatment with a sun-dried bed, as in the past, and direct low-concentration treatment. Can treat sludge water. Moreover, since low concentration sludge water can be processed efficiently, cost reduction can be aimed at.
[0012]
Further, as described above, when the sludge water M 2 is settled / deposited, when the air is discharged from the vent 22, when the bubbles 26 reach the upper surface 15A of the filtration layer, or when the bubbles 26 pass through the sludge layer S 2 . When it is rising, the separated water W is blocked by the bubbles 26 and hardly permeates the filtration layer 15 side. For this reason, the air pump 21 and the control valve 24 are controlled based on data set in advance by the control device 25, air is intermittently sent to the vent pipe 23, and the separated water W and the filtration layer 15 are separated by the bubbles 26. If the release of air is stopped for a while after communicating, the permeability is further improved and the solid-liquid separation performance is enhanced. The setting of the air delivery time and the air delivery stop time can be determined by the sedimentation rate (deposition rate) or the amount of input water determined in advance according to the concentration of sludge water.
[0013]
【Example】
Next, the indoor experiment result which modeled the sludge processing apparatus which concerns on the said structure is shown. In order to confirm the effectiveness of the sludge treatment method and its apparatus, the present inventors conducted an experiment with an indoor experimental apparatus 112 shown in FIG. The indoor experimental apparatus 112 provided a bottom 112B with an acrylic plate on a transparent acrylic pipe 112A having an inner diameter of 100 mm. A tap faucet 114 was attached to the bottom 112B to serve as a drain. A net member for a screen door is spread on the bottom of the container 112, and gravel 106 is packed on the lower side, and fine sand 107 is packed on the upper side, thereby reproducing a sludge sun-dried bed. Further, an air stone connected to the air pump 121 was buried in the sand layer 107 in order to perform the aeration filtration method.
[0014]
The experimental conditions are as follows.
RUN-1: Tap water was added from the top of the experimental apparatus 112, and the filtration time was measured without aeration.
RUN-2: Similarly, tap water was added and the filtration time was measured while aerated.
RUN-3: About 1 liter of sludge was added, and the filtration time was measured without aeration.
RUN-4: About 1 liter of sludge was added, and the filtration time was measured by total aeration (continuous aeration from the start to the end of filtration).
RUN-5: About 1 liter of sludge was added, and the filtration time was measured by intermittent aeration (aeration for 15 seconds every 2 minutes after the start of filtration).
RUN-6: Put about 1 liter of sludge and measure the filtration time by aeration during the filtration (after the start of filtration, a sludge layer is formed on the surface of the sand layer and filtered without aeration until the filtration rate is significantly reduced and then aeration until the end of filtration) did.
The sludge used was collected from an agricultural settlement drainage facility in Miura Village, Ibaraki Prefecture. The MLSS concentration was 2,600 mg / L and the SV30, a sedimentation index, was 9%. In addition, RUN-3 to RUN-6 take out sludge after each RUN, so the sand on the surface is taken out together with the sludge, and the sand is added accordingly, so the filtration characteristics of the sand layer 107 are different for each RUN. Therefore, after each RUN, a non-aeration filtration test using tap water similar to RUN-1 was performed for each RUN. These are referred to as RUN-4 ′ or RUN-6 ′. In addition, in order to make the measurement conditions of RUN-3 to RUN-6 uniform, before starting the filtration rate measurement, close the tap 114 of the drain and fill the tap water up to the surface of the sand layer 107. Open and measure the filtration rate.
[0015]
The experimental results are shown in FIGS. In the results of RUN-1 and RUN-2, as shown in FIG. 5, the filtration time of RUN-1 was short. It has been found that there is no merit due to aeration when passing through the sand layer of tap water, and it takes time to pass by the amount that the flow area is reduced by bubbles. On the other hand, as shown in FIG. 6, when the sludge is added, the filtration time of RUN-4 to RUN-6 after aeration is longer than that of RUN-3 where the sludge is filtered without aeration. It was too short. The filtration time was shorter in the order of RUN-4>RUN-6> RUN-5, and RUN-5 with the short aeration time had the shortest filtration time. The reason for this is that in RUN-4 and RUN-6, even if a part of the sludge layer is destroyed by bubbles, the bubbles continue to rise from that part, so that the water cannot flow down quickly. Also, even if the rising position of the bubbles moves from time to time and a part where the sludge layer is destroyed remains, a large amount of sludge is mixed with the water above the sludge layer by aeration, and the part where the sludge layer is destroyed becomes the intruding moisture. The sludge brought in immediately closes up. In particular, as in RUN-4, when aeration was performed from the beginning of filtration, sand 107 as a filter medium was sent into the liquid, and a lot of sand 107 was seen on the upper surface of the sludge layer after completion of filtration. For this reason, every time a sludge layer is formed on the filter medium surface by intermittent aeration, destroying a part of the sludge layer is excellent in reducing filtration time and saving energy. As shown in FIG. 5, the results of RUN-4 ′ to RUN-6 ′ performed for confirming the conditions of the sand layer before the sludge injection are different for each RUN, but the difference was that the sludge was added. Compared to the difference in filtration time in this case, it is negligible. In this experiment, the filtration height is about 8 cm, but practically a filtration height of 30 cm or more is required. In the conventional sun-drying bed having no air release mechanism as in the present invention, As shown in FIG. 10, there was a case where drainage took about 4 days.
[0016]
In addition, in the said Example, although branch pipe 23B in which vent hole 22 was formed is arrange | positioned in a sand layer, it is not restricted to this, You may arrange | position in a gravel layer. However, it is desirable that the ventilation hole 22 is provided with a filtration layer having a predetermined thickness near the surface 15A of the filtration layer 15 and secured on the upper side. Further, the control device 25 intermittently sends air to the vent pipe 23 based on preset data. However, the control device 25 is not limited to this, and the accumulation thickness of the sludge layer is set inside the concrete tank. A sensor for detection may be provided, and the timing of sending air to the vent pipe 23 may be controlled based on a detection signal from the sensor. Further, the air delivery amount or delivery pressure may be controlled based on this detection signal. Further, in the treatment of the low-concentration sludge water M 2 as in the above-described embodiment, the solid content of the low-concentration sludge water M 2 that is input is precipitated and deposited almost uniformly over the entire upper surface 15A of the filtration layer 15. The large number of vent holes 22 are arranged in the sand layer 7 with a substantially uniform density. However, the charged condition of the sludge water M 2, etc., if the deviation in the thickness of the sludge layer which is deposited on the upper surface 15A of the filtration layer 15 occurs, changed as appropriate depending on the location of the arrangement number of the vents in accordance with the deviation, vent Needless to say, the density may be changed. Further, in the description of the above embodiment, it is referred to as aeration to release air from the filtration layer and generate bubbles, but aeration in this application is synonymous with air supply into the liquid, and is a microbial treatment. It is not for supplying oxygen for use.
[0017]
【The invention's effect】
As described above, according to the present invention, the filtration layer is composed of the lower gravel layer and the upper sand layer, the filtrate drain pipe is disposed in the lower gravel layer, and the vent pipe having a plurality of vents is disposed on the upper gravel layer. embedded in a predetermined site in sand, after the sludge water charge, intermittently delivery to release the air from the vent in the air to vent from the outside, gradually precipitated in the filter layer upper surface rising bubbles permeability The sludge is treated by passing the sludge layer with poor properties to eliminate the sludge layer and separating the sludge solids and separating water staying on the sludge layer and the filtration layer. When a sludge layer is formed on the filtration layer during the precipitation and filtration of water, the sludge layer can be eliminated by air bubbles, allowing the separated water and the filtration layer to communicate with each other and improving the permeability. The performance can be improved and the working time of sludge treatment can be shortened. In addition, it is possible to process sludge with low concentration, which was difficult to treat in the past, so there is no need to perform concentration digestion treatment before sludge treatment with a sun-dried bed as before, and work efficiency The cost can be reduced.
[0018]
Further, according to the present invention, the filtration layer is composed of the lower gravel layer and the upper sand layer, the filtrate drain pipe is disposed in the lower gravel layer, and a plurality of vents are provided at predetermined portions in the upper sand layer . It is formed on the filtration layer at the time of sedimentation and filtration of sludge water by providing an air release mechanism comprising an arranged air pipe and an air pump that communicates with the air pipe and intermittently sends air from the outside. Since the sludge layer can be removed by bubbles to allow the separated water and the filtration layer to communicate with each other, the solid-liquid separation performance can be improved and the working time of the sludge treatment can be shortened.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a sludge treatment apparatus according to an embodiment of the present invention.
FIGS. 2A and 2B are explanatory views showing states of the sludge treatment apparatus of FIG. 1 when air is not released and when air is released, respectively.
3 is a cross-sectional view showing the arrangement of vents in the sludge treatment apparatus of FIG. 1. FIG.
FIG. 4 is a perspective view showing an experimental apparatus.
FIG. 5 is a graph showing the results of a filtration experiment with tap water using the experimental apparatus of FIG.
6 is a graph showing the results of a filtration experiment using sludge using the experimental apparatus shown in FIG.
FIG. 7 is a plan view showing a conventional sun drying bed.
8 is a longitudinal sectional view showing the sun drying bed of FIG.
9A is an explanatory diagram showing the flow of cross flow in a conventional sun-drying bed, and FIG. 9B is an explanatory diagram showing the flow during backwashing in a conventional sun-drying bed.
FIG. 10 is a graph showing the relationship between the thickness of the water layer and the elapsed days required for the treatment of sludge with a low concentration in a conventional sun-dried bed.
[Explanation of symbols]
12 Sun drying floor (sludge treatment equipment)
13 Concrete tank (tank)
13A Bottom part of concrete tank 14 Filtrate drain pipe 14A Permeation port 14B Discharge end 15 Filtration layer 20 Air release mechanism 22 Vent 23 Air vent 26 Air bubbles M, M 2 Sludge water S 2 Sludge layer W Separated water

Claims (6)

槽内に濾過層を形成し、槽の底部に、浸透口を有するとともに排出端が上記槽の外部に延びる濾液排水管を配設し、この濾過層上に汚泥水を投入して濾過層により濾過し、この濾液を濾液排水管を介して外部に排水する汚泥処理方法において、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置し、複数の通気口を有する通気管を上記上側砂層内の所定の部位に埋設し、汚泥水の投入後、外部から通気管にエアを間欠的に送出して通気口からエアを放出させ、上昇する気泡に濾過層上面に徐々に沈殿する透水性の悪い汚泥層を通過させて汚泥層を排除し、汚泥の固形分と分離して汚泥層上に滞留する分離水と濾過層とを連通させつつ汚泥を処理することを特徴とする汚泥処理方法。A filtration layer is formed in the tank, and a filtrate drain pipe having a permeation port at the bottom of the tank and having a discharge end extending to the outside of the tank is disposed. Sludge water is poured onto the filtration layer by the filtration layer. In the sludge treatment method of filtering and draining the filtrate to the outside through the filtrate drainage pipe, the filtration layer is composed of a lower gravel layer and an upper sand layer, and the filtrate drainage pipe is disposed in the lower gravel layer, An air bubble having a ventilation hole is embedded in a predetermined portion in the upper sand layer , and after introducing sludge water, air is intermittently sent from the outside to the ventilation pipe to release air from the ventilation hole, and the rising bubble The sludge layer with poor water permeability that gradually settles on the upper surface of the filtration layer is passed to eliminate the sludge layer, and the sludge is separated from the solid content of the sludge and the separated water staying on the sludge layer is communicated with the filtration layer. The sludge processing method characterized by processing. 槽の内部に形成され投入された汚泥水を濾過する濾過層と、この槽の底部に配設された浸透口を有するとともに排出端が上記槽の外部に延びる濾液排水管とを備えた汚泥処理装置において、濾過層を下側砂利層と上側砂層とにより構成し、濾液排水管を上記下側砂利層に配置するとともに、通気口が上記上側砂層内の所定の部位に複数配された通気管と、この通気管に連通され外部からエアを間欠的に送出するエアポンプとからなるエア放出機構を設けたことを特徴とする汚泥処理装置。A sludge treatment comprising a filtration layer for filtering sludge water formed and introduced inside the tank, and a filtrate drain pipe having a permeation port disposed at the bottom of the tank and having a discharge end extending outside the tank. In the apparatus, the filtration layer is composed of a lower gravel layer and an upper sand layer, and the filtrate drain pipe is disposed in the lower gravel layer, and a plurality of vent holes are arranged at predetermined portions in the upper sand layer . And an air discharge mechanism comprising an air pump that communicates with the vent pipe and intermittently sends air from the outside. 通気口は濾過層内にほぼ均等な密度で配置されることを特徴とする請求項に記載の汚泥処理装置。The sludge treatment apparatus according to claim 2 , wherein the vent holes are arranged in the filtration layer with a substantially uniform density. 通気管は、エアポンプに接続された本管と、この本管から複数に分岐し互いに平行に埋設された支管とから構成されることを特徴とする請求項2または3に記載の汚泥処理装置。The sludge treatment apparatus according to claim 2 or 3, wherein the ventilation pipe is composed of a main pipe connected to an air pump and branch pipes that are branched from the main pipe and embedded in parallel to each other. エアポンプは、予め設定されたデータに基づいてエアを通気管に間欠的に送出する制御装置を備えていることを特徴とする請求項2ないし4のうちいずれか1に記載の汚泥処理装置。The sludge treatment apparatus according to any one of claims 2 to 4, wherein the air pump includes a control device that intermittently sends air to the vent pipe based on preset data. 通気口には、濾過層成分または水の侵入を阻止する逆止弁が設けられることを特徴とする請求項2ないし5のうちいずれか1に記載の汚泥処理装置。The sludge treatment apparatus according to any one of claims 2 to 5, wherein the vent is provided with a check valve that prevents infiltration of a filter layer component or water.
JP5708197A 1997-02-25 1997-02-25 Sludge treatment method and apparatus Expired - Fee Related JP3673882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5708197A JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5708197A JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH10235400A JPH10235400A (en) 1998-09-08
JP3673882B2 true JP3673882B2 (en) 2005-07-20

Family

ID=13045540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5708197A Expired - Fee Related JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3673882B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331181B1 (en) * 1999-07-12 2002-04-06 대한민국(관리청:특허청장, 승계청:국립환경연구원장) High-Rate Drying Bed
CN108392876A (en) * 2018-04-20 2018-08-14 大同市金立洁水业有限责任公司 A kind of sewage disinfection treatment precision screen filtration machine
CN110002716A (en) * 2019-05-13 2019-07-12 环创(厦门)科技股份有限公司 A kind of sludge drying method for the Northwest
CN112194333A (en) * 2020-10-22 2021-01-08 中国建筑第八工程局有限公司 Sludge dewatering treatment system and dewatering method thereof

Also Published As

Publication number Publication date
JPH10235400A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US6383372B1 (en) Sequential flow filtration chamber for treatment of waste water and associated method
US4293421A (en) Method and equipment for a wrap-around upflow submerged anaerobic filter for sewage
KR101872911B1 (en) Apparatus for reducing non-point source pollutants
US20090230054A1 (en) Contaminant Removal System And Method For A Body Of Water
JP3673882B2 (en) Sludge treatment method and apparatus
KR101353280B1 (en) Modular infiltration trench combined with filter cartridges
JPH0999203A (en) Treatment of rain water and/or waste water
WO2008140229A2 (en) A settling tank having an aeration part in its inner space
JP2007229658A (en) Filtration treatment method using fiber filter medium, and filtration apparatus therefor
JP4416174B2 (en) Sludge drying method and sludge drying apparatus used therefor
JP3473132B2 (en) Upflow filtration method
JP2585187B2 (en) Organic wastewater biological treatment method
JP3266553B2 (en) Utilization system for rainwater
JP3794589B1 (en) Sewage treatment equipment
JP2003193552A (en) Treatment method for road drainage
JP3818946B2 (en) Multi-stage floating filter upward flow filter
JPH0261234A (en) Rain water seepage pit
JP3544713B2 (en) Filtration equipment
Christoulas et al. A system for on site treatment and disposal of wastewaters from tourist resorts
JP3025051U (en) Sewage purification device
JPH034991A (en) Compact purifying tank by combined treatment
JP3092761U (en) Pond water purification equipment
JPS5951360B2 (en) Sludge treatment method for early stabilization of dewatering
JP3105799B2 (en) Solid-liquid separation method and portable solid-liquid separation device
RU2208593C2 (en) Method of water purification and device for method embodiment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees