JPH10235400A - Sludge treatment and apparatus therefor - Google Patents

Sludge treatment and apparatus therefor

Info

Publication number
JPH10235400A
JPH10235400A JP5708197A JP5708197A JPH10235400A JP H10235400 A JPH10235400 A JP H10235400A JP 5708197 A JP5708197 A JP 5708197A JP 5708197 A JP5708197 A JP 5708197A JP H10235400 A JPH10235400 A JP H10235400A
Authority
JP
Japan
Prior art keywords
sludge
layer
air
filtration
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5708197A
Other languages
Japanese (ja)
Other versions
JP3673882B2 (en
Inventor
Masaru Yamaoka
賢 山岡
Kenji Hata
憲二 端
Osamu Kiyono
修 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NOGYO SHURAKU HAISUI KY
NIPPON NOGYO SHURAKU HAISUI KYOKAI
NORIN SUISANSYO NOGYO KOGAKU K
NORIN SUISANSYO NOGYO KOGAKU KENKYUSHO
Original Assignee
NIPPON NOGYO SHURAKU HAISUI KY
NIPPON NOGYO SHURAKU HAISUI KYOKAI
NORIN SUISANSYO NOGYO KOGAKU K
NORIN SUISANSYO NOGYO KOGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NOGYO SHURAKU HAISUI KY, NIPPON NOGYO SHURAKU HAISUI KYOKAI, NORIN SUISANSYO NOGYO KOGAKU K, NORIN SUISANSYO NOGYO KOGAKU KENKYUSHO filed Critical NIPPON NOGYO SHURAKU HAISUI KY
Priority to JP5708197A priority Critical patent/JP3673882B2/en
Publication of JPH10235400A publication Critical patent/JPH10235400A/en
Application granted granted Critical
Publication of JP3673882B2 publication Critical patent/JP3673882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the solid-liquid separation performance and treat sludge in a low concentration. SOLUTION: A sun-dried bed 12 comprises a concrete tank 13, a filtered liquid discharging pipe 14 installed in the bottom of the concrete tank 13, and a filter layer 15 formed in the concrete tank 13 and constituted of a lower side gravel layer 6 and an upper side sand layer 7, and an air emitting mechanism 20. The filtered liquid discharging pipe 14 has a permeation aperture 14A through which a filtered liquid can permeate and the discharging end 14B is extended to the outside of the concrete tank 1. The air emitting mechanism 20 is constituted of an air pump 21 and a ventilation pipe 23 one end of which is communicated with the air pump 21 and which has a plurality of ventilation holes 22 arranged at approximately equal intervals in the filter layer 15. Consequently, at the time of precipitation and filtration of sludge- containing water M2 thrown to the sun-dried bed 12, air is emitted out of the ventilation holes 22 through the ventilation pipe 23 by the air pump 21 and the sludge layer S2 which gradually precipitates on the upper face of the filter layer 15 is passed through the ascending bubbles 26, and while the separated water lingering on the sludge layer S2 and the filter layer 15 being communicated with each other, the sludge is treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚泥処理方法および
その装置に関し、特に、天日乾燥床により汚泥を処理す
る汚泥処理方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating sludge, and more particularly, to a method and an apparatus for treating sludge by treating a sludge with a solar drying bed.

【0002】[0002]

【従来の技術】下水、集落排水等の生活排水の浄化処理
により生成される汚泥は、多量の水分を含み、体積が大
きく取り扱いに不便である。このため、従来、汚泥の処
理方法では、まず、第1段階で、予め汚泥を沈降および
微生物処理によって濃縮消化し、この濃縮消化された汚
泥を図7および図8に示すような汚泥処理装置としての
天日乾燥床2に投入し、汚泥の脱水・乾燥を行うように
している。天日乾燥床2は、床表面の砂層7で汚泥と水
を濾過分離し、その後、日射、風などで脱水乾燥するも
ので、この天日乾燥床2は、図8に示すように、コンク
リートの底部3Aと壁部3Bとを備えたコンクリート槽
3の底に濾液排水管4を配置し、槽3の底に砂利6と砂
7を順次投入して濾過層5を形成して構成される。濾液
排水管4は、濾過層5により濾過された濾液が浸透する
浸透口4Aを有するとともに排出端4Bが槽3の外部に
延びている。コンクリート槽3には、図示していないが
汚泥投入用の蛇口およびポンプが設けられる。固液分離
装置としての天日乾燥床2は、外部から濾過層5上に濃
縮消化された汚泥M1 が投入されると、濾過層5の表面
5Aに濾し残された汚泥の固形分S1 が溜り、濾過され
固形分S1 から分離された濾液は濾過層5内を浸透し、
濾液排水管4の浸透口4Aを介して外部に排出されるよ
うになっている。濾過層5の表面5Aに固形分S1 が堆
積すると、固液分離性能が落ちてくるので、濾過表面の
目詰まりを防ぐため、図9の(A)に示すように、クロ
スフローFを発生させて固形分S1 を除去するようにし
ている。また、図9の(B)に示すように、濾過方向と
反対側から、すなわち、濾過層5の下側から上に向けて
水流や気流BWを発生させ、濾過表面5A全体を洗浄す
る逆洗が行われる。逆洗時には、濾材6、7内部に多量
の水量あるいは高圧のエアを下から上に通過させ濾過面
5A全面を洗浄するようにしているため、濾過は行われ
ない。
2. Description of the Related Art Sludge generated by the purification of domestic wastewater such as sewage and settlement wastewater contains a large amount of water, is large in volume, and is inconvenient to handle. For this reason, conventionally, in the sludge treatment method, first, in the first stage, sludge is concentrated and digested in advance by sedimentation and microbial treatment, and the concentrated and digested sludge is used as a sludge treatment device as shown in FIGS. 7 and 8. Into the sun drying floor 2 to dewater and dry sludge. The sun-dried floor 2 filters and separates sludge and water by a sand layer 7 on the floor surface, and then dehydrates and dries with solar radiation, wind, etc. As shown in FIG. A filtrate drainage pipe 4 is arranged at the bottom of a concrete tank 3 having a bottom 3A and a wall 3B, and gravel 6 and sand 7 are sequentially charged at the bottom of the tank 3 to form a filtration layer 5. . The filtrate drain pipe 4 has a permeation port 4A through which the filtrate filtered by the filtration layer 5 penetrates, and a discharge end 4B extends outside the tank 3. Although not shown, a tap and a pump for feeding sludge are provided in the concrete tank 3. When the sludge M 1 concentrated and digested on the filtration layer 5 is externally supplied to the solar drying bed 2 as a solid-liquid separation device, the solid content S 1 of the sludge that has been filtered off on the surface 5A of the filtration layer 5 is left. Accumulates and the filtrate filtered and separated from the solid content S 1 permeates through the filtration layer 5,
The filtrate is discharged to the outside through the permeation port 4A of the drainage pipe 4. When the solid content S 1 is deposited on the surface 5A of the filtration layer 5, the solid-liquid separation performance is reduced. Therefore, to prevent clogging of the filtration surface, a cross flow F is generated as shown in FIG. followed by removal of solids S 1 by. Further, as shown in FIG. 9B, a backwash is performed in which a water flow or an airflow BW is generated from the opposite side to the filtration direction, that is, from the lower side of the filtration layer 5 upward, to wash the entire filtration surface 5A. Is performed. At the time of back washing, a large amount of water or high-pressure air is passed through the inside of the filter media 6 and 7 from bottom to top to wash the entire filtration surface 5A, so that no filtration is performed.

【0003】[0003]

【発明が解決しようとする課題】従来の天日乾燥床2
は、予め濃縮消化された汚泥に用いられることが一般的
であり、低濃度の活性汚泥の処理には適していないとい
う問題がある。すなわち、濃度の薄い汚泥水M2 (3,00
0 〜5,000 mg SS/L 程度)を天日乾燥床2により処理す
ると、図10のグラフに示すように、汚泥の固形分と水
とを濾過分離するのに長時間を要するからである。つま
り、低濃度の汚泥水M2 が天日乾燥床2に投入される
と、濾過層5上の液状汚泥M2 では、濾過分離中に汚泥
水M2 の固形分S1 が濾過層5の表面5Aに沈殿・堆積
し、固形分S1 と分離された水がその沈殿・堆積された
汚泥層S2 の上部に滞留してしまう。分離された水が濾
過されて排出されるためには、濾過層5より透水性の悪
い汚泥層S2 を通過しなければならない。このため、天
日乾燥床2による処理に当たっては汚泥を予め濃縮消化
しなければならず、時間がかかるだけでなく、コストア
ップを招くという問題がある。
A conventional solar drying bed 2
Is generally used for sludge that has been concentrated and digested beforehand, and is not suitable for treating low-concentration activated sludge. That is, sludge water M 2 (3,00
This is because, when treated with the solar drying bed 2 (about 0 to 5,000 mg SS / L), it takes a long time to filter and separate the solid content of sludge and water as shown in the graph of FIG. That is, a low concentration of the sludge water M 2 is turned to solar drying bed 2, the liquid sludge M 2 on the filter layer 5, the solids S 1 of the sludge water M 2 during the filtration separation filter layer 5 precipitated and accumulated on the surface 5A, water separated solids S 1 is thus retained in the upper portion of the precipitate-deposited sludge layer S 2. In order for the separated water to be filtered and discharged, the separated water must pass through a sludge layer S 2 having poorer permeability than the filtration layer 5. For this reason, sludge must be concentrated and digested in advance in the treatment with the sun drying bed 2, which causes a problem that not only takes time but also increases the cost.

【0004】本発明は上記問題点を除くためになされた
もので、天日乾燥床における固液分離性能を向上させ、
低濃度の汚泥を効率的に汚泥処理することができる汚泥
処理方法およびその装置を提供することを目的とするも
のである。
The present invention has been made to eliminate the above-mentioned problems, and has an object to improve the solid-liquid separation performance in a solar drying bed,
It is an object of the present invention to provide a sludge treatment method and a device capable of efficiently treating low-concentration sludge.

【0005】[0005]

【課題を解決するための手段】本発明に係る汚泥処理方
法は、槽内に濾過層を形成し、槽の底部に、浸透口を有
するとともに排出端が上記槽の外部に延びる濾液排水管
を配設し、この濾過層上に汚泥水を投入して濾過層によ
り濾過し、この濾液を濾液排水管を介して外部に排水す
る汚泥処理方法において、複数の通気口を有する通気管
を濾過層内の所定の部位に埋設し、汚泥水の投入後、外
部から通気管にエアを送出して通気口からエアを放出さ
せ、上昇する気泡に濾過層上面に徐々に沈殿する汚泥層
を通過させ、汚泥の固形分と分離して汚泥層上に滞留す
る分離水と濾過層とを連通させつつ汚泥を処理するよう
にしたものである。
According to the present invention, there is provided a sludge treatment method comprising: forming a filtration layer in a tank; and providing a filtrate drainage pipe having a permeation port and a discharge end extending outside the tank at the bottom of the tank. In the sludge treatment method of disposing sludge water on the filtration layer and filtering the filtrate through the filtration layer, and draining the filtrate to the outside through a filtrate drainage pipe, a ventilation pipe having a plurality of ventilation holes is provided on the filtration layer. After the sludge is injected, air is sent from the outside to the vent pipe to release the air from the vent, and the rising bubbles pass through the sludge layer that gradually settles on the upper surface of the filtration layer. The sludge is treated while the separation water separated from the solid content of the sludge and retained on the sludge layer is communicated with the filtration layer.

【0006】本発明に係る汚泥処理方法は、複数の通気
口を有する通気管を濾過層内の所定の部位に埋設し、汚
泥水の投入後、外部から通気管にエアを送出して通気口
からエアを放出させ、上昇する気泡に濾過層上面に徐々
に沈殿する汚泥層を通過させ、汚泥の固形分と分離して
汚泥層上に滞留する分離水と濾過層とを連通させつつ汚
泥を処理するようにしているので、槽に外部から汚泥水
が投入されると、まず初めに、固液混合状態の汚泥水は
濾過層により濾過され、濾過された濾液は濾過層を浸透
し濾液排水管を介して外部に排出される。濾過層上に滞
留する汚泥水は、時間の経過とともに固形分と水とに分
離して、固形分が濾過層上面に沈殿・堆積して汚泥層を
形成する。汚泥槽は透水性が悪いため、分離水の濾過層
への浸透性能を劣化させる。汚泥層が形成されると、外
部から通気管にエアを送出し、通気口からエアを放出す
る。通気口から放出されたエアは気泡となって濾過層内
を上昇し、濾過層上面から汚泥層を通過し、さらに分離
水を経て大気に達する。気泡が汚泥層を通過する際、汚
泥層の一部は気泡により排除され、濾過層と分離水とが
連通されるので、分離水は汚泥層を介さず直接濾過層に
浸透する。このため、汚泥水の濾過層への浸透性が高ま
り、分離水は効率よく外部に排出される。
In the method for treating sludge according to the present invention, a ventilation pipe having a plurality of ventilation holes is buried in a predetermined portion in a filtration layer, and after introducing sludge water, air is sent from the outside to the ventilation pipe to provide a ventilation port. The sludge layer that gradually settles on the upper surface of the filtration layer is passed through the rising bubble, and the sludge is separated from the solid content of the sludge and the sludge is communicated with the separation water remaining on the sludge layer and the filtration layer. Since sludge water is introduced into the tank from outside, first, sludge water in a solid-liquid mixed state is filtered by a filtration layer, and the filtered filtrate permeates the filtration layer and drains filtrate. It is discharged outside through a pipe. Sludge water remaining on the filtration layer separates into solids and water with the passage of time, and the solids precipitate and deposit on the upper surface of the filtration layer to form a sludge layer. Since the sludge tank has poor water permeability, the performance of permeating the separated water into the filtration layer deteriorates. When the sludge layer is formed, air is sent from the outside to the ventilation pipe, and the air is released from the ventilation port. The air discharged from the vent becomes bubbles and rises in the filter layer, passes through the sludge layer from the upper surface of the filter layer, and reaches the atmosphere via separated water. When the air bubbles pass through the sludge layer, a part of the sludge layer is eliminated by the air bubbles and the filtration layer and the separated water are communicated with each other, so that the separated water permeates the filtration layer directly without passing through the sludge layer. Therefore, the permeability of the sludge water to the filtration layer is increased, and the separated water is efficiently discharged to the outside.

【0007】また、本発明に係る汚泥処理装置は、槽の
内部に形成され投入された汚泥水を濾過する濾過層と、
この槽の底部に配設された浸透口を有するとともに排出
端が上記槽の外部に延びる濾液排水管とを備えた汚泥処
理装置において、通気口が濾過層内の所定の部位に複数
配された通気管と、この通気管に連通され外部からエア
を送出するエアポンプとからなるエア放出機構を設けた
ものである。
[0007] The sludge treatment apparatus according to the present invention further comprises a filtration layer formed inside the tank for filtering the supplied sludge water;
In a sludge treatment apparatus having a permeate port disposed at the bottom of the tank and a discharge drain pipe having a discharge end extending to the outside of the tank, a plurality of vent ports are disposed at predetermined positions in the filtration layer. An air discharging mechanism including a ventilation pipe and an air pump that communicates with the ventilation pipe and sends out air from the outside is provided.

【0008】本発明に係る汚泥処理装置は、通気口が濾
過層内の所定の部位に複数配された通気管と、この通気
管に連通され外部からエアを送出するエアポンプとから
なるエア放出機構を設けたことにより、槽に外部から汚
泥水が投入されると、汚泥水は濾過層により濾過され、
濾過された濾液は濾過層を浸透し濾液排水管を介して外
部に排出される。濾過層上に滞留する汚泥水は、時間の
経過とともに固形分と水とに分離して、固形分が濾過層
上面に沈殿・堆積して汚泥層を形成する。この汚泥水の
沈殿・濾過時、外部から通気管にエアを送出し、通気口
からエアを放出すると、通気口から放出されたエアは気
泡となって濾過層内を上昇し、濾過層上面から汚泥層を
通過し分離水を経て大気に達する。気泡が汚泥層を通過
する際、汚泥層の一部は気泡により排除され、濾過層と
分離水とが連通されるので、分離水は汚泥層を介さず直
接濾過層に浸透する。このため、汚泥水の濾過層への透
水性が高まり、分離水は効率よく外部に排出される。
[0008] The sludge treatment apparatus according to the present invention is an air discharging mechanism comprising a ventilation pipe having a plurality of ventilation ports arranged at predetermined positions in a filtration layer, and an air pump communicating with the ventilation pipe and sending out air from outside. When sludge water is supplied from the outside to the tank, sludge water is filtered by the filtration layer,
The filtered filtrate permeates the filtration layer and is discharged outside through a filtrate drain pipe. Sludge water remaining on the filtration layer separates into solids and water with the passage of time, and the solids precipitate and deposit on the upper surface of the filtration layer to form a sludge layer. During the settling and filtration of this sludge water, air is sent from the outside to the ventilation pipe, and when the air is released from the ventilation port, the air released from the ventilation port rises in the filtration layer as bubbles and rises from the top of the filtration layer. It passes through the sludge layer and reaches the atmosphere via separated water. When the air bubbles pass through the sludge layer, a part of the sludge layer is eliminated by the air bubbles and the filtration layer and the separated water are communicated with each other, so that the separated water permeates the filtration layer directly without passing through the sludge layer. Therefore, the permeability of the sludge water to the filtration layer is increased, and the separated water is efficiently discharged to the outside.

【0009】[0009]

【発明の実施の形態】以下、図面に基いて本発明の実施
の形態について説明する。図1は本発明の一実施例に係
る汚泥処理装置を示す縦断面図、図2の(A)、(B)
はそれぞれエアの非放出時および放出時の状態を示す説
明図、図3は図1の汚泥処理装置の通気口の配置を示す
横断面図である。上記従来の汚泥処理装置と同一または
相当部分には同一符号を付してその説明を省略する。本
実施例に係る汚泥処理装置(以下、天日乾燥床と称す)
12は、図1に示すように、コンクリートの底部13A
と壁部13Bとを備えたコンクリート槽13と、このコ
ンクリート槽13の底に配置された濾液排水管14と、
コンクリート槽13に砂利6と砂7を順次投入して形成
された下側砂利槽6と上側砂層7とからなる濾過層15
とを備えるとともに、砂層7には、エア放出機構20が
設けられる。天日乾燥床12には、汚泥投入側に図示し
ない汚泥の投入用蛇口およびポンプが設けられる。濾液
排水管14は、濾過層15により濾過された濾液が浸透
する浸透口14Aを有するとともに排出端14Bが槽1
3の外部に延びている。天日乾燥床12は、外部から濾
過層15上に液状の汚泥水Mが投入されると、濾過層1
5により濾過された濾液が濾過層15内を浸透し、濾液
排水管14の浸透口14Aを介して外部に排出されるよ
うになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a sludge treatment apparatus according to one embodiment of the present invention, and FIGS. 2 (A) and 2 (B).
FIG. 3 is an explanatory view showing a state when air is not discharged and a state when air is released, respectively, and FIG. 3 is a cross-sectional view showing an arrangement of vents of the sludge treatment apparatus of FIG. The same or corresponding parts as those of the above-described conventional sludge treatment apparatus are denoted by the same reference numerals, and description thereof will be omitted. Sludge treatment device according to the present embodiment (hereinafter referred to as a sun drying floor)
12 is a concrete bottom 13A as shown in FIG.
A concrete tank 13 having a wall 13B and a filtrate drain pipe 14 arranged at the bottom of the concrete tank 13.
Filtration layer 15 composed of lower gravel tank 6 and upper sand layer 7 formed by sequentially putting gravel 6 and sand 7 into concrete tank 13
And the air release mechanism 20 is provided on the sand layer 7. The solar drying floor 12 is provided with a faucet and a pump for feeding sludge (not shown) on the sludge feeding side. The filtrate drain pipe 14 has a permeation port 14A through which the filtrate filtered by the filtration layer 15 penetrates, and the discharge end 14B is connected to the tank 1.
3 extend outside. When the liquid sludge water M is externally supplied onto the filtration layer 15 from the outside, the solar drying bed 12
The filtrate filtered by the filter 5 penetrates through the filtration layer 15 and is discharged to the outside through the permeation port 14A of the filtrate drain pipe 14.

【0010】ところで、エア放出機構20は、図1に示
すように、コンクリート槽13の外部に設置されたエア
ポンプ21と、一端がこのエアポンプ21に連通され、
多数の通気口22が砂層7内にほぼ均等な密度で配置さ
れた通気管23とから構成される。通気管23は、図3
に示すように、外部のエアポンプ21に接続された本管
23Aと、この本管23Aから分岐して濾過層15の砂
層7内に互いに平行に埋設された支管23Bとからなっ
ている。通気口22は、図3に示すように、支管23の
埋設部分に設けられる。各通気口22には、図示しない
逆止弁が設けられ、濾過層成分としての砂または水がエ
アポンプ21側に侵入するのを阻止するようになってい
る。エアポンプ21は、図3に示すように、制御弁24
を介して本管23Aに接続される。これらエアポンプ2
1と制御弁24はタイマを内蔵した制御装置25と電気
的に接続される。制御装置25は、予め設定されたデー
タに基づいてエアポンプ21と制御弁24とを制御し、
通気管23にエアを間欠的に送出するようになってい
る。
As shown in FIG. 1, the air discharge mechanism 20 has an air pump 21 installed outside the concrete tank 13 and one end connected to the air pump 21.
A large number of vents 22 are constituted by vent pipes 23 arranged in the sand layer 7 at a substantially uniform density. The ventilation pipe 23 is shown in FIG.
As shown in the figure, the main pipe 23A is connected to the external air pump 21 and the branch pipes 23B branched from the main pipe 23A and buried in the sand layer 7 of the filtration layer 15 in parallel with each other. As shown in FIG. 3, the vent 22 is provided in a portion where the branch pipe 23 is embedded. Each vent 22 is provided with a check valve (not shown) to prevent sand or water as a filter layer component from entering the air pump 21 side. The air pump 21 includes a control valve 24 as shown in FIG.
Is connected to the main pipe 23A. These air pumps 2
1 and the control valve 24 are electrically connected to a control device 25 containing a timer. The control device 25 controls the air pump 21 and the control valve 24 based on preset data,
Air is intermittently sent to the ventilation pipe 23.

【0011】次に、本発明の汚泥処理方法について、上
記構成に係る汚泥処理装置(天日乾燥床)12の作用に
基づいて説明する。天日乾燥床12に外部から低濃度
(3,000 〜5,000 mg SS/L 程度)の汚泥水M2 を投入
し、濾過層15上に滞留させると、汚泥水M2 は濾過層
15により濾過され、濾過された濾液は濾過層15を浸
透し浸透口14Aから濾液排水管14を介して外部に排
出される。濾過層15上に滞留する汚泥水M2 は、時間
の経過とともに固形分S1 と水Wとに分離して、固形分
1 が濾過層上面15Aに沈殿・堆積して汚泥層S2
形成する(図2の(A)参照)。透水性の悪い汚泥層S
2 の形成により、分離された水Wは濾過層15に浸透し
にくくなる。この汚泥水M2 の沈殿・濾過時、制御装置
25によりエアポンプ21と制御弁24とを動作させる
と、エアポンプ21は制御弁24を介して通気管23に
所定圧のエアを送出する。エアは通気管23の本管23
Aから支管23Bに分流され、通気口22から砂層7の
内部に放出される。砂層7に放出されたエアは、図2の
(B)に示すように、気泡26となって砂層7内を上昇
し、濾過層上面15Aから汚泥層S2 を通過し、分離水
Wを経て大気に達する。気泡26が汚泥層S2 を通過す
る際、汚泥層S2 の一部は気泡26により排除され、濾
過層15と分離水Wとが連通される。このため、分離水
Wは汚泥層S2 を介さず、直接濾過層15に浸透する。
このように、本発明に係る汚泥処理方法では、汚泥水M
2 の濾過層15への浸透性が高まり、分離水Wは濾液排
水管14を介して効率よく外部に排出される。従って、
低濃度の汚泥水であっても効率的に処理することができ
るので、従来のように、天日乾燥床による汚泥処理の前
に、濃縮消化処理を行う必要がなく、直接低濃度の汚泥
水を処理することができる。また、低濃度の汚泥水を効
率的に処理できるので、コストダウンを図ることができ
る。
Next, the sludge treatment method of the present invention will be described based on the operation of the sludge treatment apparatus (solar drying bed) 12 having the above-mentioned structure. Sludge water M 2 of solar drying bed 12 low concentration from the outside (3,000 ~5,000 mg SS / about L) was charged and is retained on the filtration layer 15, the sludge water M 2 is filtered by the filtration layer 15, The filtered filtrate permeates the filtration layer 15 and is discharged from the permeation port 14A to the outside through the filtrate drain pipe 14. The sludge water M 2 staying on the filtration layer 15 is separated into a solid content S 1 and water W with the passage of time, and the solid content S 1 precipitates and accumulates on the upper surface 15 A of the filtration layer to form a sludge layer S 2 . (See FIG. 2A). Sludge layer S with poor permeability
The formation of 2 makes it difficult for the separated water W to permeate the filtration layer 15. When the air pump 21 and the control valve 24 are operated by the control device 25 during the settling and filtration of the sludge water M 2 , the air pump 21 sends out air at a predetermined pressure to the ventilation pipe 23 via the control valve 24. Air is the main pipe 23 of the ventilation pipe 23
A is diverted from A to the branch pipe 23B, and is discharged from the vent hole 22 into the sand layer 7. Been Air discharged into sand layer 7, as shown in FIG. 2 (B), rises in the sand layer in the 7 as bubbles 26, it passes through the sludge layer S 2 from the filter layer top surface 15A, through the separated water W Reach the atmosphere. When the bubble 26 passes through the sludge layer S 2, a portion of the sludge layer S 2 are eliminated by the bubble 26, it is passed through the filtration layer 15 separated water W are communicated. Thus, separated water W is not through the sludge layer S 2, penetrates into direct filtration layer 15.
Thus, in the sludge treatment method according to the present invention, the sludge water M
The permeability of the second filter layer 15 into the filtration layer 15 is increased, and the separated water W is efficiently discharged to the outside via the filtrate drain pipe 14. Therefore,
Since even low-concentration sludge can be treated efficiently, there is no need to perform concentrated digestion treatment before sludge treatment with a solar drying bed, as in the past, and it is possible to directly treat low-concentration sludge water. Can be processed. In addition, since low-concentration sludge water can be efficiently treated, cost can be reduced.

【0012】また、上述のように汚泥水M2 の沈殿・堆
積時、通気口22からエアを放出する際、気泡26が濾
過層上面15Aに達した時、あるいは、気泡26が汚泥
層S2 内を通過して上昇している時には、分離水Wは気
泡26にブロックされて濾過層15側に浸透しにくい。
このため、制御装置25により予め設定されたデータに
基づいてエアポンプ21と制御弁24とを制御し、通気
管23にエアを間欠的に送出し、気泡26により分離水
Wと濾過層15とを連通させた後、しばらくエアの放出
を停止すると、より浸透性が向上し、固液分離性能が高
まる。エア送出時間とエア送出停止時間の設定は、汚泥
水の濃度に応じて予め求められる沈殿速度(堆積速度)
や投入水量により決定することができる。
Further, as described above, when the sludge water M 2 is settled and deposited, when air is discharged from the vent 22, when the air bubbles 26 reach the upper surface 15 A of the filtration layer, or when the air bubbles 26 become sludge layer S 2. When the separated water W rises while passing through the inside, the separated water W is blocked by the bubbles 26 and hardly permeates to the filtration layer 15 side.
For this reason, the air pump 21 and the control valve 24 are controlled based on the data set in advance by the control device 25, and the air is intermittently sent to the ventilation pipe 23, and the separated water W and the filtration layer 15 are separated by the bubbles 26. When the release of the air is stopped for a while after the communication, the permeability is further improved, and the solid-liquid separation performance is improved. The setting of the air delivery time and the air delivery stop time depends on the sedimentation speed (deposition speed) previously determined according to the concentration of sludge water.
And the amount of input water.

【0013】[0013]

【実施例】次に、上記構成に係る汚泥処理装置をモデル
化した室内実験結果を示す。上記汚泥処理方法およびそ
の装置の有効性を確認するため、本発明者らは、図4に
示す室内実験装置112で実験を行った。室内実験装置
112は、内径100mmの透明のアクリルパイプ112
Aにアクリル板で底112Bを設けた。底部112Bに
水道用蛇口114を取り付け排水口とした。この容器1
12の底部に網戸用の網部材を敷き下側に砂利106
を、上側に細砂107を詰め、汚泥天日乾燥床を再現し
た。また、曝気濾過法を行うため、エアポンプ121と
接続したエアーストーンを砂層107に埋めた。
Next, the results of laboratory experiments modeling the sludge treatment apparatus according to the above configuration will be described. In order to confirm the effectiveness of the above-mentioned sludge treatment method and its apparatus, the present inventors conducted an experiment using the laboratory apparatus 112 shown in FIG. The indoor experiment apparatus 112 is a transparent acrylic pipe 112 having an inner diameter of 100 mm.
A was provided with a bottom 112B by an acrylic plate. A water tap 114 was attached to the bottom 112B to serve as a drain port. This container 1
12, a net member for a screen door is laid on the bottom of the
Was filled with fine sand 107 on the upper side to reproduce a sludge sun drying floor. In addition, an air stone connected to the air pump 121 was buried in the sand layer 107 to perform the aeration filtration method.

【0014】実験条件は次のとおりである。 RUN−1:実験装置112の上部から水道水を入れ、
非曝気で濾過時間を測定した。 RUN−2:同じく水道水を入れ、曝気しながら濾過時
間を測定した。 RUN−3:汚泥約1リットルを入れ、非曝気で濾過時
間を測定した。 RUN−4:汚泥約1リットルを入れ、全曝気(濾過開
始から終了まで連続的に曝気)で濾過時間を測定した。 RUN−5:汚泥約1リットルを入れ、間欠曝気(濾過
開始後2分毎に15秒間曝気)で濾過時間を測定した。 RUN−6:汚泥約1リットルを入れ、途中曝気(濾過
開始後砂層表面に汚泥層が形成され、濾過速度が著しく
低下するまで非曝気で濾過し、その後濾過終了まで曝
気)で濾過時間を測定した。 用いた汚泥は、茨城県美浦村内の農業集落排水施設から
採取したもので、MLSS濃度は2,600mg/L 、沈降性の
指標であるSV30は9%であった。また、RUN−3
ないしRUN−6は、各RUN終了後、汚泥を取り出す
ため、汚泥とともに表面の砂も取り出し、その分の砂を
新たに加えたため、砂層107の濾過特性が各RUN毎
にちがってしまうことが懸念され、各RUN終了後に各
RUN毎にRUN−1と同様の水道水による非曝気濾過
試験を行った。これらをRUN−4’ないしRUN−
6’という。また、RUN−3ないしRUN−6の測定
条件を揃えるため、濾過速度測定開始前は、排水口の水
道栓114を閉じ、砂層107表面まで水道水を満たし
た状態で、汚泥を入れ排水口を開いて濾過速度を測定し
た。
The experimental conditions are as follows. RUN-1: Tap water is poured from the upper part of the experimental apparatus 112,
The filtration time was measured without aeration. RUN-2: Tap water was also charged, and the filtration time was measured while aerating. RUN-3: About 1 liter of sludge was charged, and the filtration time was measured without aeration. RUN-4: About 1 liter of sludge was charged, and the filtration time was measured with total aeration (continuous aeration from the start to the end of filtration). RUN-5: About 1 liter of sludge was charged, and the filtration time was measured by intermittent aeration (aeration for 15 seconds every 2 minutes after the start of filtration). RUN-6: Put about 1 liter of sludge, measure the filtration time in the middle of aeration (filtration without aeration until the filtration rate is remarkably reduced after formation of a sludge layer on the surface of the sand layer after filtration starts, and then aeration until the end of filtration) did. The sludge used was collected from an agricultural settlement drainage facility in Miura Village, Ibaraki Prefecture. The MLSS concentration was 2,600 mg / L, and the SV30, which is an index of sedimentation, was 9%. Also, RUN-3
In addition, since RUN-6 takes out sludge after completion of each RUN, sand on the surface is taken out together with the sludge, and the sand is added newly, so that the filtering characteristics of the sand layer 107 may be different for each RUN. After the completion of each RUN, a nonaeration filtration test using tap water similar to that of RUN-1 was performed for each RUN. These are referred to as RUN-4 'to RUN-
6 '. In addition, in order to make the measurement conditions of RUN-3 to RUN-6 uniform, before starting the filtration speed measurement, the tap cock 114 of the drainage port is closed, and in a state where the tap water is filled up to the surface of the sand layer 107, sludge is put thereinto and the drainage port is filled. Open to measure the filtration rate.

【0015】実験結果を図5および図6に示す。RUN
−1とRUN−2の結果では図5に示すように、RUN
−1の濾過時間が短かった。水道水の砂層の通過では、
曝気によるメリットはなく、流下面積が気泡によって減
少する分だけ通過に時間がかかることが判明した。それ
に対して、汚泥を投入した場合の濾過は、図6に示すよ
うに、汚泥を非曝気で濾過したRUN−3に比べて、曝
気を行ったRUN−4ないしRUN−6の濾過時間はい
ずれも短かった。濾過時間はRUN−4>RUN−6>
RUN−5の順で短くなっており、曝気時間が短いRU
N−5が、最も濾過時間が短かった。この理由として、
RUN−4およびRUN−6では、気泡によって汚泥層
の一部が破壊されても、その部分から気泡の上昇が続く
ので、水分の流下が速やかに行えない。また、気泡の上
昇位置が時々移動して汚泥層の破壊された部分が残って
も、曝気により汚泥層上部の水に多くの汚泥が混合さ
れ、汚泥層の破壊された部分が、侵入する水分の持ち込
む汚泥ですぐに閉塞してしまう。特に、RUN−4によ
うに、濾過開始当初から曝気を行うと、濾材の砂107
が液中に送り込まれ、濾過終了後の汚泥層の上面に砂1
07が多く見られた。このため、間欠曝気により濾材表
面に汚泥層が形成される毎に、汚泥層の一部を破壊する
のが濾過時間短縮と省エネルギーに優れていた。汚泥投
入前に砂層の条件を確認するために行ったRUN−4’
ないしRUN−6’の結果は、図5に示すように、各R
UN毎に相違はあるが、その差は汚泥を投入した場合の
濾過時間の差に比べると無視できる程度である。なお、
本実験では、濾過高さは8cm程度であるが、実用的には
30cm以上の濾過高さが必要とされ、本願発明のような
エア放出機構を持たない従来の天日乾燥床では、図10
に示すように、排水に4日程度を要したケースがあっ
た。
The experimental results are shown in FIGS. RUN
In the results of -1 and RUN-2, as shown in FIG.
The filtration time of -1 was short. In the passage of the sand layer of tap water,
It was found that there was no merit due to aeration, and it took time to pass by the amount by which the falling area was reduced by bubbles. On the other hand, as shown in FIG. 6, when the sludge is supplied, the filtration time of the aerated RUN-4 to RUN-6 is longer than that of the RUN-3 obtained by filtering the sludge without aeration. Was also short. Filtration time is RUN-4>RUN-6>
RU-5 is shorter in the order, and RU is shorter in aeration time.
N-5 had the shortest filtration time. For this reason,
In RUN-4 and RUN-6, even if a part of the sludge layer is destroyed by the bubbles, the bubbles continue to rise from that part, so that the water cannot flow down quickly. In addition, even if the rising position of the bubble sometimes moves and leaves a broken portion of the sludge layer, a large amount of sludge is mixed into the water above the sludge layer due to aeration, and the broken portion of the sludge layer becomes a part of the invading water. Immediately clogged with sludge brought in. In particular, when aeration is performed from the beginning of filtration as in RUN-4, sand 107 of the filter medium is formed.
Is fed into the liquid, and sand 1 is placed on the upper surface of the sludge layer after the filtration.
07 were found in many cases. For this reason, each time a sludge layer is formed on the surface of the filter medium due to intermittent aeration, destruction of a part of the sludge layer is excellent in shortening the filtration time and saving energy. RUN-4 'performed to check the conditions of the sand layer before sludge was introduced
To RUN-6 ′, as shown in FIG.
Although there is a difference for each UN, the difference is negligible compared to the difference in filtration time when sludge is introduced. In addition,
In this experiment, the filtration height was about 8 cm. However, in practice, a filtration height of 30 cm or more was required, and in a conventional solar drying floor having no air release mechanism as in the present invention, FIG.
As shown in Fig. 7, there were cases where drainage took about four days.

【0016】なお、上記実施例では、通気口22の形成
された支管23Bを砂層に配置しているがこれに限られ
るものではなく、砂利層に配置してもよい。しかしなが
ら、通気口22は、濾過層15の表面15A近くでかつ
所定の厚さの濾過層を上側に確保して設けることが望ま
しい。また、制御装置25は予め設定されたデータに基
づいてエアを通気管23に間欠的に送出するようにして
いるが、これに限られるものではなく、コンクリート槽
内部に汚泥層の堆積厚さを検知するセンサを設け、この
センサからの検知信号に基づいて通気管23へのエアの
送出のタイミングを制御するようにしてもよい。また、
この検知信号に基づいてエアの送出量あるいは送出圧力
を制御するようにしてもよい。さらに、上記実施例のよ
うに低濃度の汚泥水M2 の処理にあたっては、投入され
る低濃度の汚泥水M2 の固形分は濾過層15の上面15
A全域にほぼ均等に沈殿・堆積するため、多数の通気口
22を砂層7内でほぼ均等な密度で配置するようにして
いる。しかしながら、汚泥水M2 の投入条件等により、
濾過層15の上面15Aに堆積する汚泥層の厚さに偏り
が生じる場合、偏りに応じて通気口の配置数を場所によ
り適宜変更し、通気口の密度を変えてもよいことは言う
までもない。また、上記実施例の説明において、濾過層
からエアを放出し気泡を発生させることを曝気と称して
いるが、本願でいう曝気は液中へのエアの送気と同義で
あって、微生物処理に供するための酸素供給のためのも
のではない。
In the above embodiment, the branch pipe 23B in which the vent 22 is formed is arranged in the sand layer. However, the present invention is not limited to this, and the branch pipe 23B may be arranged in the gravel layer. However, it is desirable that the vent 22 be provided near the surface 15A of the filtration layer 15 and with a filtration layer of a predetermined thickness secured on the upper side. Further, the control device 25 intermittently sends air to the ventilation pipe 23 based on preset data. However, the present invention is not limited to this. A sensor for detecting the air may be provided, and the timing of sending air to the ventilation pipe 23 may be controlled based on a detection signal from the sensor. Also,
The delivery amount or delivery pressure of air may be controlled based on this detection signal. Furthermore, low concentrations of when treatment of the sludge water M 2, low density solids in the sludge water M 2 that are turned on the upper surface 15 of the filtration layer 15 as described above in Example
A large number of vents 22 are arranged in the sand layer 7 at a substantially uniform density in order to settle and accumulate almost uniformly over the entire area A. However, by the introduction conditions of the sludge water M 2, etc.,
When the thickness of the sludge layer deposited on the upper surface 15A of the filtration layer 15 is uneven, it goes without saying that the density of the air holes may be changed by appropriately changing the number of vents depending on the location depending on the unevenness. Further, in the description of the above embodiment, releasing air from the filtration layer to generate air bubbles is referred to as aeration, but the aeration referred to in the present application is synonymous with sending air into the liquid, and the microorganism treatment. It is not for supplying oxygen to be supplied to

【0017】[0017]

【発明の効果】以上述べたように本発明によれば、複数
の通気口を有する通気管を濾過層内の所定の部位に埋設
し、汚泥水の投入後、外部から通気管にエアを送出して
通気口からエアを放出させ、上昇する気泡に濾過層上面
に徐々に沈殿する汚泥層を通過させ、汚泥の固形分と分
離して汚泥層上に滞留する分離水と濾過層とを連通させ
つつ汚泥を処理するようにしたことにより、汚泥水の沈
殿・濾過時、濾過層上に汚泥層が形成されると、汚泥層
を気泡により排除して分離水と濾過層とを連通させ、浸
透性を向上させることができるので、固液分離性能を向
上させて汚泥処理の作業時間を短縮することができる。
また、従来、処理が困難であった低濃度の汚泥を汚泥処
理することができるので、従来のように、天日乾燥床に
よる汚泥処理の前に、濃縮消化処理を行う必要がなく、
作業効率を向上させ、コストダウンを図ることができ
る。
As described above, according to the present invention, a ventilation pipe having a plurality of ventilation holes is buried in a predetermined portion of the filtration layer, and after sludge water is supplied, air is sent from the outside to the ventilation pipe. To release air from the vent and let the rising bubbles pass through the sludge layer that gradually settles on the upper surface of the filtration layer, separating the solid content of the sludge and communicating with the separation water remaining on the sludge layer and the filtration layer. By treating the sludge while allowing the sludge water to precipitate and filter, when a sludge layer is formed on the filtration layer, the sludge layer is eliminated by air bubbles to allow the separation water and the filtration layer to communicate with each other, Since the permeability can be improved, the solid-liquid separation performance can be improved and the operation time of the sludge treatment can be reduced.
In addition, since it is possible to sludge low-concentration sludge, which was conventionally difficult to treat, there is no need to perform concentrated digestion treatment before sludge treatment with a solar drying bed, as in the past.
Work efficiency can be improved and costs can be reduced.

【0018】また、本発明によれば、通気口が濾過層内
の所定の部位に複数配された通気管と、この通気管に連
通され外部からエアを送出するエアポンプとからなるエ
ア放出機構を設けたことにより、汚泥水の沈殿・濾過
時、濾過層上に形成される汚泥層を気泡により排除して
分離水と濾過層とを連通させることができるので、固液
分離性能を向上させて汚泥処理の作業時間を短縮するこ
とができる。
Further, according to the present invention, there is provided an air discharging mechanism including a ventilation pipe having a plurality of ventilation ports provided at predetermined positions in a filtration layer, and an air pump communicating with the ventilation pipe and sending out air from outside. By providing this, the sludge layer formed on the filtration layer can be eliminated by air bubbles at the time of sedimentation and filtration of the sludge water, so that the separated water and the filtration layer can communicate with each other, so that the solid-liquid separation performance is improved. Work time for sludge treatment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る汚泥処理装置を示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing a sludge treatment apparatus according to one embodiment of the present invention.

【図2】(A)、(B)はそれぞれ図1の汚泥処理装置
のエアの非放出時および放出時の状態を示す説明図であ
る。
2 (A) and 2 (B) are explanatory diagrams showing states of the sludge treatment apparatus of FIG. 1 when air is not discharged and when air is released, respectively.

【図3】図1の汚泥処理装置の通気口の配置を示す横断
面図である。
FIG. 3 is a cross-sectional view showing an arrangement of vents of the sludge treatment apparatus of FIG.

【図4】実験装置を示す斜視図である。FIG. 4 is a perspective view showing an experimental apparatus.

【図5】図4の実験装置を用いて水道水による濾過実験
を行った結果を示すグラフである。
FIG. 5 is a graph showing the results of a filtration experiment using tap water using the experimental apparatus shown in FIG. 4;

【図6】図4の実験装置を用いて汚泥による濾過実験を
行った結果を示すグラフである。
FIG. 6 is a graph showing the results of a filtration experiment using sludge using the experimental apparatus of FIG. 4;

【図7】従来の天日乾燥床を示す平面図である。FIG. 7 is a plan view showing a conventional solar drying floor.

【図8】図7の天日乾燥床を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing the solar drying floor of FIG. 7;

【図9】(A)は従来の天日乾燥床におけるクロスフロ
ーの流れを示す説明図、(B)は従来の天日乾燥床にお
ける逆洗時の流れを示す説明図である。
FIG. 9A is an explanatory diagram showing a flow of a cross flow in a conventional solar drying bed, and FIG. 9B is an explanatory diagram showing a flow at the time of back washing in a conventional solar drying bed.

【図10】従来の天日乾燥床における低濃度の汚泥処理
に要した水層の厚さと経過日数との関係を示すグラフで
ある。
FIG. 10 is a graph showing the relationship between the thickness of an aqueous layer required for low-concentration sludge treatment in a conventional sun drying bed and the number of elapsed days.

【符号の説明】[Explanation of symbols]

12 天日乾燥床(汚泥処理装置) 13 コンクリート槽(槽) 13A コンクリート槽の底部 14 濾液排水管 14A 浸透口 14B 排出端 15 濾過層 20 エア放出機構 22 通気口 23 通気管 26 気泡 M、M2 汚泥水 S2 汚泥層 W 分離水Reference Signs List 12 Solar drying floor (sludge treatment device) 13 Concrete tank (tank) 13A Bottom of concrete tank 14 Filtrate drainage pipe 14A Penetration port 14B Discharge end 15 Filtration layer 20 Air release mechanism 22 Vent 23 Vent pipe 26 Bubbles M, M 2 Sludge water S 2 Sludge layer W Separated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清野 修 東京都港区浜松町1丁目10番14号 住友東 新橋ビル3号館 社団法人日本農業集落排 水協会内 ──────────────────────────────────────────────────の Continued on the front page (72) Osamu Seino, Inventor Sumitomo Higashi Shimbashi Building No. 3, 1-1-10 Hamamatsucho, Minato-ku, Tokyo Inside Japan Agricultural Village Drainage Association

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 槽内に濾過層を形成し、槽の底部に、浸
透口を有するとともに排出端が上記槽の外部に延びる濾
液排水管を配設し、この濾過層上に汚泥水を投入して濾
過層により濾過し、この濾液を濾液排水管を介して外部
に排水する汚泥処理方法において、複数の通気口を有す
る通気管を濾過層内の所定の部位に埋設し、汚泥水の投
入後、外部から通気管にエアを送出して通気口からエア
を放出させ、上昇する気泡に濾過層上面に徐々に沈殿す
る汚泥層を通過させ、汚泥の固形分と分離して汚泥層上
に滞留する分離水と濾過層とを連通させつつ汚泥を処理
することを特徴とする汚泥処理方法。
1. A filtration layer is formed in a tank, and a filtrate drainage pipe having a permeation port and a discharge end extending to the outside of the tank is disposed at the bottom of the tank, and sludge water is supplied onto the filtration layer. In a sludge treatment method in which the filtrate is drained to the outside through a filtrate drain pipe, a vent pipe having a plurality of vents is buried in a predetermined portion in the filter layer, and sludge water is introduced. After that, air is sent out from the outside to the vent pipe to release air from the vent, and the rising bubbles pass through the sludge layer that gradually settles on the upper surface of the filtration layer, and are separated from the solid content of the sludge on the sludge layer. A method for treating sludge, comprising treating sludge while allowing accumulated separated water to communicate with a filtration layer.
【請求項2】 エアを間欠的に送出することを特徴とす
る請求項1に記載の汚泥処理方法。
2. The sludge treatment method according to claim 1, wherein air is intermittently sent.
【請求項3】 槽の内部に形成され投入された汚泥水を
濾過する濾過層と、この槽の底部に配設された浸透口を
有するとともに排出端が上記槽の外部に延びる濾液排水
管とを備えた汚泥処理装置において、通気口が濾過層内
の所定の部位に複数配された通気管と、この通気管に連
通され外部からエアを送出するエアポンプとからなるエ
ア放出機構を設けたことを特徴とする汚泥処理装置。
3. A filtration layer formed inside the tank for filtering sludge water supplied thereto, a filtrate drainage pipe having a permeation port disposed at the bottom of the tank and having a discharge end extending outside the tank. In the sludge treatment apparatus provided with the above, an air discharging mechanism including a ventilation pipe having a plurality of ventilation ports arranged at predetermined positions in the filtration layer and an air pump communicating with the ventilation pipe and sending out air from the outside is provided. A sludge treatment device characterized by the above-mentioned.
【請求項4】 通気口は濾過層内にほぼ均等な密度で配
置されることを特徴とする請求項3に記載の汚泥処理装
置。
4. The sludge treatment apparatus according to claim 3, wherein the vents are arranged at a substantially uniform density in the filtration layer.
【請求項5】 通気管は、エアポンプに接続された本管
と、この本管から複数に分岐し互いに平行に埋設された
支管とから構成されることを特徴とする請求項4に記載
の汚泥処理装置。
5. The sludge according to claim 4, wherein the ventilation pipe comprises a main pipe connected to an air pump, and a branch pipe branched from the main pipe into a plurality of pipes and buried in parallel with each other. Processing equipment.
【請求項6】 エアポンプは、予め設定されたデータに
基づいてエアを通気管に間欠的に送出する制御装置を備
えていることを特徴とする請求項4に記載の汚泥処理装
置。
6. The sludge treatment device according to claim 4, wherein the air pump includes a control device that intermittently sends air to the ventilation pipe based on preset data.
【請求項7】 通気口には、濾過層成分または水の侵入
を阻止する逆止弁が設けられることを特徴とする請求項
4に記載の汚泥処理装置。
7. The sludge treatment apparatus according to claim 4, wherein a check valve for preventing infiltration of a filter layer component or water is provided in the vent.
【請求項8】 濾過層は上層側の砂層と下層側の砂利層
とから構成され、支管が砂層に埋設されることを特徴と
する請求項5に記載の汚泥処理装置。
8. The sludge treatment apparatus according to claim 5, wherein the filtration layer comprises an upper sand layer and a lower gravel layer, and the branch pipe is buried in the sand layer.
JP5708197A 1997-02-25 1997-02-25 Sludge treatment method and apparatus Expired - Fee Related JP3673882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5708197A JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5708197A JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH10235400A true JPH10235400A (en) 1998-09-08
JP3673882B2 JP3673882B2 (en) 2005-07-20

Family

ID=13045540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5708197A Expired - Fee Related JP3673882B2 (en) 1997-02-25 1997-02-25 Sludge treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3673882B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331181B1 (en) * 1999-07-12 2002-04-06 대한민국(관리청:특허청장, 승계청:국립환경연구원장) High-Rate Drying Bed
CN108392876A (en) * 2018-04-20 2018-08-14 大同市金立洁水业有限责任公司 A kind of sewage disinfection treatment precision screen filtration machine
CN110002716A (en) * 2019-05-13 2019-07-12 环创(厦门)科技股份有限公司 A kind of sludge drying method for the Northwest
CN112194333A (en) * 2020-10-22 2021-01-08 中国建筑第八工程局有限公司 Sludge dewatering treatment system and dewatering method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331181B1 (en) * 1999-07-12 2002-04-06 대한민국(관리청:특허청장, 승계청:국립환경연구원장) High-Rate Drying Bed
CN108392876A (en) * 2018-04-20 2018-08-14 大同市金立洁水业有限责任公司 A kind of sewage disinfection treatment precision screen filtration machine
CN110002716A (en) * 2019-05-13 2019-07-12 环创(厦门)科技股份有限公司 A kind of sludge drying method for the Northwest
CN112194333A (en) * 2020-10-22 2021-01-08 中国建筑第八工程局有限公司 Sludge dewatering treatment system and dewatering method thereof

Also Published As

Publication number Publication date
JP3673882B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US7708887B2 (en) Combination membrane/biolytic filtration
JP4920990B2 (en) Separation membrane cleaning method
US5536420A (en) Vertical drainage drying bed for waste sludge and an intensified method of treating wastewater
WO2001072643A1 (en) Method and apparatus for treating waste water
JPH06170364A (en) Filter device using permeation membrane
JPH07155758A (en) Waste water treating device
JPH10235400A (en) Sludge treatment and apparatus therefor
CN108164038A (en) A kind of Water feeding treatment device and processing method
CN108083507A (en) A kind of integrated form Water feeding treatment device and processing method
JP3479632B2 (en) Wastewater treatment equipment
KR20030009799A (en) Waterways purification apparatus and method of an upper-direction flowing type of multi-layers structure filling up a gravel and seramic element
JP3794589B1 (en) Sewage treatment equipment
JP3536930B2 (en) Biological treatment tank
JPH0350969Y2 (en)
KR19990033050U (en) The Submerged Membrane Separation System equipped with the Clarifier to prevent the Float of Suspended Solids
JP3257946B2 (en) Sewage treatment method and sewage treatment apparatus
JP2006055852A (en) Cleaning method and equipment for filter element
JP3025051U (en) Sewage purification device
JP3105799B2 (en) Solid-liquid separation method and portable solid-liquid separation device
RU2208593C2 (en) Method of water purification and device for method embodiment
JPH01231994A (en) Sewage treating equipment
JP2003062407A (en) Treating method and treating device for contaminated water
JP2002239565A (en) Method for removing iron from groundwater pumped up by dewater method
JP3732488B2 (en) Wastewater treatment equipment
JP2005193165A (en) Method and apparatus for treating organic sewage by using aerobic filter bed

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees