JP3673693B2 - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy Download PDF

Info

Publication number
JP3673693B2
JP3673693B2 JP2000091277A JP2000091277A JP3673693B2 JP 3673693 B2 JP3673693 B2 JP 3673693B2 JP 2000091277 A JP2000091277 A JP 2000091277A JP 2000091277 A JP2000091277 A JP 2000091277A JP 3673693 B2 JP3673693 B2 JP 3673693B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
phase
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000091277A
Other languages
Japanese (ja)
Other versions
JP2001279354A (en
Inventor
伸之 斉藤
卓郎 杉本
俊明 羽田
雅人 大沢
知宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2000091277A priority Critical patent/JP3673693B2/en
Publication of JP2001279354A publication Critical patent/JP2001279354A/en
Application granted granted Critical
Publication of JP3673693B2 publication Critical patent/JP3673693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池用材料やヒートポンプ用材料として好適に用いられる水素吸蔵合金に関し、特に、水素吸蔵量を減らすことなく充放電に伴って起こる水素吸蔵合金の微粉化防止に対して優れた特性を示す水素吸蔵合金について提案する。
【0002】
【従来の技術】
現在、市販されている多くの二次電池用水素吸蔵合金は、AB型と言われるもの,例えば、MmNiCoMnAlのCaCu型結晶構造をもつ5元系組成からなるものが用いられている。この合金は、水素を吸蔵・放出する際の微粉化防止のため、および電池特性、とくにサイクル特性向上のために、10wt%程度のCoを含有することが特徴となっている。
また、ヒートポンプ用水素吸蔵合金についても、熱伝導率の低下を防止するために、かかるCoが添加されている。
【0003】
さて、水素吸蔵合金の微粉化を防止する(耐微粉化特性を向上させる)方法としては、Co量を少なくして、AB型合金のBサイトの比率(非化学量論比)を増加させることが有効であることはよく知られている。しかし、AB型合金のBサイトの比率を増加させると、耐微粉化特性は改善されるものの、水素吸蔵量の減少が生じるという問題があった。
【0004】
近年、電気自動車(EV)、ハイブリットEVおよび電動工具等の用途において、大型の水素二次電池の使用が増加している。このような大型電池の負極として搭載される水素吸蔵合金としては、上述した微粉化特性の改善と同時に電池性能の向上も求められており、しかも、これらの特性が過酷な使用条件下でも得られるようにすると共に、合金自体の低価格化の実現という要求がある。
このような要求に応えるためには、水素吸蔵合金を構成する元素中では耐微粉化特性には最も効果を発揮するがコストが高いCoの低減を図ることが有効であると考えられる。
【0005】
これに対し従来、耐微粉化特性を向上させることにより、水素吸蔵合金特性および電池特性を維持,改善しようとする提案がある。
例えば、特開平6−325790号公報に記載された発明は、密閉型アルカリ蓄電池に関するものであり、組成式:MmNi中のMmのLaとNdを特定比率に調整することにより、水素吸蔵放出の切り返しによる微粉化を防止しようとする技術である。
特開平4−202641号公報に記載された発明は、組成式:LnNiMn合金について、その粉砕後には高濃度のMnまたはLaを表面に偏析させて、割れの進行を制御しようとする技術である。
特開平4−168239号公報に記載された発明は、水素吸蔵合金中にマトリックスより靭性の大きい網目状の金属あるいは合金の相を存在させたニッケル水素電池用水素吸蔵合金であり、靭性の大きい相の存在によりクラックの進行を阻止しようとする技術である。
また、コバルトを全く配合しないでサイクル特性を劣化させることなく充放電特性を向上させるという提案もなされている(特開平11−323468号報)。
【0006】
これらの従来技術は、合金組成の検討、表面処理、熱処理等に着目して種々の特性を改善したものであり、それなりの効果はあるものの、水素吸蔵合金の耐微粉化特性をより一層向上させるためには、なお多くの課題を抱えていた。
【0007】
【発明が解決しようとする課題】
そこで、本発明の目的は、従来技術が抱えている上述した課題を克服できる技術の確立を目指し、とくに水素吸蔵量の低減を招くことなく、微粉化の防止ができ、しかもCo含有量の低減を実現して合金コストの低減を図るところにある。
【0008】
【課題を解決するための手段】
上記目的に対し本発明は、次の事項を骨子とした課題解決手段を提案する。即ち、格子定数のほぼ等しい複数のCaCu5型相が三次元網状構造を形造って構成されている水素吸蔵合金、とくには、CaCu5型結晶構造を有する母相と、この母相中に絡みあって存在する三次元網状構造の凝固組織をもつ相との二相の結晶構造からなる水素吸蔵合金であって、これらの二相はほぼ等しい格子定数をもち、かつ前記三次元網状構造相は、母相が水素を吸蔵または放出する際に同時に水素を吸蔵または放出するCaCu5型類似の相であるなお、上記水素吸蔵合金は、母相は、CaまたはYを含むMmNi5系合金相であり、三次元網状構造相は、母相と比較してCaまたはYの濃度の高いMmNi5系合金相であることが好ましい。
【0009】
以上の説明から明らかなように、本発明は、下記組成式を有するCaCu5・型水素吸蔵合金であって、CaまたはYを含むMmNi5系合金からなる母相と、その母相合金と比較するとCaまたはYの濃度が高い組成を有するMmNi5系合金からなると共に、前記母相合金とは互いに絡み合った状態で存在する三次元網状構造相とからなることを特徴とする水素吸蔵合金である。
組成式 R1−xBNiCoM
ここで、0.01<x≦0.30、4.0≦a≦4.4、0<b≦0.6、0≦c≦1.0、5.00≦a+b+c≦5.30、Rは希土類元素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、Si、CrおよびSnのうちから選択されるいずれか少なくとも一種の元素であって、Mnの場合はその含有量が0.1〜0.4、Alの場合はその含有量が0.1〜0.4、Cu,Fe,CrおよびSnの場合はその含有量が0〜0.3
【0010】
なお、上記希土類元素の混合物は、Laの含有量が60wt%以上であることが好ましく、この水素吸蔵合金は、ニッケル水素二次電池用として好ましい。
【0011】
【発明の実施の形態】
本発明の水素吸蔵合金は、耐微粉化特性を向上させるために、母相の合金中に、該母相合金とほぼ同一の結晶格子定数 (a軸5.00〜5.10Å、c軸4.00〜4.10Å) をもち、かつ同一圧力、同一温度で水素を吸蔵・放出する三次元網状構造相 (母相合金と三次元に絡み合って析出した凝固組織をもつ網状構造相)を析出させることにより、耐微粉化特性を向上させたものである。
本発明において、かかる三次元網状構造相は、単に母相表面に第2相として層状に析出させたものではなく、母相合金と相互に拡散し合って三次元的に連続した状態の凝固組織からなる相である。
なお、この相は、上述した母相の結晶格子定数 (a軸5.00〜5.10Å、c軸4.00〜4.10Å) にほぼ等しい格子定数 (a軸5.00〜5.10Å、c軸4.00〜4.10Å) をもつと同時に、水素吸蔵能をもつものであって、この相の存在によって吸蔵量の減少を招くことなく、水素吸蔵合金の耐微粉化特性が改善できるのである。
【0012】
本発明に係る水素吸蔵合金において、その構成の一部を占める上記母相は、CaまたはYを含むMmNiCoMnAl合金のような、MmNi系合金相であることが好ましく、そして三次元網状構造相は、母相と比較してCaまたはYの濃度の高いMmNiCoMnAl合金のようなCaまたはYリッチのMmNi系合金相であることが好ましい。いわゆる、三次元網状構造相というのは、母相のCaまたはYの濃度との差によって、網状の凝固組織を有する相であると言える。しかも、この三次元網状構造相は、母相が水素を吸蔵・放出すればともに水素を吸蔵・放出する性質を有すると共に、耐微粉化特性とを互いに他を犠牲にすることなく同時に改善できるという性質を発揮する。
なお、本発明において、必要とされるCa,Yの濃度差というのは2〜6倍程度であり、この程度の差があれば、上述したように、水素吸蔵特性を低下させることなく、耐微粉化特性を改善することができる。
【0013】
このように、三次元網状構造相が両方の性能を併せ持つ理由については、次のように考えられる。即ち、希土類元素とCaの平衡状態図によると、希土類元素とCoを含む合金では特に偏晶型の場合、室温付近において希土類元素中にはCaが全く固溶しない性質があり、これらは反発力の強い元素同士である。一方で、これらの両元素は、ともにニッケルとの結合力は非常に強く、それぞれRNi、CaNiというCaCu型の結晶構造 (六方晶) を持つ金属間化合物を形成し、水素吸蔵合金となる。
【0014】
ここでもし、MmNiCoMnAl系水素吸蔵合金に少量のCaを添加すると、希土類元素とCaとは反発力が大きいため、まずCa含有量の少ない高融点の相から凝固が始まり、次いで低融点のCa含有量の多い相がその周囲を取り囲むように凝固するため、凝固組織としては三次元網状構造を示すようになる。
【0015】
しかも、Ca含有量の少ない相と多い相とは、格子定数がほぼ等しいCaCu型構造であり、両者はともに水素吸蔵合金として機能するが、特性的には差異がある。即ち、両相ともにCaを含有することで、水素吸蔵時の格子膨張が小さくなるために、ともに微粉化し難いものになるが、Ca含有量の少ない方の相は、Caを含まない一般的なMmNiCoMnAl系水素吸蔵合金に比較的近い高水素吸蔵量の特性をもち、微粉化特性は格別のものではない。しかし、Ca含有量の多い方の相は、顕著に微粉化し難い特性をもつようになる。
そのため、本発明にかかる合金については、微粉化し難い特性を持つCa含有量の多い相が、Ca含有量の少ない高水素吸蔵量の相の周囲を3次元的に取り囲むような構造となるから、中心部にある高水素吸蔵量の相の微粉化、脱落を抑制する。そのために、全体として高水素吸蔵量で耐微粉化特性に優れた水素吸蔵合金がえられるようになる。
【0016】
この点、特開平4−168239号公報で開示されている、Zrを配合した場合に発現すると報告されている網状構造相は、母相とは結晶格子定数も平衡圧力も異なり、母相が水素を吸蔵・放出する際に、水素を吸蔵・放出しないという点で本発明の合金とは、構成および作用が異なる。
【0017】
なお、従来技術において、AB合金にCaを配合するという技術思想は、特開昭60−241651号公報の発明にみられるように公知である。しかし、前記公報に記載された、組成式Ca1−xMmNiy−z合金は過充電による電池内圧を防止するという目的であり、本発明合金のように耐微粉化特性を向上させ、かつ、水素吸蔵量を低下させずにCo低減を図ろうという技術ではない。このことは実施例中には、Mmを多量のCaで置換するという技術、およびCo量が 1.5と、Coを多量に配合した合金実施例が開示されているのみであり、このような合金設計では、上述した本発明の目的を達成することができない。
【0018】
本発明の水素吸蔵合金は、母相中に三次元網状に析出する構造相のCaの好適な置換量は、希土類元素の混合物Rに対して、0.01を上回りかつ、0.3 を超えない範囲であることが好ましく、特に、0.05〜0.2 であることが好ましい。この理由は、CaまたはY置換量が0.3 を超えると、水素吸蔵量が減少するからであり、0.01以下だと網状構造相が現出しない。
【0019】
本発明の水素吸蔵合金は、Coを低減させた下記組成式を有する水素吸蔵合金であることが好ましい。
組成式 R1−xBNiCoM
ここで、0.01<x≦0.30、4.0≦a≦4.4、0<b≦0.6、0≦c≦1.0、5.00≦a+b+c≦5.30、Rは希土類元素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、Si、CrおよびSnのうちから選択されるいずれか少なくとも一種の元素であって、Mnの場合はその含有量が0.1〜0.4、Alの場合はその含有量が0.1〜0.4、Cu,Fe,CrおよびSnの場合はその含有量が0〜0.3
【0020】
上記組成式において、耐微粉化特性の向上を三次元網状構造物相を現出させることで改善するようにしたので、Co置換量は特には限定しないが、二次電池に使用する場合やヒートポンプに使用した場合の特性向上を考慮して、下限を0より大きい値とすることが好ましい。上限については0.6 には限られないが、経済性を考慮すると0.6 以下、より好ましくは0.4 以下がよい。
【0021】
M元素は、Alの場合、0.1 未満では水素平衡圧調整が困難になり、0.4 を超えると水素吸蔵量の減少を引き起こすので 0.1〜0.4 が好ましい。
Mnの場合は、0.1 未満では水素平衡圧調整が困難になり、プラトー性も得られなくなる。0.4 を超えるとアルカリ電解液中での腐食が生じるので 0.1〜0.4 が好ましい。Fe,Cr,Si,Cu,Snの場合は、添加しなくともよいが、添加する場合には0.3 程度を上限とする。
【0022】
また、本発明の合金において、CaCu5型結晶構造を有するAB5型合金のBサイトの非化学量論比a+b+cが5.00未満では耐微粉化特性が得られず、5.30を超えると水素吸蔵量の低下を引き起こすので、AB比は5.00〜5.30が好ましく、5.15〜5.20がより好ましい範囲である。なお、Niは他のBサイト側構成元素量と、非化学量論組成から必然的に決定される値である。
【0023】
本発明に係る上記水素吸蔵合金は、ニッケル水素二次電池用合金用として用いることが好ましい。また、本発明合金は、熱伝導性の低い鉄鋳型を溶損防止のために水冷した鋳型に鋳込むことで得られる。
【0024】
【実施例】
この実施例で用いた水素吸蔵合金の組成は、R1−xCaNi4.24Co0.30Mn0.36Al0.30からなるAB5.20型のものについて、x=0.01, 0.025, 0.05, 0.10 のもの、及びR1−xCaNi4.15Co0.30Mn0.30Al0.30からなるAB5.05型のものについて、x=0.05, 0.10, 0.20, 0.30としたものである。
比較例で用いた水素吸蔵合金の組成は、R0.60Ca0.40Ni4.15Co0.30Mn0.30Al0.30からなるAB5.05型のもの、RNi4.24Co0.30Mn0.36Al0.30からなるAB5.20型のもの、およびRNi4.15Co0.30Mn0.30Al0.30からなるAB5.05型のものを用いた。
前記Rはともに、La含有量が 0.8のものを用いた。合金の作製は高周波溶解炉を用いて溶解し、1000℃−7hr Ar ガス雰囲気で熱処理した。
【0025】
特性評価として、分析電子顕微鏡で組織の確認及び同定を行った。水素吸蔵量はPCT測定装置を使用し、80℃ 10atmでのH/Mを値とした。耐微粉化特性は、一定水素圧化で水素を一度吸蔵後排気させた後の合金粒度分布D50の値を指標とした。
【0026】
各特性評価試験結果を表1に示す。比較例の合金と比較すると、本発明例の合金では、Ca置換量の増加に伴い水素化後の粒度D50値が増加した。特に、Ca置換量0.025 以上の金属組織が複相化した合金でD50値が顕著に増加し、微粉化抑制の効果が大きくなった。しかし、Ca置換量を0.4 まで増加させた比較例の合金Iでは、微粉化抑制の効果は大きいものの、水素吸蔵量の減少が著しくなり、好ましくない結果となった。従って、Ca置換量の上限は0.3 程度が好ましいことが判明した。一方、比較例の合金JとKでは、非化学量論比ABのx値を増加させてD50値を増加させたものであるが、微粉化抑制の効果と引き替えに水素吸蔵量が大きく減少し、好ましくないことがわかった。
【0027】
ここで、微粉化抑制効果に影響していた金属組織について、代表例として、実施例のG合金と比較例のK合金の金属組織写真をそれぞれ図1、図2に示す。同図から実施例のG合金は、薄色相と濃色相が観察され、濃色相は薄色相の周囲に網目状に存在していることがわかる。
また、反射電子像による金属組織写真では、観察している合金の組成の差異が明暗のコントラストとなって現れている。
また、EDS(光学電子顕微鏡写真)による分析結果によれば、G合金の場合、薄色相はCa含有量が約1at%、濃色相はCa含有量が約5at%のCaCu型結晶構造を有することが判明し、この濃色相が微粉化を特に抑制していると考えられる。
これに対し、比較例のK合金では、ひび割れ等が観察される他は、一様な明るさで均一相であった。
【0028】
【表1】

Figure 0003673693
【0029】
【発明の効果】
以上説明したような構成になる本発明の水素吸蔵合金は、水素吸蔵量を低減することなく、微粉化を抑制することができる。また、Co元素の組成を低減させても耐微粉化特性を向上できるので合金コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の合金の電子顕微鏡写真である。
【図2】比較合金の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy suitably used as a material for a secondary battery or a heat pump, and in particular, is excellent for preventing pulverization of a hydrogen storage alloy that occurs with charge / discharge without reducing the amount of hydrogen storage. We propose a hydrogen storage alloy that exhibits properties.
[0002]
[Prior art]
Currently, many of the secondary battery for the hydrogen-absorbing alloy which is commercially available, those called Type 5 AB, for example, made of a quinary composition having a CaCu 5 type crystal structure MmNiCoMnAl is used. This alloy is characterized by containing about 10 wt% of Co in order to prevent pulverization when storing and releasing hydrogen and to improve battery characteristics, particularly cycle characteristics.
In addition, Co is added to the hydrogen storage alloy for heat pumps in order to prevent a decrease in thermal conductivity.
[0003]
Now, as a method of preventing the pulverization of the hydrogen storage alloy (improving the pulverization resistance), the Co amount is reduced and the B site ratio (non-stoichiometric ratio) of the AB type 5 alloy is increased. It is well known that this is effective. However, when the ratio of the B site of the AB type 5 alloy is increased, although the anti-dusting property is improved, there is a problem that the hydrogen storage amount is reduced.
[0004]
In recent years, the use of large-sized hydrogen secondary batteries is increasing in applications such as electric vehicles (EV), hybrid EVs, and electric tools. As a hydrogen storage alloy mounted as a negative electrode of such a large battery, it is also required to improve the battery performance at the same time as the above-mentioned improvement of the pulverization characteristics, and these characteristics can be obtained even under severe use conditions. In addition, there is a demand for realizing a lower price of the alloy itself.
In order to meet such demands, it is considered effective to reduce Co, which is most effective in the anti-dusting characteristics among the elements constituting the hydrogen storage alloy, but has a high cost.
[0005]
On the other hand, there have been proposals for maintaining and improving the hydrogen storage alloy characteristics and battery characteristics by improving the anti-dusting characteristics.
For example, the invention described in Japanese Patent Laid-Open No. 6-325790 relates to a sealed alkaline storage battery, and hydrogen storage is achieved by adjusting La and Nd of Mm in the composition formula: MmNi x A y to a specific ratio. It is a technology that tries to prevent pulverization due to release switching.
Invention described in JP-A-4-202641, the composition formula: For LnNi x Mn y A z alloy, after the grinding is segregated at a high concentration of Mn or La on the surface, trying to control the progress of the crack Technology.
The invention described in Japanese Patent Application Laid-Open No. 4-168239 is a hydrogen storage alloy for nickel metal hydride batteries in which a network metal or alloy phase having a toughness greater than that of a matrix is present in the hydrogen storage alloy. It is a technology that tries to prevent the progress of cracks due to the presence of
In addition, a proposal has been made to improve the charge / discharge characteristics without degrading the cycle characteristics without blending cobalt at all (Japanese Patent Laid-Open No. 11-323468).
[0006]
These prior arts have improved various properties with a focus on examination of alloy composition, surface treatment, heat treatment, etc., and although there are some effects, further improve the anti-dusting properties of hydrogen storage alloys. In order to do so, he still had many challenges.
[0007]
[Problems to be solved by the invention]
Accordingly, the object of the present invention is to establish a technology that can overcome the above-mentioned problems of the prior art, and in particular, can prevent pulverization without reducing the hydrogen storage amount, and reduce the Co content. Is to reduce the alloy cost.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes a problem solving means based on the following matters. That is, the hydrogen storage alloy is approximately equal plurality of CaCu 5 type phase lattice constant is constructed made form a three-dimensional network structure, particularly, a parent phase having a CaCu 5 type crystal structure, in the parent phase A hydrogen storage alloy composed of a two-phase crystal structure with a phase having a solidified structure of a three-dimensional network structure that is entangled, and these two phases have substantially the same lattice constant and the three-dimensional network structure phase Is a CaCu 5 type-like phase that simultaneously occludes or releases hydrogen when the parent phase occludes or releases hydrogen . In the hydrogen storage alloy, the parent phase is an MmNi 5 alloy phase containing Ca or Y, and the three-dimensional network phase is an MmNi 5 alloy phase having a higher Ca or Y concentration than the parent phase. It is preferable that
[0009]
As is clear from the above description, the present invention is a CaCu 5 .type hydrogen storage alloy having the following composition formula, and is compared with a parent phase made of an MmNi 5 alloy containing Ca or Y, and the parent phase alloy. Then, it is a hydrogen storage alloy characterized in that it is made of an MmNi 5 series alloy having a high Ca or Y concentration composition and a three-dimensional network phase that exists in an intertwined relationship with the parent phase alloy. .
Compositional formula R 1-x B x Ni a Co b M c
Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a mixture of rare earth elements, B is Ca or Y, M is at least one element selected from Mn, Al, Fe, Cu, Si, Cr and Sn. In the case of Mn, its content is 0.1 to 0.4, and in the case of Al, its content If the amount is 0.1 to 0.4, Cu, Fe, Cr and Sn, the content is 0 to 0.3
[0010]
The rare earth element mixture preferably has a La content of 60 wt% or more, and this hydrogen storage alloy is preferable for a nickel hydrogen secondary battery.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the pulverization resistance, the hydrogen storage alloy of the present invention contains almost the same crystal lattice constant (a-axis 5.00 to 5.10%, c-axis 4.00 to 4.10%) in the parent phase alloy. ), And at the same pressure and temperature, hydrogen is occluded / released to precipitate a three-dimensional network structure phase (a network structure phase having a solidified structure that is entangled with the parent phase alloy in three dimensions). This improves the crystallization characteristics.
In the present invention, such a three-dimensional network structure phase is not simply deposited in the form of a layer as the second phase on the surface of the parent phase, but is solidified in a three-dimensional continuous state by mutually diffusing with the parent phase alloy. It is a phase consisting of
This phase has a lattice constant (a-axis 5.00-5.10Å, c-axis 4.00-4.10Å) that is almost the same as the crystal lattice constant of the parent phase (a-axis 5.00-5.10Å, c-axis 4.00-4.10Å). At the same time, it has hydrogen storage ability, and the presence of this phase can improve the anti-dusting characteristics of the hydrogen storage alloy without causing a decrease in the storage amount.
[0012]
In the hydrogen storage alloy according to the present invention, the parent phase occupying a part of the structure is preferably an MmNi 5- based alloy phase such as an MmNiCoMnAl alloy containing Ca or Y, and the three-dimensional network phase is A Ca or Y-rich MmNi 5- based alloy phase such as an MmNiCoMnAl alloy having a higher Ca or Y concentration than the parent phase is preferred. The so-called three-dimensional network structure phase can be said to be a phase having a network-like solidified structure due to a difference from the Ca or Y concentration of the parent phase. Moreover, this three-dimensional network phase has the property of absorbing and desorbing hydrogen when the matrix phase occludes and desorbs hydrogen, and at the same time, can improve the pulverization resistance without sacrificing each other. Demonstrate the nature.
In the present invention, the required concentration difference of Ca and Y is about 2 to 6 times, and if there is such a difference, as described above, the resistance to hydrogen storage is not deteriorated. The pulverization characteristics can be improved.
[0013]
Thus, the reason why the three-dimensional network phase has both performances can be considered as follows. That is, according to the equilibrium diagram of rare earth elements and Ca, alloys containing rare earth elements and Co have a property that Ca is not dissolved at all in the rare earth elements at room temperature, especially in the case of the monotectic type. Are strong elements. On the other hand, these two elements are both bonding strength between the nickel is very strong, and form respective RNi 5, CaNi 5 intermetallic compound having a CaCu 5 type crystal structure (hexagonal) of the hydrogen storage alloy Become.
[0014]
Here, if a small amount of Ca is added to the MmNiCoMnAl-based hydrogen storage alloy, the rare earth element and Ca have a large repulsive force. Since a large amount of phase solidifies so as to surround it, the solidified structure shows a three-dimensional network structure.
[0015]
In addition, the phase with low Ca content and the phase with high Ca content are CaCu 5 type structures having substantially the same lattice constant, and both function as hydrogen storage alloys, but there are differences in characteristics. That is, when both phases contain Ca, the lattice expansion during hydrogen occlusion is reduced, so that both of them are difficult to pulverize, but the phase with less Ca content is generally free of Ca. It has a high hydrogen storage characteristic that is relatively close to that of the MmNiCoMnAl-based hydrogen storage alloy, and the pulverization characteristics are not exceptional. However, the phase with the higher Ca content has a characteristic that it is not easily pulverized.
Therefore, for the alloy according to the present invention, the Ca-rich phase with the characteristics that are difficult to be pulverized has a structure that three-dimensionally surrounds the phase of the high hydrogen storage amount with a low Ca content. Suppresses pulverization and dropping of the high hydrogen storage phase in the center. Therefore, as a whole, a hydrogen storage alloy having a high hydrogen storage amount and excellent resistance to pulverization can be obtained.
[0016]
In this regard, the network phase disclosed in Japanese Patent Laid-Open No. 4-168239, which is reported to appear when Zr is blended, differs from the parent phase in crystal lattice constant and equilibrium pressure, and the parent phase is hydrogen. The structure and action differ from the alloy of the present invention in that hydrogen is not occluded / released when occluded / released.
[0017]
Incidentally, in the prior art, technical idea compounding Ca to AB 5 alloys are known as seen in the invention of JP-A-60-241651. However, the compositional formula Ca 1-x Mm x Ni yz Mz alloy described in the above publication is for the purpose of preventing the internal pressure of the battery due to overcharge, and improves the anti-dusting characteristics like the alloy of the present invention. This is not a technique for reducing Co without reducing the hydrogen storage amount. This is only disclosed in the examples of the technique of replacing Mm with a large amount of Ca, and an alloy example in which the Co amount is 1.5 and Co is blended in a large amount. Thus, the above-described object of the present invention cannot be achieved.
[0018]
In the hydrogen storage alloy of the present invention, the preferred amount of substitution of Ca in the structural phase that precipitates in a three-dimensional network in the matrix is in the range of more than 0.01 and not more than 0.3 relative to the rare earth element mixture R. In particular, it is preferably 0.05 to 0.2. This is because when the Ca or Y substitution amount exceeds 0.3, the hydrogen storage amount decreases, and when it is 0.01 or less, the network phase does not appear.
[0019]
The hydrogen storage alloy of the present invention is preferably a hydrogen storage alloy having the following composition formula with reduced Co.
Compositional formula R 1-x B x Ni a Co b M c
Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a mixture of rare earth elements, B is Ca or Y, M is at least one element selected from Mn, Al, Fe, Cu, Si, Cr and Sn. In the case of Mn, its content is 0.1 to 0.4, and in the case of Al, its content If the amount is 0.1 to 0.4, Cu, Fe, Cr and Sn, the content is 0 to 0.3
[0020]
In the above compositional formula, the improvement in anti-dusting properties was improved by revealing a three-dimensional network phase, so the amount of Co substitution is not particularly limited, but when used for secondary batteries or heat pumps In consideration of improvement in characteristics when used in the above, it is preferable to set the lower limit to a value larger than 0. Although the upper limit is not limited to 0.6, it is preferably 0.6 or less, more preferably 0.4 or less in consideration of economy.
[0021]
In the case of Al, when the element M is less than 0.1, it is difficult to adjust the hydrogen equilibrium pressure, and when it exceeds 0.4, the hydrogen occlusion amount is reduced, so 0.1 to 0.4 is preferable.
In the case of Mn, if it is less than 0.1, it becomes difficult to adjust the hydrogen equilibrium pressure, and the plateau property cannot be obtained. If it exceeds 0.4, corrosion in an alkaline electrolyte occurs, so 0.1 to 0.4 is preferable. In the case of Fe, Cr, Si, Cu, Sn, it is not necessary to add, but when it is added, the upper limit is about 0.3.
[0022]
Further, in the alloy of the present invention, the anti-dusting characteristics cannot be obtained when the non-stoichiometric ratio a + b + c of the B site of the AB5 type alloy having a CaCu5 type crystal structure is less than 5.00, and when it exceeds 5.30, the hydrogen occlusion is obtained. The AB ratio is preferably from 5.00 to 5.30, more preferably from 5.15 to 5.20 because it causes a decrease in the amount. Ni is a value that is inevitably determined from the amount of other B-site constituent elements and the non-stoichiometric composition.
[0023]
The hydrogen storage alloy according to the present invention is preferably used for an alloy for a nickel hydrogen secondary battery. The alloy of the present invention can be obtained by casting an iron mold having low thermal conductivity into a water-cooled mold to prevent melting damage.
[0024]
【Example】
The composition of the hydrogen storage alloy used in this example is that of AB 5.20 type composed of R 1-x Ca x Ni 4.24 Co 0.30 Mn 0.36 Al 0.30 , x = 0.01, 0.025, 0.05, 0.10 and AB 5.05 type consisting of R 1-x Ca x Ni 4.15 Co 0.30 Mn 0.30 Al 0.30 , x = 0.05, 0.10, 0.20, It is 0.30.
The composition of the hydrogen storage alloy used in the comparative example is that of AB 5.05 type composed of R 0.60 Ca 0.40 Ni 4.15 Co 0.30 Mn 0.30 Al 0.30 , RNi 4.24. AB 5.20 type made of Co 0.30 Mn 0.36 Al 0.30 and AB 5.05 type made of RNi 4.15 Co 0.30 Mn 0.30 Al 0.30 are used. It was.
The R used was one having a La content of 0.8. The alloy was melted using a high-frequency melting furnace and heat-treated in a 1000 ° C.-7 hr Ar gas atmosphere.
[0025]
As characteristic evaluation, the structure was confirmed and identified with an analytical electron microscope. The amount of hydrogen occlusion was measured using a PCT measuring device and the value was H / M at 80 ° C. and 10 atm.耐微powder of properties, was used as an index value of the alloy particle size distribution D 50 after being once exhausted after absorbing hydrogen at a constant hydrogen pressurization.
[0026]
Table 1 shows the results of each characteristic evaluation test. Compared with the alloy of the comparative example, in the alloy of the example of the present invention, the particle size D 50 value after hydrogenation increased with the increase of the Ca substitution amount. In particular, the D 50 value was remarkably increased in an alloy in which a metal structure having a Ca substitution amount of 0.025 or more was made into a double phase, and the effect of suppressing pulverization was increased. However, in Comparative Example Alloy I in which the Ca substitution amount was increased to 0.4, although the effect of suppressing pulverization was large, the hydrogen storage amount was remarkably reduced, resulting in an undesirable result. Therefore, it was found that the upper limit of the Ca substitution amount is preferably about 0.3. On the other hand, in the alloys J and K of the comparative examples, the x value of the non-stoichiometric ratio AB x is increased to increase the D 50 value, but the hydrogen storage amount is large in exchange for the effect of suppressing pulverization. Decreased and found to be undesirable.
[0027]
Here, as representative examples of the metal structures that have affected the pulverization suppressing effect, photographs of the metal structures of the G alloy of the example and the K alloy of the comparative example are shown in FIGS. 1 and 2, respectively. From the figure, it can be seen that the G alloy of the example has a light hue and a dark hue, and the dark hue is present in a mesh form around the light hue.
Moreover, in the metal structure photograph by a backscattered electron image, the difference of the composition of the observed alloy appears as contrast of light and dark.
Further, according to the analysis result by EDS (optical electron micrograph), in the case of G alloy, the light hue has a CaCu 5 type crystal structure with a Ca content of about 1 at% and the dark hue has a Ca content of about 5 at%. It has been found that this dark hue suppresses pulverization in particular.
On the other hand, the K alloy of the comparative example had a uniform brightness and a uniform phase except that cracks and the like were observed.
[0028]
[Table 1]
Figure 0003673693
[0029]
【The invention's effect】
The hydrogen storage alloy of the present invention configured as described above can suppress pulverization without reducing the hydrogen storage amount. Further, even if the composition of the Co element is reduced, the anti-dusting characteristics can be improved, so that the alloy cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of an alloy of the present invention.
FIG. 2 is an electron micrograph of a comparative alloy.

Claims (1)

下記組成式を有するCaCu型水素吸蔵合金であって、
CaまたはYを含むMmNi系合金からなる母相と、その母相合金と比較するとCaまたはYの濃度が高い組成を有するMmNi系合金からなり、かつ前記母相合金とは互いに絡み合った状態で存在する三次元網状構造相と、からなることを特徴とする水素吸蔵合金。
組成式 R1−xBNiCoM
ここで、0.01<x≦0.30、4.0≦a≦4.4、0<b≦0.6、0≦c≦1.0、5.00≦a+b+c≦5.30、Rは希土類元素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、Si、CrおよびSnのうちから選択されるいずれか少なくとも一種の元素であって、Mnの場合はその含有量が0.1〜0.4、Alの場合はその含有量が0.1〜0.4、Cu,Fe,CrおよびSnの場合はその含有量が0〜0.3
A CaCu type 5 hydrogen storage alloy having the following composition formula,
A matrix consisting of MmNi 5 system alloy containing Ca or Y, states that when compared with the matrix phase alloy Ca or concentration of Y consists MmNi 5 system alloy having a high composition, and wherein the matrix alloy intertwined A hydrogen storage alloy comprising a three-dimensional network phase existing in
Compositional formula R 1-x B x Ni a Co b M c
Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a mixture of rare earth elements, B is Ca or Y, M is at least one element selected from Mn, Al, Fe, Cu, Si, Cr and Sn. In the case of Mn, its content is 0.1 to 0.4, and in the case of Al, its content If the amount is 0.1 to 0.4, Cu, Fe, Cr and Sn, the content is 0 to 0.3
JP2000091277A 2000-03-29 2000-03-29 Hydrogen storage alloy Expired - Fee Related JP3673693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091277A JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091277A JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2001279354A JP2001279354A (en) 2001-10-10
JP3673693B2 true JP3673693B2 (en) 2005-07-20

Family

ID=18606756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091277A Expired - Fee Related JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3673693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716969B2 (en) 2012-09-27 2015-05-13 株式会社Gsユアサ Nickel metal hydride storage battery

Also Published As

Publication number Publication date
JP2001279354A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP3688716B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP3993890B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
Tsukahara et al. V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure
WO2008018494A1 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
CN111471895B (en) Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JP3934800B2 (en) Hydrogen storage alloy and secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP3828922B2 (en) Low Co hydrogen storage alloy
CN111471911B (en) Doped AB3 type rare earth-samarium-nickel hydrogen storage alloy, battery and preparation method
JP3673693B2 (en) Hydrogen storage alloy
WO2020115953A1 (en) Hydrogen storage material, negative electrode and nickel hydrogen secondary battery
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP2001040442A (en) Hydrogen storage alloy
CN111471912B (en) Doped AB3Hydrogen storage alloy, negative electrode, battery and preparation method
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
CN111411262B (en) A5B19 type gadolinium-containing hydrogen storage alloy, negative electrode and preparation method
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
JP4486210B2 (en) Hydrogen storage alloy for secondary battery
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
WO2021205749A1 (en) Hydrogen storage alloy for alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Ref document number: 3673693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees