JP2001279354A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JP2001279354A
JP2001279354A JP2000091277A JP2000091277A JP2001279354A JP 2001279354 A JP2001279354 A JP 2001279354A JP 2000091277 A JP2000091277 A JP 2000091277A JP 2000091277 A JP2000091277 A JP 2000091277A JP 2001279354 A JP2001279354 A JP 2001279354A
Authority
JP
Japan
Prior art keywords
phase
alloy
hydrogen storage
hydrogen
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000091277A
Other languages
Japanese (ja)
Other versions
JP3673693B2 (en
Inventor
Nobuyuki Saito
伸之 斉藤
Takuro Sugimoto
卓郎 杉本
Toshiaki Haneda
俊明 羽田
Masahito Osawa
雅人 大沢
Tomohiro Yoshikawa
知宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2000091277A priority Critical patent/JP3673693B2/en
Publication of JP2001279354A publication Critical patent/JP2001279354A/en
Application granted granted Critical
Publication of JP3673693B2 publication Critical patent/JP3673693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the pulverization of a hydrogen storage alloy without causing the reduction of the amount of hydrogen to be occluded, and also to reduce the alloy cost by the reduction of the content of Co. SOLUTION: This hydrogen storage alloy has a two phase crystal structure of a base phase with a CaCu5 type crystal structure and a phase with a solidified structure of a three-dimensional network structure being present so as to be entangled in the base phase, these two phases have almost equal lattice constants, and also, the above phase with a three-dimensional network structure is the one similar to a CaCu5 type simuntaneously occulding or discharging hydrogen when the base phase occuludes or discharges hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池用材料や
ヒートポンプ用材料として好適に用いられる水素吸蔵合
金に関し、特に、水素吸蔵量を減らすことなく充放電に
伴って起こる水素吸蔵合金の微粉化防止に対して優れた
特性を示す水素吸蔵合金について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy suitably used as a material for a secondary battery or a heat pump, and more particularly, to a fine powder of a hydrogen storage alloy which accompanies charge and discharge without reducing the amount of hydrogen storage. We propose a hydrogen storage alloy that exhibits excellent properties for preventing hydrogenation.

【0002】[0002]

【従来の技術】現在、市販されている多くの二次電池用
水素吸蔵合金は、AB型と言われるもの,例えば、M
mNiCoMnAlのCaCu型結晶構造をもつ5元系組成からな
るものが用いられている。この合金は、水素を吸蔵・放
出する際の微粉化防止のため、および電池特性、とくに
サイクル特性向上のために、10wt%程度のCoを含有する
ことが特徴となっている。また、ヒートポンプ用水素吸
蔵合金についても、熱伝導率の低下を防止するために、
かかるCoが添加されている。
Presently, many of the secondary battery for the hydrogen-absorbing alloy which is commercially available, those called Type 5 AB, for example, M
mNiCoMnAl having a quinary composition having a CaCu 5- type crystal structure is used. This alloy is characterized by containing about 10 wt% of Co for preventing pulverization when storing and releasing hydrogen and for improving battery characteristics, particularly cycle characteristics. Also, for hydrogen storage alloys for heat pumps, in order to prevent a decrease in thermal conductivity,
Such Co is added.

【0003】さて、水素吸蔵合金の微粉化を防止する
(耐微粉化特性を向上させる)方法としては、Co量を少
なくして、AB型合金のBサイトの比率(非化学量論
比)を増加させることが有効であることはよく知られて
いる。しかし、AB型合金のBサイトの比率を増加さ
せると、耐微粉化特性は改善されるものの、水素吸蔵量
の減少が生じるという問題があった。
[0003] Now, to prevent the pulverization of the hydrogen storage alloy as (耐微powder of characteristic improving) method, by reducing the Co content, the ratio of B site AB 5 type alloys (non-stoichiometric) It is well known that increasing is effective. However, when the ratio of the B site in the AB 5- type alloy is increased, the pulverization resistance is improved, but there is a problem that the hydrogen storage amount is reduced.

【0004】近年、電気自動車(EV)、ハイブリット
EVおよび電動工具等の用途において、大型の水素二次
電池の使用が増加している。このような大型電池の負極
として搭載される水素吸蔵合金としては、上述した微粉
化特性の改善と同時に電池性能の向上も求められてお
り、しかも、これらの特性が過酷な使用条件下でも得ら
れるようにすると共に、合金自体の低価格化の実現とい
う要求がある。このような要求に応えるためには、水素
吸蔵合金を構成する元素中では耐微粉化特性には最も効
果を発揮するがコストが高いCoの低減を図ることが有効
であると考えられる。
In recent years, the use of large hydrogen secondary batteries has increased for applications such as electric vehicles (EV), hybrid EVs, and electric tools. As a hydrogen storage alloy mounted as a negative electrode of such a large battery, improvement in battery performance is required at the same time as improvement in the above-mentioned pulverization characteristics, and these characteristics can be obtained even under severe use conditions. In addition to the above, there is a demand for realizing low cost of the alloy itself. In order to meet such demands, it is considered effective to reduce Co, which is the most effective element for pulverization resistance among elements constituting the hydrogen storage alloy, but is expensive.

【0005】これに対し従来、耐微粉化特性を向上させ
ることにより、水素吸蔵合金特性および電池特性を維
持,改善しようとする提案がある。例えば、特開平6−
325790号公報に記載された発明は、密閉型アルカ
リ蓄電池に関するものであり、組成式:MmNi
のMmのLaとNdを特定比率に調整することにより、水素
吸蔵放出の切り返しによる微粉化を防止しようとする技
術である。特開平4−202641号公報に記載された
発明は、組成式:LnNiMn合金について、その粉
砕後には高濃度のMnまたはLaを表面に偏析させて、割れ
の進行を制御しようとする技術である。特開平4−16
8239号公報に記載された発明は、水素吸蔵合金中に
マトリックスより靭性の大きい網目状の金属あるいは合
金の相を存在させたニッケル水素電池用水素吸蔵合金で
あり、靭性の大きい相の存在によりクラックの進行を阻
止しようとする技術である。また、コバルトを全く配合
しないでサイクル特性を劣化させることなく充放電特性
を向上させるという提案もなされている(特開平11−
323468号報)。
On the other hand, conventionally, there has been a proposal to maintain and improve the hydrogen storage alloy characteristics and the battery characteristics by improving the pulverization resistance. For example, Japanese Unexamined Patent Publication
The invention described in Japanese Patent No. 325790 relates to a sealed alkaline storage battery, and by adjusting the composition formula: Mm La and Nd in MmNi x Ay to a specific ratio, pulverization by switching back and forth of hydrogen storage and release. This is a technology that tries to prevent Invention described in JP-A-4-202641, the composition formula: For LnNi x Mn y A z alloy, after the grinding is segregated at a high concentration of Mn or La on the surface, trying to control the progress of the crack Technology. JP-A-4-16
The invention described in Japanese Patent No. 8239 is a hydrogen storage alloy for a nickel-metal hydride battery in which a network-like metal or alloy phase having higher toughness than the matrix is present in the hydrogen storage alloy. This is a technology that tries to prevent the progress of the game. It has also been proposed to improve the charge / discharge characteristics without deteriorating the cycle characteristics without adding any cobalt (Japanese Patent Application Laid-Open No.
No. 323468).

【0006】これらの従来技術は、合金組成の検討、表
面処理、熱処理等に着目して種々の特性を改善したもの
であり、それなりの効果はあるものの、水素吸蔵合金の
耐微粉化特性をより一層向上させるためには、なお多く
の課題を抱えていた。
[0006] These conventional techniques improve various characteristics by paying attention to examination of alloy composition, surface treatment, heat treatment, and the like. Although there is a certain effect, the pulverization resistance of the hydrogen storage alloy is improved. There were still many issues to further improve.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の目的
は、従来技術が抱えている上述した課題を克服できる技
術の確立を目指し、とくに水素吸蔵量の低減を招くこと
なく、微粉化の防止ができ、しかもCo含有量の低減を実
現して合金コストの低減を図るところにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to establish a technique capable of overcoming the above-mentioned problems of the prior art, and particularly to prevent the pulverization without reducing the hydrogen storage capacity. And at the same time, to reduce the Co content to reduce the alloy cost.

【0008】[0008]

【課題を解決するための手段】上記目的に対し本発明
は、次の事項を骨子とした課題解決手段を提案する。即
ち、本発明は、格子定数のほぼ等しい複数のCaCu型相
が三次元網状構造を形造って構成されている水素吸蔵合
金である。また、本発明は、CaCu型結晶構造を有する
母相と、この母相中に絡みあって存在する三次元網状構
造の凝固組織をもつ相との二相の結晶構造からなる水素
吸蔵合金であって、これらの二相はほぼ等しい格子定数
をもち、かつ前記三次元網状構造相は、母相が水素を吸
蔵または放出する際に同時に水素を吸蔵または放出する
CaCu型類似の相であることを特徴とする水素吸蔵合金
である。なお、上記水素吸蔵合金は、母相は、Caまたは
Yを含むMmNi系合金相であり、三次元網状構造相
は、母相と比較してCaまたはYの濃度の高いMmNi
合金相であることが好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention proposes means for solving the problems with the following points as the gist. That is, the present invention is a hydrogen storage alloy in which a plurality of CaCu 5- type phases having substantially the same lattice constant form a three-dimensional network structure. Further, the present invention provides a hydrogen storage alloy having a two-phase crystal structure of a matrix having a CaCu 5- type crystal structure and a phase having a three-dimensional network solidification structure entangled in the matrix. The two phases have approximately equal lattice constants, and the three-dimensional network phase absorbs or releases hydrogen at the same time that the parent phase absorbs or releases hydrogen.
A hydrogen storage alloy characterized by having a phase similar to CaCu type 5 . In the hydrogen storage alloy, the parent phase is an MmNi 5- based alloy phase containing Ca or Y, and the three-dimensional network structure phase is an MmNi 5- based alloy phase having a higher Ca or Y concentration than the parent phase. It is preferred that

【0009】本発明の好ましい態様としては、下記組成
式を有するCaCu型水素吸蔵合金であって、CaまたはY
を含むMmNi系合金からなる母相と、その母相合金と
比較するとCaまたはYの濃度が高い組成を有するMmNi
系合金からなると共に、前記母相合金とは互いに絡み
合った状態で存在する三次元網状構造相とからなること
を特徴とする水素吸蔵合金である。 組成式 R1−xNiCo ここで、0.01<x≦0.30、 4.0≦a≦4.4 、0 <b≦0.
6 、0 ≦c≦1.0 、5.00≦a+b+c ≦5.30、Rは希土類元
素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、S
i、CrおよびSnのうちから選択されるいずれか少なくと
も一種の元素であって、Mnの場合は 0.1〜0.4 、Alの場
合は 0.1〜0.4 、Cu,Fe,CrおよびSnの場合は 0〜0.3
In a preferred embodiment of the present invention, the following composition
CaCu with the formula5Type hydrogen storage alloy, Ca or Y
Containing MmNi5Matrix consisting of a base alloy,
MmNi having a composition with a high Ca or Y concentration in comparison
5System alloy and entangled with the matrix alloy
Consisting of a three-dimensional network phase present in a combined state
A hydrogen storage alloy characterized by the following. Composition formula R1-xBxNiaCobMc  Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.
6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a rare earth element
B is Ca or Y, M is Mn, Al, Fe, Cu, S
at least one selected from i, Cr and Sn
Is also a kind of element, 0.1-0.4 for Mn,
0.1 to 0.4, 0 to 0.3 for Cu, Fe, Cr and Sn

【0010】なお、上記希土類元素の混合物は、Laの含
有量が60wt%以上であることが好ましく、この水素吸
蔵合金は、ニッケル水素二次電池用として好ましい。
[0010] The rare earth element mixture preferably has a La content of 60 wt% or more, and this hydrogen storage alloy is preferable for nickel-metal hydride secondary batteries.

【0011】[0011]

【発明の実施の形態】本発明の水素吸蔵合金は、耐微粉
化特性を向上させるために、母相の合金中に、該母相合
金とほぼ同一の結晶格子定数 (a軸5.00〜5.10Å、c軸
4.00〜4.10Å) をもち、かつ同一圧力、同一温度で水素
を吸蔵・放出する三次元網状構造相 (母相合金と三次元
に絡み合って析出した凝固組織をもつ網状構造相)を析
出させることにより、耐微粉化特性を向上させたもので
ある。本発明において、かかる三次元網状構造相は、単
に母相表面に第2相として層状に析出させたものではな
く、母相合金と相互に拡散し合って三次元的に連続した
状態の凝固組織からなる相である。なお、この相は、上
述した母相の結晶格子定数 (a軸5.00〜5.10Å、c軸4.
00〜4.10Å) にほぼ等しい格子定数 (a軸5.00〜5.10
Å、c軸4.00〜4.10Å) をもつと同時に、水素吸蔵能を
もつものであって、この相の存在によって吸蔵量の減少
を招くことなく、水素吸蔵合金の耐微粉化特性が改善で
きるのである。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy according to the present invention has a crystal lattice constant (a-axis 5.00 to 5.10 °) substantially the same as that of the parent alloy in order to improve the resistance to pulverization. , C axis
Precipitating a three-dimensional network structure phase (4.00 to 4.10Å) that absorbs and releases hydrogen at the same pressure and at the same temperature (a network structure phase having a solidified structure that is three-dimensionally entangled with the matrix alloy). Thereby, the pulverization resistance is improved. In the present invention, such a three-dimensional network-structure phase is not simply a layer formed as a second phase on the surface of the matrix, but is diffused mutually with the matrix alloy to form a solidified structure in a three-dimensionally continuous state. Is a phase consisting of In addition, this phase is the crystal lattice constant of the above-described parent phase (a-axis 5.00 to 5.10 °, c-axis 4.
(A-axis 5.00-5.10)
C, c-axis 4.00 ~ 4.10Å), and at the same time, has a hydrogen storage capacity, and the presence of this phase can improve the pulverization resistance of the hydrogen storage alloy without reducing the storage capacity. is there.

【0012】本発明に係る水素吸蔵合金において、その
構成の一部を占める上記母相は、CaまたはYを含むMm
NiCoMnAl合金のような、MmNi系合金相であることが
好ましく、そして三次元網状構造相は、母相と比較して
CaまたはYの濃度の高いMmNiCoMnAl合金のようなCaま
たはYリッチのMmNi系合金相であることが好まし
い。いわゆる、三次元網状構造相というのは、母相のCa
またはYの濃度との差によって、網状の凝固組織を有す
る相であると言える。しかも、この三次元網状構造相
は、母相が水素を吸蔵・放出すればともに水素を吸蔵・
放出する性質を有すると共に、耐微粉化特性とを互いに
他を犠牲にすることなく同時に改善できるという性質を
発揮する。なお、本発明において、必要とされるCa,Y
の濃度差というのは2〜6倍程度であり、この程度の差
があれば、上述したように、水素吸蔵特性を低下させる
ことなく、耐微粉化特性を改善することができる。
[0012] In the hydrogen storage alloy according to the present invention, the mother phase, which occupies a part of the constitution, is Mm containing Ca or Y.
Preferably, it is a MmNi 5- based alloy phase, such as a NiCoMnAl alloy, and the three-dimensional network phase is compared to the parent phase.
It is preferably a Ca or Y rich MmNi 5- based alloy phase such as an MmNiCoMnAl alloy having a high Ca or Y concentration. The so-called three-dimensional network structure phase is the mother phase Ca
Alternatively, depending on the difference from the concentration of Y, it can be said that the phase has a reticulated solidified structure. In addition, this three-dimensional network structure phase absorbs and releases hydrogen as long as the parent phase absorbs and releases hydrogen.
It has the property of releasing, and exhibits the property of being able to simultaneously improve the resistance to pulverization without sacrificing each other. In the present invention, required Ca, Y
Is about 2 to 6 times, and as described above, the pulverization resistance can be improved without lowering the hydrogen storage properties as described above.

【0013】このように、三次元網状構造相が両方の性
能を併せ持つ理由については、次のように考えられる。
即ち、希土類元素とCaの平衡状態図によると、希土類元
素とCoを含む合金では特に偏晶型の場合、室温付近にお
いて希土類元素中にはCaが全く固溶しない性質があり、
これらは反発力の強い元素同士である。一方で、これら
の両元素は、ともにニッケルとの結合力は非常に強く、
それぞれRNi、CaNi というCaCu型の結晶構造 (六
方晶) を持つ金属間化合物を形成し、水素吸蔵合金とな
る。
As described above, the three-dimensional network structure phase has both properties.
The reasons for the combination of functions are as follows.
In other words, according to the equilibrium diagram of the rare earth element and Ca, the rare earth element
In the case of alloys containing element and Co, especially in the case of
And rare earth elements have the property that Ca does not form a solid solution at all,
These are elements having strong repulsion. On the other hand,
Both elements have a very strong bond with nickel,
Each RNi5, CaNi 5CaCu5Type crystal structure (6
(Interstitial) to form a hydrogen storage alloy.
You.

【0014】ここでもし、MmNiCoMnAl系水素吸蔵合金
に少量のCaを添加すると、希土類元素とCaとは反発力が
大きいため、まずCa含有量の少ない高融点の相から凝固
が始まり、次いで低融点のCa含有量の多い相がその周囲
を取り囲むように凝固するため、凝固組織としては三次
元網状構造を示すようになる。
If a small amount of Ca is added to the MmNiCoMnAl-based hydrogen storage alloy, the rare-earth element and Ca have a large repulsive force. Is solidified so as to surround the periphery thereof, so that the solidified structure has a three-dimensional network structure.

【0015】しかも、Ca含有量の少ない相と多い相と
は、格子定数がほぼ等しいCaCu型構造であり、両者は
ともに水素吸蔵合金として機能するが、特性的には差異
がある。即ち、両相ともにCaを含有することで、水素吸
蔵時の格子膨張が小さくなるために、ともに微粉化し難
いものになるが、Ca含有量の少ない方の相は、Caを含ま
ない一般的なMmNiCoMnAl系水素吸蔵合金に比較的近い
高水素吸蔵量の特性をもち、微粉化特性は格別のもので
はない。しかし、Ca含有量の多い方の相は、顕著に微粉
化し難い特性をもつようになる。そのため、本発明にか
かる合金については、微粉化し難い特性を持つCa含有量
の多い相が、Ca含有量の少ない高水素吸蔵量の相の周囲
を3次元的に取り囲むような構造となるから、中心部に
ある高水素吸蔵量の相の微粉化、脱落を抑制する。その
ために、全体として高水素吸蔵量で耐微粉化特性に優れ
た水素吸蔵合金がえられるようになる。
Further, the phase having a low Ca content and the phase having a high Ca content have a CaCu 5- type structure having substantially the same lattice constant, and both functions as a hydrogen storage alloy, but have different characteristics. That is, by containing Ca in both phases, the lattice expansion at the time of hydrogen storage becomes small, and it becomes difficult to pulverize both.However, the phase with a smaller Ca content is a general phase that does not contain Ca. It has characteristics of high hydrogen storage relatively close to MmNiCoMnAl-based hydrogen storage alloys, and its pulverization characteristics are not exceptional. However, the phase having the higher Ca content has characteristics that are hardly pulverized. Therefore, the alloy according to the present invention has a structure in which a Ca-rich phase having characteristics that are difficult to pulverize three-dimensionally surrounds a Ca-rich phase having a small amount of hydrogen storage. Suppresses the pulverization and falling off of the high hydrogen storage phase in the center. As a result, a hydrogen storage alloy having a high hydrogen storage amount and excellent pulverization resistance as a whole can be obtained.

【0016】この点、特開平4−168239号公報で
開示されている、Zrを配合した場合に発現すると報告さ
れている網状構造相は、母相とは結晶格子定数も平衡圧
力も異なり、母相が水素を吸蔵・放出する際に、水素を
吸蔵・放出しないという点で本発明の合金とは、構成お
よび作用が異なる。
In this regard, the network structure phase disclosed in Japanese Patent Application Laid-Open No. 4-168239, which is reported to be expressed when Zr is blended, has a different crystal lattice constant and an equilibrium pressure from the parent phase. The alloy of the present invention differs from the alloy of the present invention in that the phase does not occlude or release hydrogen when storing or releasing hydrogen.

【0017】なお、従来技術において、AB合金にCa
を配合するという技術思想は、特開昭60−24165
1号公報の発明にみられるように公知である。しかし、
前記公報に記載された、組成式Ca1−xMmNiy−z
合金は過充電による電池内圧を防止するという目的
であり、本発明合金のように耐微粉化特性を向上させ、
かつ、水素吸蔵量を低下させずにCo低減を図ろうとい
う技術ではない。このことは実施例中には、Mmを多量の
Caで置換するという技術、およびCo量が 1.5と、Coを多
量に配合した合金実施例が開示されているのみであり、
このような合金設計では、上述した本発明の目的を達成
することができない。
[0017] Incidentally, in the prior art, Ca in AB 5 alloys
The technical idea of blending is disclosed in JP-A-60-24165.
It is known as seen in the invention of Japanese Patent Publication No. But,
The described in Japanese composition formula Ca 1-x Mm x Ni y -z
The purpose of the Mz alloy is to prevent the internal pressure of the battery due to overcharge, and to improve the pulverization resistance as in the alloy of the present invention.
Further, it is not a technique for reducing Co without decreasing the hydrogen storage amount. This means that in the examples,
The technique of substituting with Ca, and the amount of Co is 1.5, and only alloy examples in which a large amount of Co is blended are disclosed.
With such an alloy design, the above-described object of the present invention cannot be achieved.

【0018】本発明の水素吸蔵合金は、母相中に三次元
網状に析出する構造相のCaの好適な置換量は、希土類元
素の混合物Rに対して、0.01を上回りかつ、0.3 を超え
ない範囲であることが好ましく、特に、0.05〜0.2 であ
ることが好ましい。この理由は、CaまたはY置換量が0.
3 を超えると、水素吸蔵量が減少するからであり、0.01
以下だと網状構造相が現出しない。
In the hydrogen storage alloy according to the present invention, the suitable substitution amount of Ca of the structural phase precipitated in a three-dimensional network in the parent phase is more than 0.01 and does not exceed 0.3 with respect to the mixture R of the rare earth element. It is preferably in the range, particularly preferably 0.05 to 0.2. The reason is that the Ca or Y substitution amount is 0.
If it exceeds 3, the hydrogen storage capacity will decrease,
Below this, the network phase does not appear.

【0019】本発明の水素吸蔵合金は、Coを低減させた
下記組成式を有する水素吸蔵合金であることが好まし
い。 組成式 R1−xNi4o ここで、0.01<x≦0.30、 4.0≦a≦4.4 、 0<b≦0.
6 、0 ≦c≦1.0 、5.00≦a+b+c ≦5.30、Rは希土類元
素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、S
i、CrおよびSnのうちから選択されるいずれか少なくと
も一種の元素であって、Mnの場合は 0.1〜0.4 、Alの場
合は 0.1〜0.4 、Cu,Fe,CrおよびSnの場合は 0〜0.3
The hydrogen storage alloy of the present invention has a reduced Co content.
It is preferable that the hydrogen storage alloy has the following composition formula:
No. Composition formula R1-xBxNia4obMc  Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.
6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a rare earth element
B is Ca or Y, M is Mn, Al, Fe, Cu, S
at least one selected from i, Cr and Sn
Is also a kind of element, 0.1-0.4 for Mn,
0.1 to 0.4, 0 to 0.3 for Cu, Fe, Cr and Sn

【0020】上記組成式において、耐微粉化特性の向上
を三次元網状構造物相を現出させることで改善するよう
にしたので、Co置換量は特には限定しないが、二次電池
に使用する場合やヒートポンプに使用した場合の特性向
上を考慮して、下限を0より大きい値とすることが好ま
しい。上限については0.6 には限られないが、経済性を
考慮すると0.6 以下、より好ましくは0.4 以下がよい。
In the above composition formula, since the improvement of the pulverization resistance is improved by exposing the three-dimensional network structure phase, the amount of Co substitution is not particularly limited. The lower limit is preferably set to a value larger than 0 in consideration of the case and the improvement in characteristics when used in a heat pump. Although the upper limit is not limited to 0.6, it is preferably 0.6 or less, more preferably 0.4 or less in consideration of economy.

【0021】M元素は、Alの場合、0.1 未満では水素平
衡圧調整が困難になり、0.4 を超えると水素吸蔵量の減
少を引き起こすので 0.1〜0.4 が好ましい。Mnの場合
は、0.1 未満では水素平衡圧調整が困難になり、プラト
ー性も得られなくなる。0.4 を超えるとアルカリ電解液
中での腐食が生じるので 0.1〜0.4 が好ましい。Fe,C
r,Si,Cu,Snの場合は、添加しなくともよいが、添加
する場合には0.3 程度を上限とする。
In the case of Al, if the M element is less than 0.1, it is difficult to adjust the hydrogen equilibrium pressure, and if it exceeds 0.4, the amount of hydrogen occlusion is reduced. In the case of Mn, if it is less than 0.1, it becomes difficult to adjust the hydrogen equilibrium pressure and plateau property cannot be obtained. If it exceeds 0.4, corrosion occurs in the alkaline electrolyte, so 0.1 to 0.4 is preferable. Fe, C
In the case of r, Si, Cu, and Sn, it is not necessary to add, but when adding, the upper limit is about 0.3.

【0022】また、本発明の合金において、CaCu型結
晶構造を有するAB型合金のBサイトの非化学量論比
a+b+c+d が5.00未満では耐微粉化特性が得られず、5.
30を超えると水素吸蔵量の低下を引き起こすので、AB
比は5.00〜5.30が好ましく、5.15〜5.20がより好ましい
範囲である。なお、Niは他のBサイト側構成元素量と、
非化学量論組成から必然的に決定される値である。
Further, in the alloy of the present invention, the non-stoichiometric ratio of the B site of the AB 5- type alloy having the CaCu 5- type crystal structure
If a + b + c + d is less than 5.00, the powdering resistance cannot be obtained, and 5.
Above 30 causes a decrease in hydrogen storage capacity, so AB
The ratio is preferably from 5.00 to 5.30, and more preferably from 5.15 to 5.20. In addition, Ni is the amount of other B-site-side constituent elements,
It is a value that is necessarily determined from the non-stoichiometric composition.

【0023】本発明に係る上記水素吸蔵合金は、ニッケ
ル水素二次電池用合金用として用いることが好ましい。
また、本発明合金は、熱伝導性の低い鉄鋳型を溶損防止
のために水冷した鋳型に鋳込むことで得られる。
The above hydrogen storage alloy according to the present invention is preferably used for an alloy for a nickel-metal hydride secondary battery.
Further, the alloy of the present invention can be obtained by casting an iron mold having low thermal conductivity into a water-cooled mold to prevent erosion.

【0024】[0024]

【実施例】この実施例で用いた水素吸蔵合金の組成は、
1−xCaNi4.24Co0.3 Mn0.36Al
0.30からなるAB5.20型のものについて、x=
0.01, 0.025, 0.05, 0.10 のもの、及びR1−xCaNi
4.15Co0.30Mn0.30Al 0.30からなるAB
5.05型のものについて、x=0.05, 0.10, 0.20, 0.
30としたものである。比較例で用いた水素吸蔵合金の組
成は、R0.60Ca0.40Ni4.15Co .30Mn
0.30Al0.30からなるAB5.05型のもの、R
Ni4.24Co .30Mn0.36Al0.30からなるA
5.20型のもの、およびRNi4.1 Co0.30Mn
0.30Al0.30からなるAB5.05型のものを用
いた。前記Rはともに、La含有量が 0.8のものを用い
た。合金の作製は高周波溶解炉を用いて溶解し、1000℃
−7hr Ar ガス雰囲気で熱処理した。
EXAMPLES The composition of the hydrogen storage alloy used in this example was as follows:
R1-xCaxNi4.24Co0.3 0Mn0.36Al
0.30AB consisting of5.20For the type, x =
Of 0.01, 0.025, 0.05, 0.10 and R1-xCaxNi
4.15Co0.30Mn0.30Al 0.30AB consisting of
5.05For the type, x = 0.05, 0.10, 0.20, 0.
It is 30. Set of hydrogen storage alloy used in comparative example
Naru is R0.60Ca0.40Ni4.15Co0 . 30Mn
0.30Al0.30AB consisting of5.05Type, R
Ni4.24Co0 . 30Mn0.36Al0.30A consisting of
B5.20Type, and RNi4.1 5Co0.30Mn
0.30Al0.30AB consisting of5.05Use type
Was. Both of the above R have a La content of 0.8.
Was. The alloy was melted using a high-frequency melting furnace, and the temperature was 1000 ° C.
Heat treatment was performed in an Ar gas atmosphere for -7 hours.

【0025】特性評価として、分析電子顕微鏡で組織の
確認及び同定を行った。水素吸蔵量はPCT測定装置を
使用し、80℃ 10atmでのH/Mを値とした。耐微粉化特
性は、一定水素圧化で水素を一度吸蔵後排気させた後の
合金粒度分布D50の値を指標とした。
As a characteristic evaluation, the structure was confirmed and identified with an analytical electron microscope. The hydrogen storage amount was determined by using a PCT measuring apparatus and the value of H / M at 80 ° C. and 10 atm was used.耐微powder of properties, was used as an index value of the alloy particle size distribution D 50 after being once exhausted after absorbing hydrogen at a constant hydrogen pressurization.

【0026】各特性評価試験結果を表1に示す。比較例
の合金と比較すると、本発明例の合金では、Ca置換量の
増加に伴い水素化後の粒度D50値が増加した。特に、
Ca置換量0.025 以上の金属組織が複相化した合金でD
50値が顕著に増加し、微粉化抑制の効果が大きくなっ
た。しかし、Ca置換量を0.4 まで増加させた比較例の合
金Iでは、微粉化抑制の効果は大きいものの、水素吸蔵
量の減少が著しくなり、好ましくない結果となった。従
って、Ca置換量の上限は0.3 程度が好ましいことが判明
した。一方、比較例の合金JとKでは、非化学量論比A
のx値を増加させてD50値を増加させたものであ
るが、微粉化抑制の効果と引き替えに水素吸蔵量が大き
く減少し、好ましくないことがわかった。
Table 1 shows the results of the characteristic evaluation test. Compared to an alloy of the comparative example, the alloy of the present invention embodiment, the particle size D 50 values after hydrogenation with the increase of Ca substitution amount was increased. In particular,
An alloy in which the metal structure with a Ca substitution amount of 0.025 or more has been converted to a dual phase.
The 50 value markedly increased, and the effect of suppressing pulverization increased. However, in the alloy I of the comparative example in which the Ca substitution amount was increased to 0.4, although the effect of suppressing pulverization was large, the hydrogen storage amount was significantly reduced, which was an undesirable result. Therefore, it was found that the upper limit of the Ca substitution amount is preferably about 0.3. On the other hand, in the alloys J and K of the comparative examples, the non-stoichiometric ratio A
In which it increased the D 50 value by increasing the x values of B x, but decreases the hydrogen storage capacity is large at the expense of the effect of micronized inhibition was found to be undesirable.

【0027】ここで、微粉化抑制効果に影響していた金
属組織について、代表例として、実施例のG合金と比較
例のK合金の金属組織写真をそれぞれ図1、図2に示
す。同図から実施例のG合金は、薄色相と濃色相が観察
され、濃色相は薄色相の周囲に網目状に存在しているこ
とがわかる。また、反射電子像による金属組織写真で
は、観察している合金の組成の差異が明暗のコントラス
トとなって現れている。また、EDS(光学電子顕微鏡
写真)による分析結果によれば、G合金の場合、薄色相
はCa含有量が約1at%、濃色相はCa含有量が約5at%の
CaCu型結晶構造を有することが判明し、この濃色相が
微粉化を特に抑制していると考えられる。これに対し、
比較例のK合金では、ひび割れ等が観察される他は、一
様な明るさで均一相であった。
Here, as the representative examples of the metal structures that affected the pulverization suppressing effect, the metal structure photographs of the G alloy of the example and the K alloy of the comparative example are shown in FIGS. 1 and 2, respectively. From the figure, it can be seen that in the G alloy of Example, a light hue and a dark hue are observed, and the dark hue exists in a mesh around the light hue. Further, in the metallographic photograph by the backscattered electron image, the difference in the composition of the observed alloy appears as a light-dark contrast. According to the analysis result by EDS (optical electron micrograph), in the case of the G alloy, the light hue has a Ca content of about 1 at%, and the dark hue has a Ca content of about 5 at%.
It turned out to have a CaCu type 5 crystal structure, and it is considered that this deep hue particularly suppresses pulverization. In contrast,
The K alloy of the comparative example had a uniform phase with uniform brightness except that cracks and the like were observed.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上説明したような構成になる本発明の
水素吸蔵合金は、水素吸蔵量を低減することなく、微粉
化を抑制することができる。また、Co元素の組成を低減
させても耐微粉化特性を向上できるので合金コストの低
減を図ることができる。
According to the hydrogen storage alloy of the present invention having the above-described structure, pulverization can be suppressed without reducing the hydrogen storage amount. Further, even if the composition of the Co element is reduced, the pulverization resistance can be improved, so that the alloy cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合金の電子顕微鏡写真である。FIG. 1 is an electron micrograph of an alloy of the present invention.

【図2】比較合金の電子顕微鏡写真である。FIG. 2 is an electron micrograph of a comparative alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽田 俊明 山形県西置賜郡小国町大字小国町字滝ノ二 重2ノ232番地 日本重化学工業株式会社 小国工場内 (72)発明者 大沢 雅人 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 (72)発明者 吉川 知宏 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 Fターム(参考) 5H050 AA07 AA19 BA14 CB17 DA03 FA17 FA19 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiaki Haneda 232 Okimachi, Oguni-machi, Oguni-machi, Nishiokitama-gun 5-7-6 Tokodai, Tsukuba, Japan Nihon Heavy Chemical Industry Co., Ltd., Tsukuba Research Laboratory (72) Inventor Tomohiro Yoshikawa 5-9-6, Tokodai, Tsukuba, Ibaraki Pref. 5H050 AA07 AA19 BA14 CB17 DA03 FA17 FA19 HA02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 格子定数のほぼ等しい複数のCaCu型相
が三次元網状構造を形造って構成されている水素吸蔵合
金。
1. A hydrogen storage alloy in which a plurality of CaCu 5- type phases having substantially the same lattice constant form a three-dimensional network structure.
【請求項2】 CaCu型結晶構造を有する母相と、この
母相中に絡みあって存在する三次元網状構造の凝固組織
をもつ相との二相の結晶構造からなる水素吸蔵合金であ
って、これらの二相はほぼ等しい格子定数をもち、かつ
前記三次元網状構造相は、母相が水素を吸蔵または放出
する際に同時に水素を吸蔵または放出するCaCu型類似
の相であることを特徴とする水素吸蔵合金。
2. A hydrogen storage alloy having a two-phase crystal structure of a matrix having a CaCu 5- type crystal structure and a phase having a three-dimensional network solidification structure entangled in the matrix. The two phases have approximately the same lattice constant, and the three-dimensional network structure phase is a CaCu 5- type-like phase that simultaneously absorbs or releases hydrogen when the mother phase absorbs or releases hydrogen. A hydrogen storage alloy characterized by the following.
【請求項3】 上記母相は、CaまたはYを含むMmNi
系合金相であり、三次元網状構造相は、母相と比較して
CaまたはYの濃度の高いMmNi系合金相であることを
特徴とする請求項2に記載の水素吸蔵合金。
3. The method according to claim 1, wherein the mother phase is MmNi 5 containing Ca or Y.
Alloy phase, the three-dimensional network structure phase is
The hydrogen storage alloy according to claim 2, wherein the alloy is a MmNi 5- based alloy phase having a high Ca or Y concentration.
【請求項4】 下記組成式を有するCaCu型水素吸蔵合
金であって、CaまたはYを含むMmNi系合金からなる
母相と、その母相合金と比較するとCaまたはYの濃度が
高い組成を有するMmNi系合金からなり、かつ前記母
相合金とは互いに絡み合った状態で存在する三次元網状
構造相と、からなることを特徴とする水素吸蔵合金。 組成式 R1−xNi1o ここで、0.01<x≦0.30、 4.0≦a≦4.4 、 0<b≦0.
6 、0 ≦c≦1.0 、5.00≦a+b+c ≦5.30、Rは希土類元
素の混合物、BはCa又はY、Mは、Mn、Al、Fe、Cu、S
i、CrおよびSnのうちから選択されるいずれか少なくと
も一種の元素であって、Mnの場合は 0.1〜0.4 、Alの場
合は 0.1〜0.4 、Cu,Fe,CrおよびSnの場合は 0〜0.3
4. A CuCu having the following composition formula:5Type hydrogen storage
MmNi containing gold or Ca or Y5Consisting of base alloy
Compared to the parent phase and the parent alloy, the concentration of Ca or Y
MmNi with high composition5Base alloy
Phase alloy is a three-dimensional network that exists in an intertwined state with each other
A hydrogen storage alloy, comprising: a structural phase. Composition formula R1-xBxNia1obMc  Here, 0.01 <x ≦ 0.30, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.
6, 0 ≦ c ≦ 1.0, 5.00 ≦ a + b + c ≦ 5.30, R is a rare earth element
B is Ca or Y, M is Mn, Al, Fe, Cu, S
at least one selected from i, Cr and Sn
Is also a kind of element, 0.1-0.4 for Mn,
0.1 to 0.4, 0 to 0.3 for Cu, Fe, Cr and Sn
JP2000091277A 2000-03-29 2000-03-29 Hydrogen storage alloy Expired - Fee Related JP3673693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091277A JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091277A JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2001279354A true JP2001279354A (en) 2001-10-10
JP3673693B2 JP3673693B2 (en) 2005-07-20

Family

ID=18606756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091277A Expired - Fee Related JP3673693B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3673693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide

Also Published As

Publication number Publication date
JP3673693B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP3993890B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP3688716B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JPH09209065A (en) Age precipitation type rare earth metal-nickel alloy, its production, and nickel-hydrogen secondary battery negative pole
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
WO2007023901A1 (en) Hydrogen storing alloy, process for producing the same and secondary battery
JP4647910B2 (en) Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
EP0755898B1 (en) Hydrogen storage alloy and electrode therefrom
WO2020115953A1 (en) Hydrogen storage material, negative electrode and nickel hydrogen secondary battery
US5900334A (en) Hydrogen occluding alloy
JP2001040442A (en) Hydrogen storage alloy
JP7461655B2 (en) Hydrogen storage alloy for alkaline batteries
JP2001348636A (en) Hydrogen storage alloy and its production method
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
WO2021205749A1 (en) Hydrogen storage alloy for alkaline storage battery
JP2001279354A (en) Hydrogen storage alloy
EP1418636A1 (en) Method for fabricating negative electrode for secondary cell
CN111471912A (en) Doped AB3 type hydrogen storage alloy, negative electrode, battery and preparation method
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Ref document number: 3673693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees