JP4486210B2 - Hydrogen storage alloy for secondary battery - Google Patents

Hydrogen storage alloy for secondary battery Download PDF

Info

Publication number
JP4486210B2
JP4486210B2 JP2000091278A JP2000091278A JP4486210B2 JP 4486210 B2 JP4486210 B2 JP 4486210B2 JP 2000091278 A JP2000091278 A JP 2000091278A JP 2000091278 A JP2000091278 A JP 2000091278A JP 4486210 B2 JP4486210 B2 JP 4486210B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
amount
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000091278A
Other languages
Japanese (ja)
Other versions
JP2001279355A (en
Inventor
伸之 斉藤
卓郎 杉本
俊明 羽田
雅人 大沢
知宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2000091278A priority Critical patent/JP4486210B2/en
Publication of JP2001279355A publication Critical patent/JP2001279355A/en
Application granted granted Critical
Publication of JP4486210B2 publication Critical patent/JP4486210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池用水素吸蔵合金に関し、特に、充放電による水素吸蔵合金の微粉化防止特性に優れると共に、水素吸蔵量の減少を招くことなくCo含有量の抑制 (コスト減) ができる水素吸蔵合金に関するものである。
【0002】
【従来の技術】
現在市販されている二次電池用水素吸蔵合金は、AB型のMnNi系合金、とくにMmNiCoMnAlの5元系組成からなるものが多い。こうした二次電池用水素吸蔵合金には、一般に、微粉化特性の向上および電池特性、特にサイクル特性向上のために10wt%程度のCoを含有させているのが普通である。
一方で、水素吸蔵合金が水素を吸蔵・放出する際に微粉化する現象を抑制するためには、Coはむしろ少なくして、AB型合金のBサイトの比率を増加させても同様な効果があることが知られているが、AB型合金のBサイトの比率を増加させると、耐微粉化特性は改善されるものの、水素吸蔵量が減少するという課題があった。
【0003】
ところで近年、電気自動車(EV)やハイブリットEV、あるいは電動工具等の分野では、大型の二次電池が使われる傾向にある。このような大型の二次電池、とくにその負極として搭載される水素吸蔵合金に対し、上述した微粉化特性の改善による電池性能の向上が求められ、さらには、過酷な使用条件下での水素吸蔵特性の向上、ならびに水素吸蔵合金自体の低価格化という要求がある。
このような要求に対応するためには、水素吸蔵合金を構成する元素中では最もコストが高いCo含有量の低減が求められている。
【0004】
従来、耐微粉化特性を向上させて水素吸蔵合金の特性および電池特性を改善しようとする提案がある。例えば、特開平6−325790号公報には、密閉型アルカリ蓄電池に関し、組成式がMmNi中のMmのLaとNdとの比率を調整することにより、水素の吸蔵放出の繰り返しによる微粉化を防止しようとする技術が開示されている。また、特開平4−202641号公報に記載された発明は、組成式LnNiMn合金の粉砕後に高濃度のMnまたはLaを表面に偏析させて、割れの進行を制御しようとするものである。また、特開平4−168239号公報に記載された発明は、水素吸蔵合金中にマトリックスよりも靱性の大きな網目状の金属あるいは合金の相を存在させたニッケル水素電池用水素吸蔵合金が開示されており、靱性の大きい相の存在によりクラックの進行を阻止しようとするものである。さらにまた、コバルトを全く配合しないで、サイクル特性を劣化させることなく充放電特性を向上させる提案もある(特開平11−323468号公報参照)。
【0005】
これらの従来技術は、合金組成の組み合わせや、表面処理技術、熱処理技術など種々の面からアプローチした技術であり、それなりの効果はあったと考えられる。しかし、水素吸蔵合金の耐微粉化特性と水素吸蔵特性およびコストのいずれの点についても満足できるものは未だ実現を見ていないのが実情である。
【0006】
本発明の目的は、水素吸蔵量の低減を招くことなく、吸蔵・放出時の合金の微粉化が抑制でき、かつ、Co含有量の低減による合金コストの低下を同時に実現できる二次電池用水素吸蔵合金を提案するところにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため鋭意研究を進めた結果、発明者らは、Bサイトの遷移金属中に、第6元素としてSnが添加配合された、CaCu型結晶構造をもつ水素吸蔵合金、即ち、MmNiMnAlCoSn6元系水素吸蔵合金によれば、水素吸蔵量の低下を招くことなく耐微粉化特性を改善でき、しかも低コストを実現できることを見いだし、本発明を開発した。
【0008】
すなわち、本発明は、下記組成式で表されるCaCu型結晶構造をもつものであって、格子定数の比(c/a)が0.8055〜0.8070であることを特徴とする二次電池用水素吸蔵合金である。
RNiCoMnAlSn
0.05≦x<0.15,4.0≦a≦4.4,0<b≦0.6,0.2≦c≦0.4,0.2≦d≦0.4,5.00≦a+b+c+d+x≦5.30,RはLaの含有量が0.7以上の希土類元素の混合物
【0009】
本発明においては、上記組成式中、Mn,AlおよびSnの合計量は、c+d+x<0.7であることが好ましい。
【0010】
【発明の実施の形態】
本発明の水素吸蔵合金は、RNiCoMnAl5元系合金の耐微粉化特性を改善するために、第6元素としてSnを添加合金化したところに基本的な特徴がある。即ち、本発明は、単にSnを添加するというだけではなく、Snを添加して6元合金のa軸の結晶格子長とc軸の結晶格子長の結晶格子長比、即ち格子定数の比 (c/a )を 0.8055 〜 0.8070 の範囲になるように、希土類元素の混合物R中のLa量、B/A比、Sn配合量およびCoの配合量を細かく調整することにより、水素吸蔵量の低減を招くことなくCo含有量の低減による低コストを実現し、かつ、耐微粉化特性を向上させるようにしたのである。
【0011】
図1は、従来のCo≦0.6 合金の結晶格子長比の変動と水素吸蔵量を確認した実験データ(同一非化学量論比、Co置換量でのLa添加量変動)である。同図から、上述した5元系合金中のLa量を高めると、結晶格子長比(c/a )が減少し、逆にLa量を低減するとc/aが大きくなり、結晶格子長比,即ち前記格子定数の比(c/a )は、La量によって大きく変動することがわかる。
また、表1より、Laが0.7 を超える合金にSnを添加した場合にはc/aが大きくなり、H/Mが減少しないことがわかる。
【0012】
なお、図1に見られるように、Laが0.7 未満の場合、Sn未添加合金での水素吸蔵量が低下しているため、Snを添加することによる耐微粉化特性改善効果は高水素吸蔵量合金の目的に反する。また、Co置換量が0.6 以下の合金組成では、B/A,La置換量の変化により、格子定数比(c/a )と水素吸蔵量との相関が高いため、制御が可能である。
即ち、水素吸蔵量を低下させないようにc/aを制御するには、上記5元系水素吸蔵合金での高水素吸蔵量とc/a 値で合金設計し、さらに原子半径の大きいSnを添加して、特定の比の格子定数比にすることが好ましく、La量は、好ましくは0.7 以上がよいということを図1および表1の結果から知見したのである。
【0013】
以下、本発明の好ましい態様を下記組成式により説明する。本発明の合金は、上述した特定の格子定数比(c/a)をもつ下記組成式からなる合金が好ましい。
組成式:RNiCoMnAlSn
0.05≦x<0.15,4.0≦a≦4.4,0<b≦0.6,0.2≦c≦0.4,0.2≦d≦0.4,5.00≦a+b+c+d+x≦5.30,RはLaの含有量が0.7以上の希土類元素の混合物
【0014】
この組成において、特に、ABのBサイト部分の化学量論比を増加させること、即ち、5.00≦a+b+c+d+x ≦5.30として耐微粉化特性を改善することが好ましく、5.15≦a+b+c+d+x ≦5.20がより好ましい範囲である。その理由は、Bサイトを5.30超に増加させると水素平衡圧力が上昇し、水素吸蔵量が低下すること、また、偏析相の生成を招くこと等の理由から、上限を5.30とする。一方、下限が5.00よりも少ないと、耐微粉化特性が低下するからである。
【0015】
MnおよびAlの含有量をそれぞれ、0.2 ≦c≦0.4 ,0.2 ≦d≦0.4 にしたのは、Mnは0.2 未満では水素平衡圧調整が困難になり、良好なプラトー性も得られなくなる一方で、0.4 を超えるとアルカリ電解液中での腐食が生じるからである。また、Alは0.2 未満では水素平衡圧調整が困難であり、一方、0.4 を超えると水素吸蔵量の減少を引き起こすので、0.2 〜0.4 の範囲とすることが好ましい。
【0016】
Co置換量は少なければ少ないほどコストダウンが可能なので好ましいが、Coを含有しないと耐微粉化特性が向上せず、一方、0.6 を超えると合金コスト低減にならない。
【0017】
Snは、格子定数比c/aの改善による耐微粉化特性改善のための添加元素であるが、置換量は 0.15 以上ではLa−Ni−Snの偏析相が生じて水素吸蔵量が逆に減少するので0.15未満が好ましい。
【0018】
なお、本発明の合金は、水素吸蔵量を高め、かつ、耐微粉化特性を改善するところにあり、希土類元素混合物R中のLa量は La ≧0.7 とすることが好ましい。もっとも、La<0.7 でもMn量を増加することで高吸蔵量化は可能であるが、多量のMn置換はアルカリ電解液中での腐食が大きくなるので、La量は 0.7以上が好ましい。
【0019】
なお、本発明の合金において、上記組成式中、MnとAlとSnの合計量を(c+d+x)<0.7 にすることが好ましい。その理由は、高吸蔵量化のためのLa添加量増による水素平衡圧低下に対して適正な水素平衡圧を調整する置換量範囲だからである。また、La≧0.7 とすることによる Mn,Al,Sn 添加量の低減はこれら元素が電解液に使用するアルカリ液中に溶出するすることより腐食量低減効果もある。
【0020】
【実施例】
この実施例で用いた合金の組成は、R Ni4.24Co0.3Mn0.36−xAl0.30SnAB5.20のCaCu型結晶構造をもち、X =0, 0.05, 0.10, 0.15 のもの及びR Ni4.23Co0.31n0.32−xAl0.3SnAB5.15のCaCu型結晶構造をもつ X=0, 0.1, 0.15の合金を用いた。
また、比較合金の組成は、R Ni4.15Co0.3Mn0.3−xAl0.3SnAB5.05のCaCuで、X=0, 0.1, 0.15の合金を用いた。各組成の合金はともにR中のLaを 0.8とした。なお、これらの合金は、高周波溶解炉を用いて溶解し、溶解後均質化を目的に 1000 ℃、7hr Arガス雰囲気で熱処理を実施して得たものである。
特性の評価として、水素吸蔵量はPCT測定装置を使用し、80℃ 10atmで求めたH/Mを用いた。また、耐微粉化特性は、一定水素圧化で一度水素を吸蔵したのち排気した後の合金粒度分布 (D50) の値を指標とした。格子定数比(c/a) は-200メッシュに調整した合金粉による粉末XRD測定から求めたa軸c軸長から算出した。
【0021】
各特性評価結果を表1に示す。
表1から、Sn添加により格子定数比c/a 及び、水素化後の粒度D50値が増加する傾向にある。本発明例a,eに対応する比較例jでは、無添加の合金組成自体のD50値が小さいことより添加量を増加させる必要がある。しかし、Sn添加量の増加は水素吸蔵量の減少とLa−Ni−Sn偏析相の生成を生じる。
【0022】
本発明例a,b,cでは、Sn無添加での組成 (比較例i) でも非化学量論値を適正化することで、高吸蔵量と耐微粉化特性を示している。それに対しさらにSn添加をした実施例a,bは耐微粉化特性を改善できる。しかし、Sn添加量の増加は本発明例cに示されるように水素吸蔵量の減少を招くこと及びLa−Ni−Snの偏析を生じることより、Sn添加量は0.15未満が好ましい。
また、比較例g,hに示されているように、B/A5.05では、Sn添加によりc/a 増、D50値増であるが、比較例fのSn無添加でD50値が低下していることよりSn添加での高吸蔵量維持と耐微粉化特性改善の両立は困難である。
以上の結果から本発明合金は、0.2 ≦Co≦0.6 La>0.7 5.15 ≦B/A≦5.20でSn<0.15とすることで、高水素吸蔵量の大幅な減少を伴わずに耐微粉化特性を改善できる。
【0023】
【表1】

Figure 0004486210
【0024】
【発明の効果】
以上説明したように、本発明の水素吸蔵合金は、水素吸蔵量を低減させることなく、微粉化を抑制することができる。また、Co元素の組成を低減させても耐微粉化特性を全く阻害することがないので、合金コストの低減にも効果がある。
【図面の簡単な説明】
【図1】本発明の合金の水素吸蔵特性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy for a secondary battery, and in particular, has excellent properties for preventing pulverization of a hydrogen storage alloy by charging and discharging, and can suppress the Co content (cost reduction) without causing a decrease in the hydrogen storage amount. The present invention relates to a hydrogen storage alloy.
[0002]
[Prior art]
Many of the hydrogen storage alloys for secondary batteries currently on the market are composed of AB 5 type MnNi 5 series alloy, especially MmNiCoMnAl ternary composition. In general, such a hydrogen storage alloy for a secondary battery contains about 10 wt% of Co in order to improve pulverization characteristics and battery characteristics, particularly cycle characteristics.
On the other hand, the hydrogen storage alloy to suppress the phenomenon of micronized when it absorbs and releases hydrogen, Co is less Rather, AB 5 type alloys of the B site ratio also increases the effect of Although it is known that there is an increase in the ratio of the B site of the AB type 5 alloy, the anti-dusting property is improved, but there is a problem that the hydrogen storage amount decreases.
[0003]
In recent years, large secondary batteries tend to be used in the fields of electric vehicles (EV), hybrid EVs, electric tools, and the like. Such a large secondary battery, particularly a hydrogen storage alloy mounted as a negative electrode thereof, is required to have improved battery performance by improving the above-mentioned pulverization characteristics. Further, hydrogen storage under severe use conditions is required. There is a demand for improved characteristics and a lower price of the hydrogen storage alloy itself.
In order to meet such demand, reduction of the Co content, which is the highest cost among the elements constituting the hydrogen storage alloy, is required.
[0004]
Conventionally, there has been a proposal to improve the characteristics of the hydrogen storage alloy and the battery characteristics by improving the pulverization resistance. For example, Japanese Patent Laid-Open No. 6-325790 discloses a sealed alkaline storage battery in which the composition formula is pulverized by repeated occlusion and release of hydrogen by adjusting the ratio of Mm La and Nd in MmNi x Ay . Techniques that attempt to prevent this are disclosed. Further, the invention described in JP-A-4-202641 has a high concentration of Mn or La and is segregated to the surface after the grinding of the composition formula LnNi x Mn y A z alloy, intended to control the progress of the crack It is. Further, the invention described in Japanese Patent Laid-Open No. 4-168239 discloses a hydrogen storage alloy for nickel metal hydride batteries in which a network metal or alloy phase having a toughness larger than that of the matrix is present in the hydrogen storage alloy. Therefore, it is intended to prevent the progress of cracks due to the presence of a phase having high toughness. Furthermore, there is also a proposal for improving the charge / discharge characteristics without degrading the cycle characteristics without compounding cobalt (see JP-A-11-323468).
[0005]
These conventional techniques are techniques approached from various aspects such as a combination of alloy compositions, a surface treatment technique, and a heat treatment technique, and are considered to have some effects. However, the reality is that no material that satisfies the requirements of the pulverization resistance, hydrogen storage characteristics and cost of the hydrogen storage alloy has yet been realized.
[0006]
An object of the present invention is to provide hydrogen for a secondary battery that can suppress pulverization of an alloy during storage and release without incurring a reduction in hydrogen storage, and can simultaneously realize a reduction in alloy cost due to a reduction in Co content. Proposed storage alloy.
[0007]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the inventors have found that a hydrogen storage alloy having a CaCu 5 type crystal structure, in which Sn is added as a sixth element to the transition metal of the B site, that is, It has been found that the MmNiMnAlCoSn ternary hydrogen storage alloy can improve the pulverization resistance without lowering the hydrogen storage amount and can realize low cost, and has developed the present invention.
[0008]
That is, the present invention has a CaCu 5 type crystal structure represented by the following composition formula, and the ratio of lattice constants (c / a) is 0.8055 to 0.8070. It is a hydrogen storage alloy for secondary batteries.
RNi a Co b Mn c Al d Sn x
0.05 ≦ x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.4, 0.2 ≦ d ≦ 0.4,5. 00 ≦ a + b + c + d + x ≦ 5.30, R is a mixture of rare earth elements with a La content of 0.7 or more
In the present invention, in the above SL composition formula, Mn, the total amount of Al and Sn is preferably c + d + x <0.7.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The hydrogen storage alloy of the present invention has a basic feature in that Sn is added as an alloy to the sixth element in order to improve the pulverization resistance of the RNiCoMnAl ternary alloy. That is, in the present invention, not only Sn is added, but Sn is added and the crystal lattice length ratio of the a-axis crystal lattice length to the c-axis crystal lattice length of the ternary alloy, that is, the ratio of the lattice constant ( c / a) The amount of hydrogen occlusion can be reduced by finely adjusting the La content, B / A ratio, Sn content and Co content in the rare earth element mixture R so that it is in the range of 0.8055 to 0.8070. Thus, the low cost is realized by reducing the Co content without incurring, and the anti-dusting property is improved.
[0011]
FIG. 1 shows experimental data (change in La addition amount with the same non-stoichiometric ratio and Co substitution amount) in which the variation of the crystal lattice length and the hydrogen storage amount of a conventional Co ≦ 0.6 alloy were confirmed. From this figure, increasing the amount of La in the ternary alloy described above decreases the crystal lattice length ratio (c / a), and conversely, decreasing the amount of La increases c / a. That is, it can be seen that the ratio of lattice constants (c / a) varies greatly depending on the amount of La.
Table 1 also shows that c / a increases and H / M does not decrease when Sn is added to an alloy in which La exceeds 0.7.
[0012]
In addition, as seen in FIG. 1, when La is less than 0.7, the hydrogen occlusion amount in the Sn non-added alloy is decreased, so the effect of improving the anti-dusting characteristics by adding Sn is high hydrogen occlusion amount. Contrary to the purpose of the alloy. Further, in the alloy composition having a Co substitution amount of 0.6 or less, since the correlation between the lattice constant ratio (c / a) and the hydrogen storage amount is high due to the change in the B / A and La substitution amounts, control is possible.
That is, in order to control c / a so as not to reduce the hydrogen storage amount, the alloy is designed with the high hydrogen storage amount and c / a value in the above ternary hydrogen storage alloy, and Sn having a larger atomic radius is added. Thus, it has been found from the results of FIG. 1 and Table 1 that the lattice constant ratio of a specific ratio is preferable, and the amount of La is preferably 0.7 or more.
[0013]
Hereinafter, a preferred embodiment of the present invention will be described by the following composition formula. The alloy of the present invention is preferably an alloy having the specific lattice constant ratio (c / a) described above and having the following composition formula.
Formula: RNi a Co b Mn c Al d Sn x
0.05 ≦ x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.4, 0.2 ≦ d ≦ 0.4,5. 00 ≦ a + b + c + d + x ≦ 5.30, R is a mixture of rare earth elements with a La content of 0.7 or more
In this composition, it is particularly preferable to increase the stoichiometric ratio of the B site portion of AB 5 , that is, to improve the anti-dusting characteristics as 5.00 ≦ a + b + c + d + x ≦ 5.30. ≦ a + b + c + d + x ≦ 5.20 is a more preferable range. The reason is that if the B site is increased to more than 5.30, the hydrogen equilibrium pressure increases, the hydrogen storage amount decreases, and the segregation phase is generated. On the other hand, when the lower limit is less than 5.00, the anti-dusting property is lowered.
[0015]
The reason why the contents of Mn and Al were 0.2 ≦ c ≦ 0.4 and 0.2 ≦ d ≦ 0.4, respectively, was that when Mn was less than 0.2, it was difficult to adjust the hydrogen equilibrium pressure, and good plateau was not obtained. This is because if it exceeds 0.4, corrosion in an alkaline electrolyte occurs. Further, if Al is less than 0.2, it is difficult to adjust the hydrogen equilibrium pressure. On the other hand, if it exceeds 0.4, the hydrogen storage amount is decreased, so that the range of 0.2 to 0.4 is preferable.
[0016]
The smaller the amount of Co substitution, the lower the cost, which is preferable. However, if Co is not contained, the anti-dusting property is not improved, and if it exceeds 0.6, the alloy cost is not reduced.
[0017]
Sn is an additive element for improving the pulverization resistance by improving the lattice constant ratio c / a. However, when the substitution amount is 0.15 or more, a segregation phase of La-Ni-Sn occurs and the hydrogen storage amount decreases. Therefore, it is preferably less than 0.15.
[0018]
Note that the alloy of the present invention is to increase the hydrogen storage amount and improve the anti-dusting properties, and the amount of La in the rare earth element mixture R is preferably La ≧ 0.7. However, even if La <0.7, the amount of occlusion can be increased by increasing the amount of Mn. However, since a large amount of Mn substitution increases corrosion in an alkaline electrolyte, the amount of La is preferably 0.7 or more.
[0019]
In the alloy of the present invention, it is preferable that the total amount of Mn, Al, and Sn in the above composition formula is (c + d + x) <0.7. The reason for this is that the amount of substitution is within the range of adjusting the hydrogen equilibrium pressure appropriate for the decrease in hydrogen equilibrium pressure due to the increase in the amount of La added to increase the amount of occlusion. Moreover, the reduction of the amount of Mn, Al, Sn added by setting La ≧ 0.7 also has the effect of reducing the corrosion amount because these elements are eluted in the alkaline solution used in the electrolyte.
[0020]
【Example】
The composition of the alloy used in this example has a CaCu 5- type crystal structure of R Ni 4.24 Co 0.3 Mn 0.36-x Al 0.30 Sn x AB 5.20 , and X = 0, 0.05 , 0.10, 0.15 and RNi 4.23 Co 0.3 1n 0.32-x Al 0.3 Sn x AB 5.15 CaCu 5 type crystal structure X = 0, 0.1, 0.15 alloy Using.
The composition of the comparative alloy is CaCu 5 of R Ni 4.15 Co 0.3 Mn 0.3-x Al 0.3 Sn x AB 5.05 , and X = 0, 0.1, 0.15 alloy was used. . In each alloy of each composition, La in R was set to 0.8. These alloys were obtained by melting using a high-frequency melting furnace and heat-treating at 1000 ° C. for 7 hours in an Ar gas atmosphere for the purpose of homogenization after melting.
As an evaluation of characteristics, the amount of hydrogen occlusion was determined by using H / M obtained at 80 ° C. and 10 atm using a PCT measuring device. In addition, the anti-dusting characteristics were measured using the value of the alloy particle size distribution (D 50 ) after occluding hydrogen at a constant hydrogen pressure and then exhausting. The lattice constant ratio (c / a) was calculated from the a-axis and c-axis length obtained from the powder XRD measurement using an alloy powder adjusted to -200 mesh.
[0021]
Each characteristic evaluation result is shown in Table 1.
From Table 1, the addition of Sn tends to increase the lattice constant ratio c / a and the particle size D 50 value after hydrogenation. In Comparative Example j corresponding to Invention Examples a and e, the additive amount needs to be increased because the D 50 value of the additive-free alloy composition itself is small. However, an increase in the amount of Sn added causes a decrease in the hydrogen storage amount and the formation of a La-Ni-Sn segregation phase.
[0022]
In Invention Examples a, b, and c, even when the composition does not contain Sn (Comparative Example i), the non-stoichiometric value is optimized to show a high occlusion amount and anti-dusting characteristics. In contrast, Examples a and b in which Sn was further added can improve the anti-dusting characteristics. However, the Sn addition amount is preferably less than 0.15 because the increase in the Sn addition amount causes a decrease in the hydrogen storage amount as shown in Example c of the present invention and the segregation of La—Ni—Sn.
In Comparative Example g, as shown in h, the B / A5.05, c / a increase by addition of Sn, but a D 50 value rose, D 50 value of Sn not added in Comparative Example f It is difficult to achieve both high occlusion retention and improvement of anti-dusting properties by adding Sn due to the decrease.
From the above results, the alloy of the present invention has the resistance to pulverization without drastically reducing the high hydrogen storage amount by setting Sn <0.15 with 0.2 ≦ Co ≦ 0.6 La> 0.7 5.15 ≦ B / A ≦ 5.20. Can improve.
[0023]
[Table 1]
Figure 0004486210
[0024]
【The invention's effect】
As described above, the hydrogen storage alloy of the present invention can suppress pulverization without reducing the hydrogen storage amount. Further, even if the composition of the Co element is reduced, the anti-dusting property is not hindered at all, which is effective in reducing the alloy cost.
[Brief description of the drawings]
FIG. 1 is a graph showing hydrogen storage characteristics of an alloy of the present invention.

Claims (2)

下記組成式で表されるCaCu型結晶構造をもつものであって、格子定数の比(c/a)が0.8055〜0.8070であることを特徴とする二次電池用水素吸蔵合金。
RNiCoMnAlSn
0.05≦x<0.15,4.0≦a≦4.4,0<b≦0.6,0.2≦c≦0.4,0.2≦d≦0.4,5.00≦a+b+c+d+x≦5.30,RはLaの含有量が0.7以上の希土類元素の混合物
A hydrogen storage alloy for a secondary battery having a CaCu 5 type crystal structure represented by the following composition formula and having a lattice constant ratio (c / a) of 0.8055 to 0.8070 .
RNi a Co b Mn c Al d Sn x
0.05 ≦ x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.4, 0.2 ≦ d ≦ 0.4,5. 00 ≦ a + b + c + d + x ≦ 5.30, R is a mixture of rare earth elements with a La content of 0.7 or more
上記組成式中、Mn,AlおよびSnの合計量は、c+d+x<0.7であることを特徴とする請求項1に記載の水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein the total amount of Mn, Al, and Sn in the composition formula is c + d + x <0.7.
JP2000091278A 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery Expired - Lifetime JP4486210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091278A JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091278A JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Publications (2)

Publication Number Publication Date
JP2001279355A JP2001279355A (en) 2001-10-10
JP4486210B2 true JP4486210B2 (en) 2010-06-23

Family

ID=18606757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091278A Expired - Lifetime JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Country Status (1)

Country Link
JP (1) JP4486210B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851991B2 (en) * 2010-08-19 2016-02-03 株式会社三徳 Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234134A (en) * 1999-02-10 2000-08-29 Shin Etsu Chem Co Ltd Hydrogen storage alloy, and electrode using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120364A (en) * 1994-10-18 1996-05-14 Toshiba Corp Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP2001216960A (en) * 2000-02-02 2001-08-10 Shin Etsu Chem Co Ltd Hydrogen absorbing alloys and secondary cell of nickel hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234134A (en) * 1999-02-10 2000-08-29 Shin Etsu Chem Co Ltd Hydrogen storage alloy, and electrode using the same

Also Published As

Publication number Publication date
JP2001279355A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP3688716B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
EP2214229A1 (en) Nickel-metal hydride battery and method for producing hydrogen storage alloy
JPH0925529A (en) Rare earth metal-nickel based hydrogen storage alloy and its production, and cathode for nickel-hydrogen secondary battery
JP3828922B2 (en) Low Co hydrogen storage alloy
EP0755898B1 (en) Hydrogen storage alloy and electrode therefrom
US5389333A (en) Hydrogen storage alloys
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP2001040442A (en) Hydrogen storage alloy
CN115074578B (en) Y-Mg-Ni-based hydrogen storage alloy and preparation method thereof
JP5001809B2 (en) Hydrogen storage alloy
JP4486210B2 (en) Hydrogen storage alloy for secondary battery
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
CN111411262B (en) A5B19 type gadolinium-containing hydrogen storage alloy, negative electrode and preparation method
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
WO2021205749A1 (en) Hydrogen storage alloy for alkaline storage battery
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP4091704B2 (en) Hydrogen storage alloy and method for producing the same
JP2004218017A (en) Hydrogen storage alloy
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP3321818B2 (en) Method for producing hydrogen storage alloy for Ni-hydrogen battery
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JP3673693B2 (en) Hydrogen storage alloy
JPH0642367B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Ref document number: 4486210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term