JP3670240B2 - How to raise the earth wall - Google Patents

How to raise the earth wall Download PDF

Info

Publication number
JP3670240B2
JP3670240B2 JP2002028788A JP2002028788A JP3670240B2 JP 3670240 B2 JP3670240 B2 JP 3670240B2 JP 2002028788 A JP2002028788 A JP 2002028788A JP 2002028788 A JP2002028788 A JP 2002028788A JP 3670240 B2 JP3670240 B2 JP 3670240B2
Authority
JP
Japan
Prior art keywords
arc
retaining wall
shaped
hydraulic
jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028788A
Other languages
Japanese (ja)
Other versions
JP2003232039A (en
Inventor
光弘 徳野
和俊 津田
文博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd
Original Assignee
Asahi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd filed Critical Asahi Engineering Co Ltd
Priority to JP2002028788A priority Critical patent/JP3670240B2/en
Publication of JP2003232039A publication Critical patent/JP2003232039A/en
Application granted granted Critical
Publication of JP3670240B2 publication Critical patent/JP3670240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は土留め壁の腹起こし方法、代表例として地面に縦穴を掘削し、該縦穴内にコンクリート等の構築物を構築する土木工事に好適に実施される上記土留め壁の腹起こし方法に関する。
【0002】
【従来の技術】
図1A,Bに示すように、地面に縦穴1を掘削し、該縦穴1内にベース基礎2から地上へ立ち上がるコンクリート構築物3を構築する場合、図1Aに示すように、矢板4を方形に打ち込んで角筒形の土留め壁5を形成し、図1Bに示すように、該角筒形土留め壁5内を掘削して縦穴1を形成し、該縦穴1内に上記地上へ立ち上がるコンクリート構築物3を構築している。この工法は橋梁を支持する橋脚の工事において多用されている。
【0003】
他方上記角筒形土留め壁5の抗土圧力を補強する手段として、図1Aに示すように、角筒形土留め壁5各辺の内面に沿いH形鋼から成る腹起こし材6を充てがい横設すると共に、縦穴1内を横切り且つ互いに交差するH形鋼から成る切梁7を配して腹起こし材6を突っ張り支持する。
【0004】
図1Bに示すように、該腹起こし材6と切梁7の組立体を縦穴1の深さ(土留め壁5の地中高さ)に応じ複段に配し、各段において複数本の切梁7を縦横に配材して所要の抗土圧力を得ている。
【0005】
【発明が解決しようとする課題】
而して上記従来の腹起こし工法、即ち土留め工法においては、縦穴1を横切る切梁7が縦横に存在するため、下段の切梁7と腹起こし材6の組立体を順次除去して埋め戻しを行い、鉄筋を増し組みすると共に、コンクリートを段階的に増し打ちし、所要の高さのコンクリート構築物3を構築する工法を採らざるを得ず、これが過大な工期と工費を費やす結果となっていた。
【0006】
加えて鉄筋を増し組みし、且つコンクリートを増し打ちする腹起こし工法であるため、コンクリート構築物3の強度の信頼性を損なう原因ともなる。
【0007】
又上記腹起こし材6と切梁7の施工工事そのものに過大な手間とコストが強いられる。
【0008】
【課題を解決するための手段】
本発明は上記腹起こし材6や切梁7による腹起こし構造を排し、同腹起こし構造を適切且つ容易に形成する。よって上記従来の腹起こし構造に起因する上記諸問題を抜本的に解消する。
【0009】
本発明は基本思想として円弧形の腹起こし材と、油圧シリンダ構造とネジ式ジャッキ構造とを併有する油圧形ネジ式ジャッキの協働による土留め壁の腹起こし構造を提供する。
【0010】
この土留め壁の腹起こし方法は下記のa乃至hから成る。
a.多数の矢板を円形に打ち込んで円筒形の土留め壁を形成し、該円筒形土留め壁内に縦穴を掘削する、
b.シリンダロッドの一端がシリンダ内に気密的に滑合され、該シリンダから突出する他端部外周面に雄ネジが刻設され、該雄ネジにストッパーフランジを螺合した油圧形ネジ式ジャッキを用いる、
c.上記円筒形土留め壁の内周面に沿い複数の円弧形の腹起こし材を環状に配して該各円弧形腹起こし材の凸曲側円弧面で土留め壁を支える、
d.上記各円弧形腹起こし材の端部間に上記油圧形ネジ式ジャッキを介装する、
e.上記シリンダの油圧室内へ油圧を供給することにより上記シリンダロッドを伸長せしめて一定の伸長量により円弧形腹起こし材に一定の軸力を与えて各円弧形腹起こし材に上記凸曲側円弧面における凸曲方向への抗土圧力を生起せしめる、
f.上記油圧形ネジ式ジャッキにより一定の軸力を与えたことを圧力計により確認する、
g.上記一定の軸力を与えた状態において上記ストッパーフランジをシリンダロッドに沿い螺退して上記シリンダの端面に座着せしめてシリンダロッドの収縮を阻止することにより上記シリンダの伸長を保持すると共に円弧形腹起こし材に対し与えられた一定の軸力を保持する、
h.上記ストッパーフランジによってシリンダロッドの螺退を阻止した後、上記油圧室内の油圧を抜き取り開放にする。
【0011】
上記油圧式ネジ式ジャッキは円弧形腹起こし材を除去するまでの間、軸力を与えた状態でそのまま存置せしめる。又は上記円弧形腹起こし材の端部間に上記油圧形ネジ式ジャッキによる軸力を保持するスペーサーを介在して上記油圧形ネジ式ジャッキを除去する。
【0012】
又は上記円弧形腹起こし材の端部間を上記油圧形ネジ式ジャッキによる軸力を保持する連結継手で連結して上記油圧形ネジ式ジャッキを除去する。
【0013】
【発明の実施の形態】
以下本発明の実施の形態を図2乃至図に基づいて説明する。
【0014】
前記の通り、本発明は従来の土留め工法における腹起こし材と切梁による腹起こし構造を排し、円弧形腹起こし材8とジャッキ9の協働による土留め方法の提供を主題としている。
【0015】
図2,図3はこれをコンクリート構築物立ち上げ用の縦穴掘削工事に具体化した第1,第2実施形態を示しており、図示のように、上記土留め壁5を円筒形に形成し、該円筒形土留め壁5内に縦穴(円筒形縦穴)1を掘削する。
【0016】
上記縦穴掘削の進行に伴い、縦穴1を画成する該円筒形土留め壁5の内周面に沿いH形鋼等から成る複数の円弧形の腹起こし材8を環状且つ水平に配し、即ち縦穴1の中心を中心とする円軌跡上に複数の円弧形の腹起こし材8を環状に配し、該各円弧形腹起こし材8の凸曲側円弧面で土留め壁5を支える。
【0017】
上記円弧形腹起こし材8にその一端又は両端からジャッキ9による軸力w1を与えて同腹起こし材8に上記凸曲側円弧面における凸曲方向への抗土圧力w2を生起せしめ、この抗土圧力w2を円筒形土留め壁5に与え、土圧力w3に対する強度を得る。軸力w1とは円弧形腹起こし材8の円弧形軸線に対し与えられる圧縮力である。
【0018】
例えば図2Aに示すように、円筒形土留め壁5を単円形(真円)に配し、該円筒形土留め壁5の内周面に沿う円(内接円)を複数の円弧に等分割する等長の複数本の円弧形腹起こし材8で腹受けする。
【0019】
又図3Aに示すように、円筒形土留め壁5を略同一の曲率から成る二つ以上の円弧(優弧)を接合した形態の複合円筒形に形成し、該複合円筒形土留め壁5の内周面に沿う一つの複合円(内接複合円)を複数の円弧に分割する複数本の円弧形腹起こし材8で腹受けする。
【0020】
図2B,図3Bに示すように、上記円弧形腹起こし材8とジャッキ9による腹起こし構造を、縦穴1の深さに応じ上下複段に組み立てる。
【0021】
上記各円弧形腹起こし材8と上記単円又は複合円から成る円筒形土留め壁5とは略同一の曲率を有し、各円弧形腹起こし材8はその凸曲側円弧面の略全長において円筒形土留め壁5の内周面に自由接触状態で間欠接触又は連続接触している。
【0022】
上記円筒形土留め壁5は、多数の矢板4を円形に打ち込んで形成し、上記円弧形腹起こし材8とジャッキ9の協働による腹起こし構造を形成する。
【0023】
汎用されてる矢板4は図に示すように、頂板4aの左右側端から長手方向に亘り側板4bを折曲形成してコ形チャンネルにし、この左右側板4bの端部にフック形継手4cを折曲形成した形状を呈し、隣接する矢板4間において、このフック形継手4cを相の手に組みながら地中に打ち込み上記土留め壁5を形成する。
【0024】
上記各矢板4は上記フック形継手4cの相の手組み部を中心にして回動可能であり、これを利用して円弧形又は円筒形の土留め壁5を構築する。
【0025】
の如き矢板4によって土留め壁5を構築する場合、円弧形腹起こし材8は矢板4の頂板4aに間欠接触する。
【0026】
そして図2A,図3Aに示すように、該各円弧形腹起こし材8の端部間にジャッキ9を介装し、該ジャッキ9の伸長により隣接する各円弧形腹起こし材8に互いに逆方向の軸力w1を与えて全円弧形腹起こし材8に軸力w1を与え、よって各円弧形腹起こし材8の凸曲側円弧面の全長における凸曲方向への抗土圧力w2を生起せしめ、この抗土圧力w2を円筒形土留め壁5に与え、土圧力w3に対する強度を得る。
【0027】
図2B,図3Bに示すように、上記円弧形腹起こし材8とジャッキ9の組立体を縦穴1の深さ(土留め壁5の地中高さ)に応じ上下複段に配して所要の抗土圧力w2を得る。
【0028】
上記図2,図3に例示する腹起こし構造は、何れも図示のように円筒形土留め壁5で画成する縦穴1を完全開放状態にし、従来例の如き建築資材の搬入やコンクリート構築物3の構築の支障となる障害物を生成せず、適切な抗土圧力w2を得ることができる。よって従来例の如き、鉄筋の増し組みやコンクリートの増し打ちを行わずに、コンクリート構築物3に必要な高さに鉄筋を組み、コンクリートを一次に打ち込んで同構築物3を構築できる。
【0029】
上記コンクリート構築物3の構築後、上記円弧形腹起こし材8とジャッキ9の組立体を下段から上段に順次取り外しつつ埋め戻しを順次行えば良い。
【0030】
図3に示す多数の矢板4を打ち込んで複合円筒形の土留め壁5を構築する場合、両円筒形土留め壁5の対向する各連結部に鋼材から成る柱等の受圧部材11′を配し、即ち一方の円筒形土留め壁5の端部腹起こし材8の端部と、他方の円筒形土留め壁5の端部円弧形腹起こし材8の端部間に受圧部材11′を介装し、該受圧部材11′の対向する側面に上記各端部円弧形腹起こし材8を支持する。
【0031】
更に図3に示すように、上記対向する各連結部に配された受圧部材11′間に切梁7′を水平に横設し、両連結部間において両受圧部材11′を突っ張り支持する。
【0032】
以上述べた図2,図3に示す実施形態は、土留め壁5の土留め側とは反対側に円弧形の腹起こし材8を横設してその凸曲側円弧面上で土留め壁5を支え、該円弧形腹起こし材8にその端部からジャッキ9による軸力w1を与えて同腹起こし材8に上記凸曲側円弧面における凸曲方向への抗土圧力w2を生起せしめる土留め壁の腹起こし構造を基本思想として含んでいる。
【0033】
上記各実施形態に使用するジャッキ9は円弧形腹起こし材8を除去するまでの間、軸力w1を与えた状態でそのまま存置せしめる。又は図に示すように、上記円弧形腹起こし材8の端部間の隙間に上記ジャッキ9による軸力w1を保持するスペーサー12を介在して上記ジャッキ9を除去する。
【0034】
又は図に示すように、上記円弧形腹起こし材8の端部間を上記ジャッキ9による軸力w1を保持する連結継手13で連結して上記ジャッキ9を除去する。例えば隣接する一方の円弧形腹起こし材8の端部側面と、同他方の円弧形腹起こし材8の端部側面間を平板鋼板から成る連結継手13で連結して上記ジャッキ9を除去する。
【0035】
上記ジャッキ9は図2,図3に示すように、隣接する円弧形腹起こし材8の端面間に介装するか、又は図に示すように、隣接する一方と他方の円弧形腹起こし材8の各端部に上方又は上方と下方に張り出すブラケット19を取り付け、両ブラケット19間に上記ジャッキ9を介装する。図はジャッキ9を工事期間中存置せしめる場合と、上記スペーサー12又は連結継手13で連結してジャッキ9を除去する場合の双方を示している。
【0036】
上記ネジ式ジャッキに示す油圧によって伸縮され螺合によって伸長又は収縮位置を固定し得る油圧形ネジ式ジャッキが適性である。
【0037】
上記流体圧シリンダ構造のジャッキは緩衝性を有する柔加圧構造体を形成するが、ネジ式ジャッキは緩衝性を有しない剛加圧構造体である。
【0038】
上記ネジ式ジャッキはシリンダとシリンダロッドが互いに螺合されたジャッキであり、シリンダロッドを回動することにより、螺進(伸長)又は螺退(収縮)する構造のものであり、該螺進によって腹起こし材8に軸力w1を与え、雌ネジと雄ネジの螺合によって軸力w1を保持する。
【0039】
上記ネジ式ジャッキは上記の通り剛加圧構造体であり、強大な軸力w1に対する耐加圧力に優れ、常時一定の突っ張り力を維持できると共に、突っ張り位置に応じた突っ張り力を容易に設定でき適性である。
【0040】
本発明においてはA,Bに示す通り、油圧シリンダ構造とネジ式ジャッキ構造とを併有するジャッキ9を用いる。このジャッキ9はシリンダロッド14の一端がシリンダ15内に気密的に滑合され、該シリンダ15から突出する他端部外周面に雄ネジが刻設され、該雄ネジにストッパーフランジ16を螺合し、上記シリンダ15内底部のシリンダロッド14の下面に形成された油圧室17内へ油圧を供給する油圧供給口18を上記シリンダ15に設けた構造を有する。
【0041】
そして上記油圧供給口18を通じて油圧を供給することにより、上記シリンダロッド14を伸長せしめて一定の伸長量により円弧形腹起こし材8に一定の軸力w1を与える。
【0042】
次いで該一定の軸力w1を与えたことを圧力計により確認し、該軸力w1を与えた状態において上記ストッパーフランジ16をシリンダロッド14に沿い螺退して上記シリンダ15の端面に座着せしめる。よってシリンダロッド14の収縮を阻止し、伸長を保持して円弧形腹起こし材8に対し与えられた一定の軸力w1を保持する。
【0043】
上記ストッパーフランジ16によってシリンダロッド14の螺退を阻止し、伸長状態を保持した後、上記油圧供給口18を通じて油圧室17内の油圧を抜き取り開放にする。以後は上記ネジ式シリンダロッド14により円弧形腹起こし材8に対する軸力w1を維持する。
【0044】
図2,図3に示す第1,第2実施形態は、高速道路等の陸橋や、河川橋等の橋脚の施工工事に極めて有効である。
【0045】
【発明の効果】
本発明によれば、総じて従来例における腹起こし材と切梁による腹起こし構造を用いずに、円弧形腹起こし材とジャッキの協働により、土留め壁に適切な抗土圧力を与える腹起こし方法を提供できる。
【0046】
又縦穴を掘削してコンクリート構築物を立ち上げる場合に、該土留め壁で画成する縦穴を完全開放状態にし、従来例の如き建築資材の搬入やコンクリート構築物の構築の支障となる障害物を生成せず、適切な抗土圧力を得ることができる。
【0047】
よって従来例の如き、鉄筋の増し組みやコンクリートの増し打ちを行わずに、コンクリート構築物に必要な高さに鉄筋を組み、コンクリートを一次に打ち込んで同構築物を構築でき、信頼性を向上せしめると共に、工事の省力化を達成し、且つ工期、工費の大幅な削減を達成できる。
【図面の簡単な説明】
【図1】 Aは従来の土留め壁における腹起こし構造を説明する平面図、Bは同縦断面図。
【図2】 Aは本発明に係る土留め壁における腹起こし構造の第1実施形態を示す平面図、Bは同縦断面図。
【図3】 Aは本発明に係る土留め壁における腹起こし構造の第2実施形態を示す平面図、Bは同縦断面図。
【図】 上記腹起こし構造におけるジャッキによる軸力をスペーサーにて保持する例を示す側面図。
【図】 上記腹起こし構造におけるジャッキによる軸力を連結継手にて保持する例を示す平面図。
【図】 上記土留め壁における腹起こし構造に用いるジャッキを示し、Aはジャッキの伸長状態を示し、Bは同伸長状態を保持する状態を示す断面図である。
【図】 土留め壁を形成する矢板を組み手にする例を示す平面図。
【符号の説明】
1…縦穴、2…ベース基礎、3…コンクリート構築物、4…矢板、4a…矢板の頂板、4b…矢板の左右側板、4c…矢板のフック形継手、5…土留め壁、7′…切梁、8…円弧形腹起こし材、8′…補助腹起こし材、9…油圧形ネジ式ジャッキ、10…束材、11′…受圧部材、12…スペーサー、13…連結継手、14…シリンダロッド、15…シリンダ、16…ストッパーフランジ、17…油圧室、18…油圧供給口、19…ブラケット、w1…軸力、w2…抗土圧力、w3…土圧力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for raising a retaining wall, and as a typical example, relates to a method for raising a retaining wall which is preferably implemented in civil engineering work in which a vertical hole is excavated in the ground and a structure such as concrete is constructed in the vertical hole.
[0002]
[Prior art]
As shown in FIGS. 1A and 1B, when a vertical hole 1 is excavated in the ground and a concrete structure 3 rising from the base foundation 2 to the ground is built in the vertical hole 1, a sheet pile 4 is driven into a square as shown in FIG. 1A. A rectangular cylinder-shaped retaining wall 5 is formed, and, as shown in FIG. 1B, a vertical hole 1 is formed by excavating the rectangular cylindrical retaining wall 5, and the concrete structure rising to the ground in the vertical hole 1 3 is built. This method is often used in the construction of piers that support bridges.
[0003]
On the other hand, as a means for reinforcing the anti-soil pressure of the square cylindrical retaining wall 5, as shown in FIG. 1A, a bellows member 6 made of H-shaped steel is provided along the inner surface of each side of the square cylindrical retaining wall 5. In addition to laying horizontally, a cross beam 7 made of H-shaped steel that crosses the inside of the vertical hole 1 and intersects with each other is arranged to support the stretched member 6 in a stretched manner.
[0004]
As shown in FIG. 1B, the assembly of the bellows member 6 and the cut beam 7 is arranged in multiple stages according to the depth of the vertical hole 1 (the underground height of the retaining wall 5). The required anti-earth pressure is obtained by distributing the beams 7 vertically and horizontally.
[0005]
[Problems to be solved by the invention]
Thus, in the conventional erection method, that is, the earth retaining method, since the cut beam 7 crossing the vertical hole 1 exists vertically and horizontally, the lower cut beam 7 and the erection material 6 assembly are sequentially removed and backfilled. And reinforce and reinforce the concrete, and step up the concrete step by step to construct the concrete structure 3 of the required height, which results in excessive construction time and cost. It was.
[0006]
In addition, since it is an erection method in which reinforcing bars are assembled and concrete is struck, it becomes a cause of impairing the reliability of the strength of the concrete structure 3.
[0007]
In addition, the construction work of the above-mentioned urging member 6 and the beam 7 is excessively laborious and costly.
[0008]
[Means for Solving the Problems]
The present invention eliminates the erection structure by the erection material 6 and the beam 7 and forms the erection structure appropriately and easily. Therefore, the above problems caused by the conventional erection structure are drastically solved.
[0009]
The present invention provides, as a basic idea, a structure for raising an earth retaining wall by cooperation of an arc-shaped bell-raised material and a hydraulic screw-type jack having both a hydraulic cylinder structure and a screw-type jack structure .
[0010]
The method of raising the earth retaining wall includes the following a to h.
a. A large number of sheet piles are driven into a circular shape to form a cylindrical retaining wall, and a vertical hole is excavated in the cylindrical retaining wall.
b. A hydraulic screw type jack in which one end of the cylinder rod is hermetically slipped into the cylinder, a male screw is engraved on the outer peripheral surface of the other end protruding from the cylinder, and a stopper flange is screwed to the male screw is used. ,
c. A plurality of arc-shaped flank members are annularly arranged along the inner peripheral surface of the cylindrical earth retaining wall, and the earth retaining wall is supported by the convex-side arc surface of each arc-shaped lining material.
d. The hydraulic screw jack is interposed between the ends of the arc-shaped flank members,
e. By supplying hydraulic pressure into the hydraulic chamber of the cylinder, the cylinder rod is extended to give a constant axial force to the arc-shaped flank material by a certain amount of extension, and the convex side of each arc-shaped flank material Causing anti-soil pressure in the convex direction on the arc surface,
f. Check with a pressure gauge that a certain axial force has been applied by the hydraulic screw jack.
g. In the state where the constant axial force is applied, the stopper flange is screwed along the cylinder rod and seated on the end surface of the cylinder to prevent the cylinder rod from contracting, thereby maintaining the extension of the cylinder and the circular arc. Maintains a constant axial force applied to the flank
h. After blocking the cylinder rod by the stopper flange, the hydraulic pressure in the hydraulic chamber is extracted and released.
[0011]
The hydraulic screw-type jack is allowed to remain in an axially applied state until the arc-shaped erection material is removed. Alternatively, the hydraulic screw-type jack is removed by interposing a spacer that holds the axial force of the hydraulic screw-type jack between the ends of the arc-shaped bell-raised material.
[0012]
Or between the ends of the arcuate wale material was connected by a connecting joint which holds the axial force by the hydraulic type screw jack to remove the hydraulic type screw jack.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described with reference to FIGS. 2-7.
[0014]
As described above, the subject of the present invention is to provide an earth retaining method by cooperating the arc-shaped bell-raised material 8 and the jack 9 by eliminating the bell-raised structure by the bell-raised material and the cut beam in the conventional earth retaining method. .
[0015]
2 and 3 show first and second embodiments in which this is embodied in a vertical hole excavation work for starting up a concrete structure. As shown in the figure, the earth retaining wall 5 is formed in a cylindrical shape, A vertical hole (cylindrical vertical hole) 1 is excavated in the cylindrical retaining wall 5.
[0016]
Along with the progress of the vertical hole excavation, a plurality of arc-shaped urging members 8 made of H-section steel or the like are arranged annularly and horizontally along the inner peripheral surface of the cylindrical earth retaining wall 5 that defines the vertical hole 1. That is, a plurality of arc-shaped urging members 8 are arranged in an annular shape on a circular locus centering on the center of the vertical hole 1, and the earth retaining wall 5 is formed on the convex curved side arc surface of each arc-shaped urging member 8. Support.
[0017]
An axial force w1 from the jack 9 is applied to one end or both ends of the arc-shaped bulging member 8 to cause the anti-soil pressure w2 in the convex bending direction on the convex-side arc surface to be generated on the anti-protruding member 8. The earth pressure w2 is applied to the cylindrical earth retaining wall 5 to obtain strength against the earth pressure w3. The axial force w <b> 1 is a compressive force applied to the arcuate axis of the arcuate raising member 8.
[0018]
For example, as shown in FIG. 2A, the cylindrical retaining wall 5 is arranged in a single circle (perfect circle), and a circle (inscribed circle) along the inner peripheral surface of the cylindrical retaining wall 5 is formed into a plurality of arcs. Abdomen is received by a plurality of arc-shaped erection members 8 of equal length to be divided.
[0019]
Further, as shown in FIG. 3A, the cylindrical retaining wall 5 is formed into a composite cylindrical shape in which two or more arcs (dominant arcs) having substantially the same curvature are joined, and the composite cylindrical retaining wall 5 is formed. A single compound circle (inscribed compound circle) along the inner peripheral surface of the two is bent by a plurality of arc-shaped erection members 8 that are divided into a plurality of arcs.
[0020]
As shown in FIG. 2B and FIG. 3B, the above-mentioned flank structure by the arc-shaped flank member 8 and the jack 9 is assembled in upper and lower stages depending on the depth of the vertical hole 1.
[0021]
Each of the arc-shaped raising members 8 and the cylindrical retaining wall 5 made of a single circle or a compound circle have substantially the same curvature, and each of the arc-shaped raising members 8 has a convex arcuate surface. In a substantially full length, the inner circumferential surface of the cylindrical earth retaining wall 5 is in intermittent contact or continuous contact in a free contact state.
[0022]
The cylindrical earth retaining wall 5 is formed by driving a large number of sheet piles 4 into a circle, and forms a bellows raising structure by the cooperation of the arc-shaped belly raising member 8 and the jack 9.
[0023]
As shown in FIG. 7 , the commonly used sheet pile 4 is formed by bending the side plate 4b from the left and right side ends of the top plate 4a in the longitudinal direction to form a U-shaped channel, and hook-type joints 4c are provided at the ends of the left and right side plates 4b. A bent shape is formed, and the earth retaining wall 5 is formed between the adjacent sheet piles 4 by driving into the ground while assembling the hook-shaped joint 4c in the hands of the phases.
[0024]
Each of the sheet piles 4 can be rotated around the hand-assembled portion of the phase of the hook-shaped joint 4c, and an arc-shaped or cylindrical earth retaining wall 5 is constructed using this.
[0025]
When the earth retaining wall 5 is constructed by the sheet pile 4 as shown in FIG. 7 , the arc-shaped bell-raised member 8 intermittently contacts the top plate 4 a of the sheet pile 4.
[0026]
As shown in FIGS. 2A and 3A, a jack 9 is interposed between the end portions of each arc-shaped urging member 8, and the adjacent arc-shaped urging members 8 are connected to each other by extension of the jack 9. Applying an axial force w1 in the opposite direction to give an axial force w1 to the all-arc-shaped erection material 8 so that the anti-soil pressure in the convex direction in the entire length of the convex-side arc surface of each arc-shaped erection material 8 w2 is generated, and this anti-soil pressure w2 is applied to the cylindrical earth retaining wall 5 to obtain strength against the earth pressure w3.
[0027]
As shown in FIG. 2B and FIG. 3B, the above-mentioned assembly of the arc-shaped bell-raised member 8 and the jack 9 is arranged in multiple vertical stages depending on the depth of the vertical hole 1 (the underground height of the retaining wall 5). The anti-soil pressure w2 is obtained.
[0028]
2 and 3, as shown in the drawings, the vertical hole 1 defined by the cylindrical retaining wall 5 is completely opened to bring in building materials and the concrete structure 3 as in the conventional example. Therefore, an appropriate anti-soil pressure w2 can be obtained without generating an obstacle that hinders the construction. Therefore, unlike the conventional example, it is possible to construct the structure 3 by constructing the reinforcing bars at the height required for the concrete structure 3 and driving the concrete first, without performing the reinforcement of the reinforcing bars and the concrete.
[0029]
After the concrete structure 3 is constructed, the assembly of the arc-shaped bell-raised member 8 and the jack 9 may be sequentially carried out while being sequentially removed from the lower stage to the upper stage.
[0030]
When constructing a composite cylindrical retaining wall 5 by driving a large number of sheet piles 4 shown in FIG. 3, a pressure receiving member 11 ′ such as a column made of a steel material is arranged at each connecting portion of both cylindrical retaining walls 5. In other words, the pressure receiving member 11 ′ is located between the end of the end flank 8 of one cylindrical retaining wall 5 and the end of the end arch ridge 8 of the other cylindrical retaining wall 5. The end arc-raised member 8 is supported on the opposing side surfaces of the pressure receiving member 11 '.
[0031]
Further, as shown in FIG. 3, a cross beam 7 'is horizontally provided between the pressure receiving members 11' arranged at the respective connecting portions facing each other, and both the pressure receiving members 11 'are stretched and supported between the two connecting portions.
[0032]
In the embodiment shown in FIGS. 2 and 3 described above, the arcuate raising member 8 is provided on the opposite side of the earth retaining wall 5 from the earth retaining side, and the earth retaining is performed on the convex arc surface. The wall 5 is supported, and an axial force w1 by a jack 9 is applied to the arc-shaped bell-raised member 8 from the end thereof, thereby generating an anti-soil pressure w2 in the convex direction on the convex-side arc surface. It includes the erection structure of the earth retaining wall as a basic idea.
[0033]
The jack 9 used in each of the above embodiments is left in a state where the axial force w1 is applied until the arc-shaped erection material 8 is removed. Alternatively, as shown in FIG. 4 , the jack 9 is removed by interposing a spacer 12 that holds the axial force w <b> 1 by the jack 9 in the gap between the ends of the arc-shaped erection material 8.
[0034]
Alternatively, as shown in FIG. 5 , the jacks 9 are removed by connecting the ends of the arc-shaped erection members 8 with a connecting joint 13 that holds the axial force w <b> 1 by the jacks 9. For example, the jack 9 is removed by connecting the end side surface of one arcuate flank member 8 adjacent to the other side surface of the other arcuate flank member 8 with a connecting joint 13 made of a flat steel plate. To do.
[0035]
As shown in FIGS. 2 and 3, the jack 9 is interposed between the end faces of the adjacent arc-shaped protuberances 8, or as shown in FIG. 4 , the adjacent one and the other arc-shaped antinodes. A bracket 19 projecting upward or upward and downward is attached to each end portion of the raising member 8, and the jack 9 is interposed between the brackets 19. FIG. 4 shows both the case where the jack 9 is left during the construction period and the case where the jack 9 is removed by being connected by the spacer 12 or the connecting joint 13.
[0036]
The screw jack is a hydraulic type screw jack suitability capable of fixing the extended or retracted position by screwing the telescopic hydraulically shown in FIG.
[0037]
The jack having the fluid pressure cylinder structure forms a soft pressurizing structure having buffering properties, whereas the screw jack is a rigid pressurizing structure having no buffering properties.
[0038]
The above-mentioned screw-type jack is a jack in which a cylinder and a cylinder rod are screwed together, and has a structure in which the cylinder rod rotates (extends) or retreats (shrinks) by rotating the cylinder rod. An axial force w1 is applied to the belly raising member 8, and the axial force w1 is held by screwing of the female screw and the male screw.
[0039]
The screw-type jack is a rigid pressure structure as described above, has excellent pressure resistance against the large axial force w1, can always maintain a constant tension force, and can easily set the tension force according to the tension position. Is aptitude.
[0040]
As shown in FIG. 6 A, B in the present invention, a jack 9 having both hydraulic cylinder structure and screw jack structure. In this jack 9, one end of a cylinder rod 14 is airtightly fitted in a cylinder 15, a male screw is formed on the outer peripheral surface of the other end protruding from the cylinder 15, and a stopper flange 16 is screwed into the male screw. The cylinder 15 is provided with a hydraulic pressure supply port 18 for supplying hydraulic pressure into a hydraulic chamber 17 formed in the lower surface of the cylinder rod 14 at the bottom of the cylinder 15.
[0041]
Then, by supplying hydraulic pressure through the hydraulic pressure supply port 18, the cylinder rod 14 is extended to give a constant axial force w <b> 1 to the arc-shaped erection material 8 with a constant extension amount.
[0042]
Next, it is confirmed by a pressure gauge that the constant axial force w1 has been applied, and the stopper flange 16 is screwed along the cylinder rod 14 and seated on the end surface of the cylinder 15 in a state where the axial force w1 is applied. . Therefore, the contraction of the cylinder rod 14 is prevented, the extension is maintained, and the constant axial force w <b> 1 applied to the arcuate flank member 8 is maintained.
[0043]
After the cylinder rod 14 is prevented from being screwed out by the stopper flange 16 and kept in the extended state, the hydraulic pressure in the hydraulic chamber 17 is extracted and released through the hydraulic pressure supply port 18. Thereafter, the axial force w1 for the arc-shaped erection material 8 is maintained by the threaded cylinder rod 14.
[0044]
The first and second embodiments shown in FIGS. 2 and 3 are extremely effective for construction work of an overpass such as a highway or a bridge pier such as a river bridge.
[0045]
【The invention's effect】
According to the present invention, the bellows which gives an appropriate anti-soil pressure to the retaining wall by the cooperation of the arc-shaped bell-raised material and the jack without using the bell-raised structure by the bell-raised material and the cut beam in the conventional example as a whole. Can provide a wake-up method .
[0046]
In addition, when a concrete structure is launched by excavating a vertical hole, the vertical hole defined by the retaining wall is completely opened to generate obstacles that impede the construction material construction and the construction of the concrete structure as in the conventional example. Without this, an appropriate anti-soil pressure can be obtained.
[0047]
Therefore, unlike the conventional example, it is possible to construct the same structure by placing the reinforcing bars at the height required for the concrete structure without placing additional reinforcing bars or concrete, and driving concrete into the primary structure, improving the reliability. It is possible to achieve the labor saving of construction and to achieve a significant reduction in construction period and construction cost.
[Brief description of the drawings]
FIG. 1A is a plan view for explaining a bellows structure in a conventional earth retaining wall, and B is a longitudinal sectional view thereof. FIG.
FIG. 2A is a plan view showing a first embodiment of a bellows structure in a retaining wall according to the present invention, and B is a longitudinal sectional view thereof. FIG.
FIG. 3A is a plan view showing a second embodiment of a bellows raising structure in a retaining wall according to the present invention, and B is a longitudinal sectional view thereof.
FIG. 4 is a side view showing an example in which the axial force by the jack in the above-mentioned erection structure is held by a spacer.
FIG. 5 is a plan view showing an example in which an axial force by a jack in the above-mentioned erection structure is held by a coupling joint.
FIG. 6 is a cross-sectional view showing a jack used in the bellows raising structure in the retaining wall, A showing an extended state of the jack, and B showing a state in which the extended state is maintained.
FIG. 7 is a plan view showing an example in which a sheet pile forming a retaining wall is used as a combination.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vertical hole, 2 ... Base foundation, 3 ... Concrete structure, 4 ... Sheet pile, 4a ... Top plate of sheet pile, 4b ... Left and right side plate of sheet pile, 4c ... Hook-type joint of sheet pile, 5 ... Earth retaining wall, 7 '... Cut beam , 8 ... Arc-shaped flank, 8 '... Auxiliary flank, 9 ... Hydraulic screw jack, 10 ... Bundle material, 11' ... Pressure-receiving member, 12 ... Spacer, 13 ... Connection joint, 14 ... Cylinder rod 15 ... Cylinder, 16 ... Stopper flange, 17 ... Hydraulic chamber, 18 ... Hydraulic supply port, 19 ... Bracket, w1 ... Axial force, w2 ... Anti earth pressure, w3 ... Earth pressure

Claims (3)

下記のa乃至hから成る土留め壁の腹起こし方法。
a.多数の矢板を円形に打ち込んで円筒形の土留め壁を形成し、該円筒形土留め壁内に縦穴を掘削する、
b.シリンダロッドの一端がシリンダ内に気密的に滑合され、該シリンダから突出する他端部外周面に雄ネジが刻設され、該雄ネジにストッパーフランジを螺合した油圧形ネジ式ジャッキを用いる、
c.上記円筒形土留め壁の内周面に沿い複数の円弧形の腹起こし材を環状に配して該各円弧形腹起こし材の凸曲側円弧面で土留め壁を支える、
d.上記各円弧形腹起こし材の端部間に上記油圧形ネジ式ジャッキを介装する、
e.上記シリンダの油圧室内へ油圧を供給することにより上記シリンダロッドを伸長せしめて一定の伸長量により円弧形腹起こし材に一定の軸力を与えて各円弧形腹起こし材に上記凸曲側円弧面における凸曲方向への抗土圧力を生起せしめる、
f.上記油圧形ネジ式ジャッキにより一定の軸力を与えたことを圧力計により確認する、
g.上記一定の軸力を与えた状態において上記ストッパーフランジをシリンダロッドに沿い螺退して上記シリンダの端面に座着せしめてシリンダロッドの収縮を阻止することにより上記シリンダの伸長を保持すると共に円弧形腹起こし材に対し与えられた一定の軸力を保持する、
h.上記ストッパーフランジによってシリンダロッドの螺退を阻止した後、上記油圧室内の油圧を抜き取り開放にする、
ことを特徴とする土留め壁の腹起こし方法
A method for raising the retaining wall comprising the following a to h.
a. A large number of sheet piles are driven into a circular shape to form a cylindrical retaining wall, and a vertical hole is excavated in the cylindrical retaining wall.
b. A hydraulic screw type jack in which one end of the cylinder rod is hermetically slipped into the cylinder, a male screw is engraved on the outer peripheral surface of the other end protruding from the cylinder, and a stopper flange is screwed to the male screw is used. ,
c. A plurality of arc-shaped flank members are annularly arranged along the inner peripheral surface of the cylindrical earth retaining wall, and the earth retaining wall is supported by the convex-side arc surface of each arc-shaped lining material.
d. The hydraulic screw jack is interposed between the ends of the arc-shaped flank members,
e. By supplying hydraulic pressure into the hydraulic chamber of the cylinder, the cylinder rod is extended to give a constant axial force to the arc-shaped flank material by a certain amount of extension, and the convex side of each arc-shaped flank material Causing anti-soil pressure in the convex direction on the arc surface,
f. Check with a pressure gauge that a certain axial force has been applied by the hydraulic screw jack.
g. In the state where the constant axial force is applied, the stopper flange is screwed along the cylinder rod and seated on the end surface of the cylinder to prevent the cylinder rod from contracting, thereby maintaining the extension of the cylinder and the circular arc. Maintains a constant axial force applied to the flank
h. After preventing the cylinder rod from being screwed out by the stopper flange, the hydraulic pressure in the hydraulic chamber is extracted and released.
A method of raising the earth retaining wall, characterized by that.
上記円弧形腹起こし材の端部間に上記油圧形ネジ式ジャッキによる軸力を保持するスペーサーを介在して上記油圧形ネジ式ジャッキを除去する構成としたことを特徴とする請求項1記載の土留め壁の腹起こし方法2. The hydraulic screw-type jack is configured to be removed by interposing a spacer for holding an axial force of the hydraulic screw-type jack between ends of the arc-shaped bell-raised material. How to upset the retaining wall. 上記円弧形腹起こし材の端部間を上記油圧形ネジ式ジャッキによる軸力を保持する連結継手で連結して上記油圧形ネジ式ジャッキを除去する構成としたことを特徴とする請求項1記載の土留め壁の腹起こし方法2. The hydraulic screw-type jack is configured to be connected by connecting joints that hold axial forces of the hydraulic screw-type jack between ends of the arc-shaped bell-raised material. The method of raising the retaining wall as described.
JP2002028788A 2002-02-05 2002-02-05 How to raise the earth wall Expired - Fee Related JP3670240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028788A JP3670240B2 (en) 2002-02-05 2002-02-05 How to raise the earth wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028788A JP3670240B2 (en) 2002-02-05 2002-02-05 How to raise the earth wall

Publications (2)

Publication Number Publication Date
JP2003232039A JP2003232039A (en) 2003-08-19
JP3670240B2 true JP3670240B2 (en) 2005-07-13

Family

ID=27773495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028788A Expired - Fee Related JP3670240B2 (en) 2002-02-05 2002-02-05 How to raise the earth wall

Country Status (1)

Country Link
JP (1) JP3670240B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436785A (en) * 2016-11-08 2017-02-22 重庆市基础工程有限公司 Side slope rescuing counter pressure adverse construction method and structure thereof
CN109594565A (en) * 2018-12-14 2019-04-09 中铁十八局集团第三工程有限公司 Large area circular deep foundation pit support and water-stopping method in weak water rich strata
CN110792085A (en) * 2019-09-30 2020-02-14 成都市市政工程设计研究院 Pipe-jacking working pit supporting method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915099B1 (en) * 2006-07-06 2009-09-02 박윤희 Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
JP5276345B2 (en) 2008-03-28 2013-08-28 三菱重工業株式会社 Gas turbine and gas turbine combustor insertion hole forming method
CN103726496A (en) * 2013-12-27 2014-04-16 中铁大桥局集团第一工程有限公司 Circular deep foundation pit bored secant pile wall supporting construction method
CN110528535A (en) * 2019-08-27 2019-12-03 云南建投第十二建设有限公司 Annular slab support group pit supporting construction and its construction method
CN114657999B (en) * 2022-03-07 2023-04-25 中冶集团武汉勘察研究院有限公司 Combined pile supporting structure for cylindrical foundation pit and construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436785A (en) * 2016-11-08 2017-02-22 重庆市基础工程有限公司 Side slope rescuing counter pressure adverse construction method and structure thereof
CN106436785B (en) * 2016-11-08 2019-04-26 重庆市基础工程有限公司 Insuring highway' slope back-pressure reversed construction method and its structure
CN109594565A (en) * 2018-12-14 2019-04-09 中铁十八局集团第三工程有限公司 Large area circular deep foundation pit support and water-stopping method in weak water rich strata
CN110792085A (en) * 2019-09-30 2020-02-14 成都市市政工程设计研究院 Pipe-jacking working pit supporting method

Also Published As

Publication number Publication date
JP2003232039A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP4010383B2 (en) Pile method
JP4812324B2 (en) Retaining wall and its construction method
KR100698878B1 (en) Y Type Connecting Structure of Steel Pipe Struts
JP3670240B2 (en) How to raise the earth wall
JP2011157812A (en) Retaining wall and construction method therefor
JP4326908B2 (en) Retaining wall and method for constructing retaining wall
JP2007205161A (en) Retaining wall and its construction method
JPH11117315A (en) Temporary cofferdam structure
KR102274384B1 (en) Connection apparatus of steel pipe
KR101187174B1 (en) Pre-founded Column System having Bearing-Shear Band and Beam-Column Connection System using Grouted Jacket having Bearing-Shear Band for Top-Down or Common Construction
JP3896351B2 (en) Construction method of underground wall and construction method of underpass
JP2004332202A (en) Method for constructing shaft by using liner plate
JP2018096042A (en) Main girder for bridge, bridge having same main girder, and bridge construction method
KR101431623B1 (en) Mehod for constructing underground wall in extension of undergound parking lot
JP2002275922A (en) Reversed placing method
JPH08193330A (en) Construction method of strut/beam material in underground structure
KR101238640B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
JP2001214465A (en) Reinforcing structure for underground construction
KR101238639B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
KR20200012602A (en) Improved retaining wall pre-stress method
JPS63280153A (en) Underground inverted lining method
JP3642771B2 (en) Cylindrical vertical retaining wall structure
KR101238641B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
JP2006009258A (en) Column-beam joining structure, construction method of column-beam joining structure, construction method of underground structure and building
JP4803438B2 (en) Existing foundation renovation structure and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees