JP3666647B2 - Method for manufacturing a cold cathode fluorescent discharge tube - Google Patents

Method for manufacturing a cold cathode fluorescent discharge tube Download PDF

Info

Publication number
JP3666647B2
JP3666647B2 JP2001002608A JP2001002608A JP3666647B2 JP 3666647 B2 JP3666647 B2 JP 3666647B2 JP 2001002608 A JP2001002608 A JP 2001002608A JP 2001002608 A JP2001002608 A JP 2001002608A JP 3666647 B2 JP3666647 B2 JP 3666647B2
Authority
JP
Japan
Prior art keywords
glass tube
fluorescent
tube
cold cathode
forming solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002608A
Other languages
Japanese (ja)
Other versions
JP2002208350A (en
Inventor
正義 鯨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2001002608A priority Critical patent/JP3666647B2/en
Publication of JP2002208350A publication Critical patent/JP2002208350A/en
Application granted granted Critical
Publication of JP3666647B2 publication Critical patent/JP3666647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷陰極蛍光放電管の製造方法に関し、特にガラス細管の内壁に蛍光膜を形成する技術に関する。
【0002】
【従来の技術】
コンピュータに接続された液晶モニタ、液晶テレビ等においてはバックライト方式が広く採用されており、このバックライト方式の光源には冷陰極蛍光放電管が一般的に使われている。このような用途の冷陰極蛍光放電管では、均一な発光強度並びに均一な発光色を得ることが要求されるとともに、冷陰極蛍光放電管の細管化の要求も高まりつつある。即ち、情報通信時代の進展やモバイルユースの増大からOA機器、AV機器の小型化・薄型化が進んでおり、それに対応して液晶モニタ等の光源としての冷陰極蛍光放電管の小型化・細管化が要求されている。また、冷陰極蛍光放電管から放出された光がバックライトを通過するときの光使用効率の向上を図る上でも、放電管の細管化は重要な課題である。
【0003】
冷陰極蛍光放電管は、周知のとおりガラス管の内壁に薄い蛍光膜を形成し、ガラス管内部に封入された水銀蒸気からの紫外線放射をこの蛍光膜によって可視光に変換している。このガラス管の内壁に蛍光膜を形成する方法としては、ガラス管を直立させた状態で、ガラス管の一方の開口部から蛍光材を吸い上げてガラス管の内壁に付着させる方法が一般的である。
【0004】
即ち、まず、両端が開口されたガラス管を用意し、このガラス管をその下端の開口部が蛍光膜形成溶剤に浸された状態で直立に配置する。次に、ガラス管の上端の開口部より吸引を行い、ガラス管の内部圧力を陰圧化することにより、蛍光膜形成溶剤をガラス管の内部に吸い上げてガラス管の内壁に蛍光膜形成溶剤を付着させる。続いて、陰圧を解除して余分な蛍光膜形成溶剤をガラス管の下端の開口部より排出した後、ガラス管内部に乾燥用ガスを流し込み、ガラス管の内壁に付着した蛍光膜形成溶剤に含まれる溶剤を揮発させる。最後に、ガラス管に熱処理を施すことにより、蛍光材をガラス管の内壁に焼き付けて蛍光膜を形成することができる。
【0005】
【発明が解決しようとする課題】
前述の冷陰極蛍光放電管の製造方法によれば、ガラス管の直径が2.0〜6.0mmφ、ガラス管の長さが350mm程度のものであれば、ガラス管の内部に薄い蛍光膜を良好にかつ生産性良く形成することができる。しかし、ガラス管の直径がこれよりも小さくなった場合や、ガラス管の長さが350mmを越えるような場合には蛍光膜を良好に形成することができない。特に、ガラス管に微妙な曲がりが生じた場合には、蛍光膜を良好に形成することが困難となる。
【0006】
このため、ガラス管の内部に吸い上げた蛍光膜形成溶剤をガラス管の開口部より排出した後、ガラス管を管長方向に沿った中心軸を回転軸として回転させることが考えられる。この方法によれば、ガラス管の曲がりによって蛍光膜が良好に形成できない等の問題を改善できることが期待される。しかしこの製造方法においても、以下の点については配慮がなされていなかった。
【0007】
即ち、蛍光膜形成溶剤としては、溶剤、結着材及び赤色系蛍光体、緑色系蛍光体及び青色系蛍光体とから構成される蛍光材成分を混合したものを一般的に使用する。具体的に、溶剤にはニトロセルロース又はエチルセルロース等の有機溶剤を、結着材には低融点ガラスの粉末を使用する。ここで、蛍光材成分における青色系蛍光体は、赤色系蛍光体及び緑色系蛍光体に比較して、比重が小さく粒子の径も小さい。このため、ガラス管を管長方向に沿った中心軸を回転軸として回転させたときに、遠心分離されるため、蛍光膜形成溶剤中に含まれる赤色系蛍光体及び緑色系蛍光体はガラス管の内壁近傍に集まるが、青色系蛍光体はガラス管の内壁近傍に集まらずに、蛍光膜形成溶剤層の表面、即ちガラス管の内壁から離間した領域に集まりやすい。このように、青色系蛍光体が蛍光膜形成溶剤層の表面側に集中すると、形成された蛍光膜中における赤色系蛍光体、緑色系蛍光体及び青色系蛍光体の分布が不均一となる。また、ガラス管内部に乾燥用ガスを流し込んだときに、青色系蛍光体が選択的に流れ出てしまい、形成された蛍光膜中の赤色系蛍光体、緑色系蛍光体及び青色系蛍光体の含有量にバラツキが生じる。青色系蛍光体は、赤色系蛍光体及び緑色系蛍光体に比べて、特に輝度への影響が大きく、また紫外線による劣化も生じやすい。したがって、前述のように蛍光膜中における蛍光材組成の分布の不均一化や含有量のバランスが崩れると、色度や輝度のバラツキが生じやすく、また長期間にわたって輝度を良好に維持できないと言う問題が発生する。
【0008】
本発明は上記課題を解決するためになされたものである。したがって、本発明の目的は、組成及び膜厚の均一性に優れ膜の厚い蛍光膜を容易に形成可能な冷陰極蛍光放電管の製造方法を提供することである。特に、ガラス管の内径が1.5mmφ以下の場合、ガラス管の長さが350mmを越えるような場合、ガラス管が微妙な曲がりを有する場合、そして蛍光材成分中の蛍光材間に比重差が存在する場合等においても、組成及び膜厚の均一性に優れ且つ蛍光膜の厚い冷陰極蛍光放電管の製造方法を提供することである。
【0009】
また本発明の目的は、色度や輝度のバラツキが少なく、また長期間にわたって輝度を良好に維持できる信頼性の高い冷陰極蛍光放電管の製造方法を提供することである。
【0010】
更に本発明の目的は、生産性を向上することができる冷陰極蛍光放電管の製造方法を提供することである。
【0011】
更に本発明の目的は、液晶モニタ、液晶テレビ等の装置の小型化を実現することができる冷陰極蛍光放電管の製造方法を提供することである。
【0012】
【課題を解決するための手段】
上記課題を解決するために、この発明の特徴は、(イ)両端に開口部を有するガラス管の内部に、開口部の少なくとも一方から蛍光膜形成溶剤を導入する工程、(ロ)ガラス管の管長方向に沿った中心軸を回転軸として、ガラス管を第一の回転速度で回転させ、ガラス管の内壁に蛍光膜形成溶剤を付着させる工程、(ハ)回転軸を用いて、ガラス管を第一の回転速度よりも高速の第二の回転速度で回転させることにより、付着した蛍光膜形成溶剤をガラス管の内壁に押圧する工程とを備え、蛍光膜形成溶剤からガラス管の内壁に蛍光膜を形成する冷陰極蛍光放電管の製造方法であることを要旨とする。例えば、「第一の回転速度」を100rpm以上1000rpm未満とすれば、「第二の回転速度」は5000rpm以上15000rpm未満程度にすればよい。好ましくは、第一の回転速度を200rpm以上500rpm未満とし、第二の回転速度を10000rpm以上15000rpm未満程度に選定すれば良い。
【0013】
特に、本発明の冷陰極蛍光放電管の製造方法は、ガラス管の内径が1.5mmφ以下の場合、ガラス管の長さが350mmを越えるような場合、ガラス管が微妙な曲がりを有する場合、そして蛍光材成分中の蛍光材間に比重差が存在する場合において、このガラス管の内壁に良質の蛍光膜を形成する場合には好適な方法である。
【0014】
比較的低速度の第一の回転速度で回転させる工程では、遠心力が小さく、蛍光膜形成溶剤中の蛍光材が均一に分散して、ガラス管の内壁に付着する。つまり、蛍光膜形成溶剤には少なくとも溶剤、結着材及び比重の異なる複数種類の蛍光材が含まれる場合においては、遠心分離能力の低い、第一の回転速度での回転により、比重の異なる複数種類の蛍光材が均一に分散される。このように、ガラス管を第一の回転速度で回転させて、蛍光膜形成溶剤中の複数種類の蛍光材を、その厚み方向において均一に分散した状態で付着させ、次にガラス管を第二の回転速度で回転させて、遠心力を強くし、均一に分散した状態を保った蛍光膜形成溶剤を、ガラス管の内壁に強く押圧・付着させる。そして、その後に溶剤を取り除くことにより、ガラス管の内壁に、均一な組成の蛍光膜が形成される。更に、蛍光膜形成溶剤を導入する工程は、ガラス管の一方の開口部を蛍光膜形成溶剤に浸漬させ、ガラス管の他方の開口部から蛍光膜形成溶剤を吸引する工程で行えば良い。
【0015】
この結果、ガラス管の内径が小さな場合においても、組成及び膜厚の均一性に優れ、且つ膜の厚い蛍光膜を、ガラス管の内壁に容易に形成することができる。したがって、色度や輝度のバラツキが少なく、紫外線照射やスパッタに対する強度が高い蛍光膜を形成することができ、長期間にわたって高輝度が安定して得られる。このため、信頼性の高い冷陰極蛍光放電管を製造することができる。
【0016】
更に、蛍光膜形成溶剤の粘度を低くし、ガラス管の内部に蛍光膜形成溶剤を容易に導入することもできる。特に、蛍光膜形成溶剤の粘度を低くすれば、1.5mmφ以下の内径を有するガラス細管においても、このガラス細管の内部に蛍光膜形成溶剤を容易に吸い上げることができる。したがって、蛍光膜の形成工程の自動化を行い、冷陰極蛍光放電管を量産することができるので、この冷陰極蛍光放電管の生産コスト並びに製品コストを減少させることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図2に示すように、本発明の実施の形態に係る冷陰極蛍光放電管1は、両端部が封じられて内部に気密空間を有するガラス管2と、このガラス管2の内壁に形成された蛍光膜3と、ガラス管2の左側端部の放電用電極4A及び電極端子5Aと、ガラス管2の右側端部の放電用電極4B及び電極端子5Bと、ガラス管2の気密空間内に封入された放電用ガス6とを備えている。
【0018】
ガラス管2は、例えば外径1.9mmφ、内径1.5mmφ、管長500mmの細長い筒状の細管で形成されている。ガラス管2の内壁の蛍光膜3は、放電により発生する紫外線の照射を受けて可視光線を放出するようになっている。放電用ガス6は冷陰極蛍光放電管1の点灯を助けるために封入されている。この放電用ガス6には例えばアルゴン(Ar)ガス、キセノン(Xe)ガス等の希ガスを使用することができ、ガラス管2の内部の圧力は5.3kPa〜13kPa程度に設定されている。なお、ガラス管2の内部には、放電用ガス6とともに、水銀放電を発生させるための必要一定量の水銀(水銀粒)が封入されている。
【0019】
ガラス管2の内部において両端部に一対で配設された放電用電極4A、4Bは、いずれも円筒形状で形成され、例えばニッケル(Ni)等の電極材料で形成されている。一対の放電用電極4A、4Bのそれぞれの電極形状は、特に限定されないが、皿形状、棒形状、ワイヤ形状等、様々な形状を採用することができる。
【0020】
電極端子5Aの一端側は放電用電極4Aに電気的に接続され、他端側はガラス管2の外部に導出されている。同様に、電極端子5Bの一端側は放電用電極4Bに電気的に接続され、他端側はガラス管2の外部に導出されている。電極端子5A、5Bはいずれも例えばニッケル等の電気伝導性が良好な金属材料で形成されており、電極端子5Aと放電用電極4Aとの間、電極端子5Bと放電用電極4Bとの間はいずれも例えば溶融結合にて接合されている。
【0021】
次に、図2に示す冷陰極蛍光放電管1の製造方法を、図1、図3〜図8の工程断面図を用いて説明する。
【0022】
(1)まず最初に、図3に示すように、左側の一端に第1の開口部21を有し、右側の他端に第2の開口部22を有する細長い筒状のガラス管20を用意する。このガラス管20は、上記外径寸法並びに内径寸法を有する長尺状のガラス細管を、周知のガラス切断技術により適正な管長において切断したものである。この段階においては、ガラス管20の内壁に蛍光膜3は形成されていない。
【0023】
(2)次に、ガラス管20の第1の開口部21を下側にし、図4に示すように、第2の開口部22を上側にしてガラス管20を直立状態で保持する。そして、このガラス管20の第1の開口部21を容器30内に満たされた蛍光膜形成溶剤31に浸漬させる。蛍光膜形成溶剤31は、溶剤、結着材及び蛍光材の3種類の成分を混合したものを使用することができる。溶剤には例えばニトロセルロース又はエチルセルロース等の有機溶剤を使用することができる。結着材には例えば低融点ガラスの粉末等を使用することができる。蛍光材にはそれぞれ比重の異なる赤(R)、緑(G)、青(B)の3原色をブレンドした市販の蛍光材等を使用することができる。蛍光膜形成溶剤31は、溶液中に占める溶剤の含有率を、例えば11重量%程度に設定している。
【0024】
(3)次に、ガラス管20の第2の開口部22を吸引装置35に連接し、吸引装置35を稼働させてガラス管20の内部圧力を陰圧にする。この結果、図4に示すように、ガラス管20の第1の開口部21から容器30内の蛍光膜形成溶剤31が吸い上げられ、ガラス管20の内部に蛍光膜形成溶剤31が充填される。蛍光膜形成溶剤31の粘度を低く設定しておけば、ガラス管20の内径が1.5mmφの細管であっても、更に内径が1.5mmφ以下の細管であっても、ガラス管20の内部に蛍光膜形成溶剤31を容易にかつ良好な状態で吸い上げることができる。そして、蛍光膜形成溶剤31は、ガラス管20の長さ方向の全体にわたって満遍なく付着する。なお、吸引装置35には、水流アスピレータ、水封ポンプ、スチームエゼクターポンプ、油回転ポンプ、乾式回転ポンプ、メカニカルブースタポンプ等の真空排気装置を使用することができる。
【0025】
(4)次に、ガラス管20の第2の開口部22からの吸引を解除して、第1の開口部21からの蛍光膜形成溶剤31の吸い上げを停止する。吸引装置35による吸引を解除し、ガラス管20の内部の余分な蛍光膜形成溶剤31を自重によって第1の開口部21から容器30に排出させる。余分な蛍光膜形成溶剤31を排出した後においては、ガラス管20の内壁には蛍光膜形成溶剤31がある一定の厚みで付着して残存している。
【0026】
(5)次に、図1に示すように、ガラス管20を直立状態に保持したまま高速スピナー7に取り付け、管長方向に沿った中心軸を回転軸として、ガラス管20を比較的低速の第一の回転速度で回転させる。第一の回転速度は、100rpm以上1000rpm未満、好ましくは200rpm以上500rpm未満の回転速度に設定される。この回転を与えることによって蛍光膜形成溶剤はガラス管20の内壁に押圧されて付着するが、回転速度が比較的遅いため、蛍光材の比重差に起因する組成の分布のバラツキは発生しない。即ち、蛍光膜形成溶剤中の赤色系蛍光体、緑色系蛍光体及び青色系蛍光体が遠心力によって均一に分散し、蛍光膜形成溶剤の厚み方向においてこれらが混在した状態で付着している。また、蛍光膜形成溶剤のガラス管への付着強度もそれほど強くない。これに対して、ガラス管20を5000rpmを超える回転速度で回転させると、比重の小さい青色系蛍光体のみが蛍光膜形成溶剤の表面に集中して分布するようになる。
【0027】
(6)次に、図1に示すように、ガラス管20を直立状態に保持したまま、ガラス管20を管長方向に沿った中心軸を回転軸として、比較的高速の第二の回転速度で回転させる。第二の回転速度は5000rpm以上15000rpm、好ましくは10000rpm以上15000rpm未満に設定させる。この回転を与えることにより、ガラス管の内壁に付着した蛍光膜形成溶剤31には強い遠心力が加わり、蛍光膜形成溶剤31はガラス管20の内壁に強く押圧され、ガラス管20の内壁に強く付着された蛍光膜形成溶剤32を形成することができる。このとき、前述のように第一の回転速度に基づく相対的に小さい遠心力を加えることによって、蛍光膜形成溶剤31中の赤色系蛍光体、緑色系蛍光体及び青色系蛍光体は均一に分散し、蛍光膜形成溶剤31の厚み方向においてこれらが混在した状態で付着しているので、この蛍光膜形成溶剤31に第二の回転速度に基づく相対的に大きい遠心力が加わることによってガラス管20の内壁に強く付着された蛍光膜形成溶剤32中においても赤色系蛍光体、緑色蛍光体及び青色系蛍光体は均一に分散している。したがって、蛍光膜形成溶剤32の厚み方向においてこれらが混在して分布した状態で付着する。
【0028】
このように、蛍光膜形成溶剤32の赤色系蛍光体、緑色系蛍光体及び青色系蛍光体が均一に分散した状態で付着していること、第二の回転速度に基づく相対的に大きい遠心力によりガラス管20の内壁に蛍光膜形成溶剤32が強く付着させられていることによって、蛍光膜の膜厚や組成の均一性が向上し、色度や輝度のバラツキは実用上問題の無いレベルにまで減少させることができる。
【0029】
(7)次に、図5に示すように、ガラス管20の第2の開口部22を乾燥用ガス発生装置8に接続する。そして、この乾燥用ガス発生装置8から、ガラス管20の内部に乾燥用ガスを送り込むことにより、ガラス管20の内壁に付着された蛍光膜形成溶剤32中に含まれる溶剤を揮発させる。乾燥用ガス80には、例えば乾燥窒素(N)ガス、ヘリウム(He)、アルゴン(Ar)等の不活性ガスや乾燥空気等を使用することができる。溶剤の揮発により、ガラス管20の内壁に付着された蛍光膜形成溶剤32から膜厚がほぼ均一化された蛍光膜形成溶剤33を形成することができる。
【0030】
なお、蛍光膜形成溶剤33の溶剤は後述の焼成工程を行う前に完全に揮発させておく必要があり、焼成工程時に溶剤が残存していると、溶剤の揮発に伴いボイドが発生する場合がある。また、焼成工程時に溶剤が残存していると、溶剤が酸化して蛍光膜中にカーボンが生成される場合があり、この点からも蛍光膜形成溶剤33中の溶剤は焼成工程前に充分に揮発させておくことが重要である。
【0031】
(8)次に、図6に示すように、焼成炉(熱処理炉)9内にガラス管20を移送する。そして、この焼成炉9内において、ガラス管20に約700℃程度の熱処理を施し、蛍光膜形成溶剤33中の結着材とともに蛍光材をガラス管20の内壁に焼き付ける。この焼き付けにより、ガラス管20の内壁に均一な膜厚で、緻密な膜質で、且つ厚い膜厚で蛍光膜3を形成する。蛍光膜3は例えば10μm〜20μmの膜厚で形成されることが好ましい。
【0032】
(9)次に、蛍光膜3が形成されたガラス管20の一方の第1の開口部21に放電用電極4A及びそれに結合された電極端子5Aを配設し、図7に示すように、ガラス管20の一方の第1の開口部21を溶融結合させる。
【0033】
(10)次に、ガラス管20の他方の第2の開口部22からガラス管20の内部をターボ分子ポンプ、クライオポンプ、油拡散ポンプ等の真空排気装置により排気した後、ガラス管20の内部に放電用ガス6を上記圧力で充填する。引き続き、図8に示すように、ガラス管20の第2の開口部22に放電用電極4B及びそれに結合された電極端子5Bを配設する。そして、ガラス管20の第2の開口部22を溶融結合させ、放電用ガス6をガラス管20の内部に封じ込めるとともに、余分なガラス管20を切り落とすことにより、図2に示す冷陰極蛍光放電管1が完成する。
【0034】
このような冷陰極蛍光放電管1の製造方法においては、ガラス管20に蛍光膜形成溶剤31を導入した後、まずガラス管20をその管長方向に沿った中心軸を回転軸として比較的低速な第一の回転速度で回転させるので、蛍光膜形成溶剤31中の比重の異なる蛍光材を遠心力によって均一に分散させることができ、蛍光膜形成溶剤31をその厚み方向において、複数種類の蛍光材が混在した状態で、ガラス管20に付着させることができる。次に、ガラス管20をその管長方向に沿った中心軸を回転軸として比較的高速な第二の回転速度で回転させるので、蛍光材が均一に分散した状態を維持しつつ、蛍光膜形成溶剤31をガラス管の内壁に強く付着させることができる。この結果、ガラス管の内径が小さな場合においても、組成及び膜厚の均一性に優れ膜の厚い蛍光膜を容易に形成することができる。したがって、冷陰極蛍光放電管1の点灯時において、色度や輝度のバラツキが少なく、紫外線照射やスパッタに対する強度が高い蛍光膜を形成することができるので、長期間にわたって高輝度が安定して得られ、信頼性の高い冷陰極蛍光放電管1を製造することができる。
【0035】
更に、蛍光膜形成溶剤31の粘度を低くすることにより、ガラス管20の内部に蛍光膜形成溶剤31を容易に導入することができる。特に、1.5mmφ以下の内径を有するガラス管(ガラス細管)20においても、このガラス管20の内部に蛍光膜形成溶剤31を容易に吸い上げることができる。したがって、蛍光膜3の形成工程の自動化を行い、冷陰極蛍光放電管1を量産することができるので、この冷陰極蛍光放電管1の生産コスト並びに製品コストを減少することができる。
【0036】
更に、このような冷陰極蛍光放電管1の製造方法においては、1.5mmφ以下の内径を有するガラス管2の内壁に良質の蛍光膜3を形成することができるので、コンピュータの液晶モニタ、液晶テレビ等の装置の小型化を実現することができる。
【0037】
(その他の実施の形態)
本発明は上記実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0038】
例えば、図4においては、ガラス管20を直立状態に保持して蛍光膜形成溶剤31を吸い上げ、ガラス管20の内壁に蛍光膜形成溶剤31を導入する方法を採用した。しかし、本発明は、ガラス管20を水平状態、即ち横方向に寝かせた状態に配置し、ガラス管20の内部圧力を陰圧にし、ガラス管20の内部に横方向から蛍光膜形成溶剤31を導入してもよい。その後、ガラス管20の第2の開口部22からの吸引を解除して、ガラス管20を直立状態にし、ガラス管20の内部の余分な蛍光膜形成溶剤31を自重によって第1の開口部21から容器30に排出させればよい。この後は、図1と同様に、ガラス管20を直立状態に保持したまま高速スピナー7に取り付け、管長方向に沿った中心軸を回転軸として、ガラス管20を比較的低速の第一の回転速度で回転させればよい。
【0039】
また、図1においては、ガラス管20に蛍光膜形成溶剤31を塗布した後、ガラス管20を直立に保持した状態で回転させる方法を採用したが、本発明は、目的や用途により、直立状態や水平状態を含むどのような角度に回転軸を保持した状態で回転させても構わない。また、第一の回転速度での回転工程及び第二の回転速度での回転工程の途中で、回転軸を一定角度移動しても構わない。
【0040】
更に、上記本発明の実施の形態に係る冷陰極蛍光放電管1の製造方法においては、ガラス管20に蛍光膜形成溶剤31を塗布した後、ガラス管20を第一の回転速度と第二の回転速度において2度回転させる方法を採用したが、本発明は、目的や用途により、第三の回転速度、第四の回転速度、・・・・・を用いて、3度以上回転させる工程を有してもよいし、各々の回転速度を変化させてもよい。
【0041】
更に、上記本発明の実施の形態に係る冷陰極蛍光放電管1の製造方法においては、ガラス管20の内部に蛍光膜形成溶剤31を導入した後に、このガラス管20に第一の回転速度における回転を与えているが、本発明は、ガラス管20の内部に蛍光膜形成溶剤31を導入する工程と同時にこのガラス管20に第一の回転速度における回転を与えてもよい。
【0042】
更に、上記本発明の実施の形態に係る冷陰極蛍光放電管1の製造方法においては、ガラス管20の内部に蛍光膜形成溶剤31を導入し、このガラス管20に第二の回転速度における回転を与えてから、このガラス管20の内部に乾燥用ガス80を送り込み膜厚を均一化した蛍光膜形成溶剤33を形成しているが、本発明は、ガラス管20の内部に蛍光膜形成溶剤31を導入し、このガラス管20の内部に乾燥用ガス80を送り込み膜厚を均一化した蛍光膜形成溶剤33を形成してから、ガラス管20に第二の回転速度における回転を与えてもよい。あるいは、このガラス管20に乾燥用ガス80を流し込みながら、第二の回転速度における回転を与えてもよい。
【0043】
更に、上記本発明の実施の形態に係る冷陰極蛍光放電管1の製造方法においては、工程(1)から工程(10)までの10工程にて冷陰極蛍光放電管1を完成させる方法を採用したが、本発明は、目的や用途により、工程(2)から工程(6)まで、あるいは工程(2)から工程(8)までの工程を複数回繰り返して、冷陰極蛍光放電管1を完成させもよい。
【0044】
また、例えば、上記冷陰極蛍光放電管1の外周囲に更にガラス管を備えた二重管式放電管に応用することができる。
【0045】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0046】
【発明の効果】
本発明によれば、組成及び膜厚の均一性に優れ膜の厚い蛍光膜を容易に形成可能な冷陰極蛍光放電管の製造方法を提供することができる。特に、ガラス管の内径が1.5mmφ以下の場合、ガラス管の長さが350mmを越えるような場合、ガラス管が微妙な曲がりを有する場合、そして蛍光材成分中の蛍光材間に比重差が存在する場合等においても、厚く且つ組成及び膜厚の均一性に優れた蛍光膜を有した冷陰極蛍光放電管を提供することができる。
【0047】
また本発明によれば、色度や輝度のバラツキが少なく、また長期間にわたって輝度を良好に維持できる信頼性の高い冷陰極蛍光放電管の製造方法を提供することができる。
【0048】
更に本発明によれば、生産性を向上することができる冷陰極蛍光放電管の製造方法を提供することができる。
【0049】
更に本発明によれば、液晶モニタ、液晶テレビ等の装置の小型化を実現することができる冷陰極蛍光放電管の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る冷陰極蛍光放電管の工程断面図であり、図4に続く工程断面図である。
【図2】本発明の実施の形態に係る冷陰極蛍光放電管の断面構造図である。
【図3】本発明の実施の形態に係る冷陰極蛍光放電管の最初の工程断面図である。
【図4】本発明の実施の形態に係る図3に続く冷陰極蛍光放電管の工程断面図である。
【図5】本発明の実施の形態に係る図1に続く冷陰極蛍光放電管の工程断面図である。
【図6】本発明の実施の形態に係る図5に続く冷陰極蛍光放電管の工程断面図である。
【図7】本発明の実施の形態に係る図6に続く冷陰極蛍光放電管の工程断面図である。
【図8】本発明の実施の形態に係る図7に続く冷陰極蛍光放電管の工程断面図である。
【符号の説明】
1 冷陰極蛍光放電管
2,20 ガラス管
3 蛍光膜
4A,4B 放電用電極
5A,5B 電極端子
6 放電用ガス
7 高速スピナー
8 乾燥用ガス発生装置
9 焼成炉
21 第1の開口部
22 第2の開口部
30 容器
31,32,33 蛍光膜形成溶剤
35 吸引装置
80 乾燥用ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a cold cathode fluorescent discharge tube, and more particularly to a technique for forming a fluorescent film on the inner wall of a glass thin tube.
[0002]
[Prior art]
A backlight system is widely adopted in liquid crystal monitors, liquid crystal televisions, and the like connected to computers, and cold cathode fluorescent discharge tubes are generally used as light sources of this backlight system. In such a cold cathode fluorescent discharge tube, it is required to obtain uniform light emission intensity and uniform light emission color, and the demand for narrowing the cold cathode fluorescent discharge tube is increasing. In other words, OA equipment and AV equipment are becoming smaller and thinner due to progress in the information and communication era and increasing mobile use. Correspondingly, cold cathode fluorescent discharge tubes as light sources such as liquid crystal monitors are made smaller and narrower. Is required. Further, in order to improve the light use efficiency when the light emitted from the cold cathode fluorescent discharge tube passes through the backlight, it is an important issue to make the discharge tube narrow.
[0003]
As is well known, a cold cathode fluorescent discharge tube forms a thin fluorescent film on the inner wall of a glass tube, and ultraviolet radiation from mercury vapor sealed inside the glass tube is converted into visible light by this fluorescent film. As a method of forming a fluorescent film on the inner wall of the glass tube, a method of sucking a fluorescent material from one opening of the glass tube and attaching it to the inner wall of the glass tube while the glass tube is upright is common. .
[0004]
That is, first, a glass tube having both ends opened is prepared, and this glass tube is placed upright with the opening at the lower end immersed in the fluorescent film forming solvent. Next, suction is performed through the opening at the upper end of the glass tube, and the internal pressure of the glass tube is made negative, so that the fluorescent film forming solvent is sucked into the glass tube and the fluorescent film forming solvent is applied to the inner wall of the glass tube. Adhere. Subsequently, after the negative pressure is released and excess fluorescent film forming solvent is discharged from the opening at the lower end of the glass tube, a drying gas is poured into the glass tube, and the fluorescent film forming solvent adhering to the inner wall of the glass tube is poured into the glass tube. Volatilizes the contained solvent. Finally, by applying a heat treatment to the glass tube, the fluorescent material can be baked onto the inner wall of the glass tube to form a fluorescent film.
[0005]
[Problems to be solved by the invention]
According to the method for manufacturing a cold cathode fluorescent discharge tube described above, if the glass tube has a diameter of 2.0 to 6.0 mmφ and the length of the glass tube is about 350 mm, a thin fluorescent film is formed inside the glass tube. It can be formed well and with good productivity. However, when the diameter of the glass tube is smaller than this, or when the length of the glass tube exceeds 350 mm, the phosphor film cannot be formed satisfactorily. In particular, when a slight bending occurs in the glass tube, it is difficult to form a fluorescent film satisfactorily.
[0006]
For this reason, after discharging | emitting the fluorescent film formation solvent sucked up inside the glass tube from the opening part of a glass tube, it is possible to rotate a glass tube by making the central axis along a tube length direction into a rotating shaft. According to this method, it is expected that problems such as a phosphor film not being satisfactorily formed due to the bending of the glass tube can be improved. However, in this manufacturing method, the following points have not been considered.
[0007]
That is, as the fluorescent film forming solvent, a mixture of a fluorescent material component composed of a solvent, a binder, a red fluorescent material, a green fluorescent material, and a blue fluorescent material is generally used. Specifically, an organic solvent such as nitrocellulose or ethylcellulose is used as the solvent, and a low-melting glass powder is used as the binder. Here, the blue phosphor in the phosphor material component has a smaller specific gravity and a smaller particle diameter than the red phosphor and the green phosphor. For this reason, since the glass tube is centrifuged when the central axis along the tube length direction is rotated as the rotation axis, the red phosphor and the green phosphor contained in the phosphor film forming solvent are contained in the glass tube. Although it collects in the vicinity of the inner wall, the blue phosphor does not collect in the vicinity of the inner wall of the glass tube, but tends to collect on the surface of the fluorescent film forming solvent layer, that is, in a region separated from the inner wall of the glass tube. Thus, when the blue phosphor is concentrated on the surface side of the phosphor film forming solvent layer, the distribution of the red phosphor, the green phosphor and the blue phosphor in the formed phosphor film becomes non-uniform. In addition, when a drying gas is introduced into the glass tube, the blue phosphor selectively flows out, and the red phosphor, the green phosphor and the blue phosphor contained in the formed phosphor film Variations in quantity occur. The blue phosphor has a greater influence on the luminance than the red phosphor and the green phosphor, and is easily deteriorated by ultraviolet rays. Therefore, as described above, when the distribution of the fluorescent material composition in the fluorescent film is non-uniform and the balance of the content is lost, chromaticity and luminance are likely to vary, and the luminance cannot be maintained well over a long period of time. A problem occurs.
[0008]
The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a method for manufacturing a cold cathode fluorescent discharge tube which can easily form a thick fluorescent film having excellent composition and film thickness uniformity. In particular, when the inner diameter of the glass tube is 1.5 mmφ or less, when the length of the glass tube exceeds 350 mm, when the glass tube has a slight bend, and there is a difference in specific gravity between the fluorescent materials in the fluorescent material components. The present invention is to provide a method for producing a cold cathode fluorescent discharge tube which is excellent in the uniformity of composition and film thickness even when it exists, and which has a thick fluorescent film.
[0009]
Another object of the present invention is to provide a method for manufacturing a highly reliable cold cathode fluorescent discharge tube that has little variation in chromaticity and luminance, and that can maintain good luminance over a long period of time.
[0010]
Furthermore, the objective of this invention is providing the manufacturing method of the cold cathode fluorescent discharge tube which can improve productivity.
[0011]
A further object of the present invention is to provide a method of manufacturing a cold cathode fluorescent discharge tube which can realize downsizing of devices such as a liquid crystal monitor and a liquid crystal television.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized by (a) introducing a phosphor film-forming solvent into at least one of the openings into a glass tube having openings at both ends; The step of rotating the glass tube at the first rotation speed with the central axis along the tube length direction as the rotation axis, and attaching the fluorescent film forming solvent to the inner wall of the glass tube, (c) Using the rotation axis, A step of pressing the adhered fluorescent film forming solvent against the inner wall of the glass tube by rotating at a second rotational speed that is higher than the first rotational speed. The gist of the present invention is a method of manufacturing a cold cathode fluorescent discharge tube for forming a film. For example, if the “first rotation speed” is 100 rpm or more and less than 1000 rpm, the “second rotation speed” may be about 5000 rpm or more and less than 15000 rpm. Preferably, the first rotation speed may be 200 rpm or more and less than 500 rpm, and the second rotation speed may be selected to be about 10,000 rpm or more and less than 15000 rpm.
[0013]
In particular, the manufacturing method of the cold cathode fluorescent discharge tube of the present invention, when the inner diameter of the glass tube is 1.5 mmφ or less, when the length of the glass tube exceeds 350 mm, when the glass tube has a delicate bend, In the case where a specific gravity difference exists between the fluorescent materials in the fluorescent material component, this method is suitable for forming a high-quality fluorescent film on the inner wall of the glass tube.
[0014]
In the step of rotating at a relatively low first rotational speed, the centrifugal force is small, and the fluorescent material in the fluorescent film forming solvent is uniformly dispersed and adheres to the inner wall of the glass tube. That is, when the fluorescent film forming solvent includes at least a solvent, a binder, and a plurality of types of fluorescent materials having different specific gravities, a plurality of different specific gravities due to rotation at the first rotational speed with low centrifugal separation ability. Different types of fluorescent material are uniformly dispersed. In this way, the glass tube is rotated at the first rotation speed so that the plurality of types of fluorescent materials in the phosphor film forming solvent are uniformly dispersed in the thickness direction, and then the glass tube is attached to the second glass tube. The fluorescent film-forming solvent, which is rotated at a rotational speed of 5 to increase the centrifugal force and maintains a uniformly dispersed state, is strongly pressed and adhered to the inner wall of the glass tube. Then, after removing the solvent, a fluorescent film having a uniform composition is formed on the inner wall of the glass tube. Further, the step of introducing the fluorescent film forming solvent may be performed by immersing one opening of the glass tube in the fluorescent film forming solvent and sucking the fluorescent film forming solvent from the other opening of the glass tube.
[0015]
As a result, even when the inner diameter of the glass tube is small, a fluorescent film having excellent composition and film thickness uniformity and a thick film can be easily formed on the inner wall of the glass tube. Accordingly, it is possible to form a fluorescent film with little variation in chromaticity and luminance and high strength against ultraviolet irradiation and sputtering, and high luminance can be stably obtained over a long period of time. For this reason, a highly reliable cold cathode fluorescent discharge tube can be manufactured.
[0016]
Furthermore, the viscosity of the fluorescent film forming solvent can be lowered, and the fluorescent film forming solvent can be easily introduced into the glass tube. In particular, if the viscosity of the fluorescent film-forming solvent is lowered, the fluorescent film-forming solvent can be easily sucked into the glass capillary even in a glass capillary having an inner diameter of 1.5 mmφ or less. Therefore, since the process for forming the fluorescent film can be automated and mass production of the cold cathode fluorescent discharge tube can be performed, the production cost and product cost of the cold cathode fluorescent discharge tube can be reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 2, a cold cathode fluorescent discharge tube 1 according to an embodiment of the present invention is formed on a glass tube 2 having both ends sealed and an airtight space inside, and an inner wall of the glass tube 2. Enclosed in the hermetic space of the fluorescent film 3, the discharge electrode 4A and the electrode terminal 5A at the left end of the glass tube 2, the discharge electrode 4B and the electrode terminal 5B at the right end of the glass tube 2, and the glass tube 2 The discharge gas 6 is provided.
[0018]
The glass tube 2 is formed of, for example, an elongated cylindrical thin tube having an outer diameter of 1.9 mmφ, an inner diameter of 1.5 mmφ, and a tube length of 500 mm. The fluorescent film 3 on the inner wall of the glass tube 2 emits visible light upon irradiation with ultraviolet rays generated by discharge. The discharge gas 6 is enclosed to assist the lighting of the cold cathode fluorescent discharge tube 1. For example, a rare gas such as argon (Ar) gas or xenon (Xe) gas can be used as the discharge gas 6, and the pressure inside the glass tube 2 is set to about 5.3 kPa to 13 kPa. The glass tube 2 contains a discharge gas 6 and a certain amount of mercury (mercury particles) necessary for generating mercury discharge.
[0019]
Each of the discharge electrodes 4A and 4B disposed in a pair at both ends inside the glass tube 2 is formed in a cylindrical shape, for example, an electrode material such as nickel (Ni). Each electrode shape of the pair of discharge electrodes 4A and 4B is not particularly limited, but various shapes such as a dish shape, a rod shape, and a wire shape can be adopted.
[0020]
One end of the electrode terminal 5A is electrically connected to the discharge electrode 4A, and the other end is led out of the glass tube 2. Similarly, one end side of the electrode terminal 5B is electrically connected to the discharge electrode 4B, and the other end side is led out of the glass tube 2. Each of the electrode terminals 5A and 5B is made of a metal material having good electrical conductivity such as nickel, for example. Between the electrode terminal 5A and the discharge electrode 4A, between the electrode terminal 5B and the discharge electrode 4B, Both are joined by, for example, melt bonding.
[0021]
Next, a method for manufacturing the cold cathode fluorescent discharge tube 1 shown in FIG. 2 will be described with reference to the process cross-sectional views of FIGS. 1 and 3 to 8.
[0022]
(1) First, as shown in FIG. 3, an elongated cylindrical glass tube 20 having a first opening 21 at one end on the left side and a second opening 22 at the other end on the right side is prepared. To do. This glass tube 20 is obtained by cutting a long glass thin tube having the above outer diameter size and inner diameter size at an appropriate tube length by a known glass cutting technique. At this stage, the fluorescent film 3 is not formed on the inner wall of the glass tube 20.
[0023]
(2) Next, the glass tube 20 is held in an upright state with the first opening 21 of the glass tube 20 on the lower side and the second opening 22 on the upper side, as shown in FIG. And the 1st opening part 21 of this glass tube 20 is immersed in the fluorescent film formation solvent 31 with which the container 30 was filled. As the fluorescent film forming solvent 31, a mixture of three types of components, a solvent, a binder, and a fluorescent material, can be used. As the solvent, for example, an organic solvent such as nitrocellulose or ethylcellulose can be used. As the binder, for example, low melting point glass powder or the like can be used. As the fluorescent material, a commercially available fluorescent material blended with three primary colors of red (R), green (G), and blue (B) having different specific gravities can be used. In the phosphor film forming solvent 31, the content of the solvent in the solution is set to about 11% by weight, for example.
[0024]
(3) Next, the second opening 22 of the glass tube 20 is connected to the suction device 35, and the suction device 35 is operated to make the internal pressure of the glass tube 20 negative. As a result, as shown in FIG. 4, the fluorescent film forming solvent 31 in the container 30 is sucked up from the first opening 21 of the glass tube 20, and the fluorescent film forming solvent 31 is filled into the glass tube 20. If the viscosity of the phosphor film-forming solvent 31 is set low, the glass tube 20 has an inner diameter of 1.5 mmφ, even if the inner diameter of the glass tube 20 is 1.5 mmφ or less. In addition, the phosphor film forming solvent 31 can be sucked up easily and in a good state. The fluorescent film forming solvent 31 adheres evenly over the entire length of the glass tube 20. For the suction device 35, a vacuum exhaust device such as a water flow aspirator, a water seal pump, a steam ejector pump, an oil rotary pump, a dry rotary pump, or a mechanical booster pump can be used.
[0025]
(4) Next, the suction from the second opening 22 of the glass tube 20 is released, and the suction of the fluorescent film forming solvent 31 from the first opening 21 is stopped. The suction by the suction device 35 is released, and excess fluorescent film forming solvent 31 inside the glass tube 20 is discharged from the first opening 21 to the container 30 by its own weight. After the excess fluorescent film forming solvent 31 is discharged, the fluorescent film forming solvent 31 remains attached to the inner wall of the glass tube 20 with a certain thickness.
[0026]
(5) Next, as shown in FIG. 1, the glass tube 20 is attached to the high-speed spinner 7 while being held in an upright state, and the glass tube 20 is moved to a relatively low speed with the central axis along the tube length direction as the rotation axis. Rotate at one rotation speed. The first rotation speed is set to a rotation speed of 100 rpm or more and less than 1000 rpm, preferably 200 rpm or more and less than 500 rpm. By applying this rotation, the fluorescent film-forming solvent is pressed against and adheres to the inner wall of the glass tube 20. However, since the rotational speed is relatively slow, there is no variation in the composition distribution due to the specific gravity difference of the fluorescent material. That is, the red phosphor, the green phosphor, and the blue phosphor in the phosphor film forming solvent are uniformly dispersed by centrifugal force, and are adhering together in the thickness direction of the phosphor film forming solvent. Further, the adhesion strength of the fluorescent film forming solvent to the glass tube is not so strong. On the other hand, when the glass tube 20 is rotated at a rotational speed exceeding 5000 rpm, only the blue phosphor having a small specific gravity is concentrated and distributed on the surface of the phosphor film forming solvent.
[0027]
(6) Next, as shown in FIG. 1, with the glass tube 20 held in an upright state, the glass tube 20 is rotated at a relatively high second rotation speed with the central axis along the tube length direction as the rotation axis. Rotate. The second rotation speed is set to 5000 rpm to 15000 rpm, preferably 10,000 rpm to less than 15000 rpm. By applying this rotation, a strong centrifugal force is applied to the fluorescent film forming solvent 31 adhering to the inner wall of the glass tube, and the fluorescent film forming solvent 31 is strongly pressed against the inner wall of the glass tube 20 and strongly against the inner wall of the glass tube 20. The attached fluorescent film forming solvent 32 can be formed. At this time, by applying a relatively small centrifugal force based on the first rotation speed as described above, the red phosphor, the green phosphor and the blue phosphor in the phosphor film forming solvent 31 are uniformly dispersed. Since the fluorescent film forming solvent 31 adheres in a mixed state in the thickness direction, a relatively large centrifugal force based on the second rotational speed is applied to the fluorescent film forming solvent 31, thereby causing the glass tube 20. Also in the fluorescent film forming solvent 32 strongly adhered to the inner wall, the red phosphor, the green phosphor and the blue phosphor are uniformly dispersed. Therefore, they adhere in a state of being mixed and distributed in the thickness direction of the fluorescent film forming solvent 32.
[0028]
As described above, the red phosphor, the green phosphor and the blue phosphor in the phosphor film forming solvent 32 are attached in a uniformly dispersed state, and a relatively large centrifugal force based on the second rotational speed. As a result, the phosphor film-forming solvent 32 is strongly adhered to the inner wall of the glass tube 20, thereby improving the uniformity of the film thickness and composition of the phosphor film, and variations in chromaticity and luminance are at a level that is not problematic in practice. Can be reduced.
[0029]
(7) Next, as shown in FIG. 5, the second opening 22 of the glass tube 20 is connected to the drying gas generator 8. The drying gas is sent from the drying gas generator 8 into the glass tube 20 to volatilize the solvent contained in the fluorescent film forming solvent 32 attached to the inner wall of the glass tube 20. Examples of the drying gas 80 include dry nitrogen (N 2 ) Gas, an inert gas such as helium (He), argon (Ar), dry air, or the like can be used. Due to the volatilization of the solvent, the fluorescent film forming solvent 33 having a substantially uniform film thickness can be formed from the fluorescent film forming solvent 32 attached to the inner wall of the glass tube 20.
[0030]
In addition, it is necessary to volatilize the solvent of the fluorescent film formation solvent 33 completely before performing the below-mentioned baking process, and when a solvent remains at the time of a baking process, a void may generate | occur | produce with the volatilization of a solvent. is there. In addition, if the solvent remains during the firing step, the solvent may be oxidized and carbon may be generated in the phosphor film. From this point as well, the solvent in the phosphor film-forming solvent 33 is sufficient before the firing step. It is important to keep it volatilized.
[0031]
(8) Next, as shown in FIG. 6, the glass tube 20 is transferred into a firing furnace (heat treatment furnace) 9. In the baking furnace 9, the glass tube 20 is subjected to heat treatment at about 700 ° C., and the fluorescent material is baked on the inner wall of the glass tube 20 together with the binder in the fluorescent film forming solvent 33. By this baking, the fluorescent film 3 is formed with a uniform film thickness, a dense film quality, and a thick film on the inner wall of the glass tube 20. The fluorescent film 3 is preferably formed with a film thickness of, for example, 10 μm to 20 μm.
[0032]
(9) Next, the discharge electrode 4A and the electrode terminal 5A coupled thereto are arranged in one first opening 21 of the glass tube 20 on which the fluorescent film 3 is formed, and as shown in FIG. One first opening 21 of the glass tube 20 is melt-bonded.
[0033]
(10) Next, after the inside of the glass tube 20 is evacuated from the other second opening 22 of the glass tube 20 by a vacuum exhaust device such as a turbo molecular pump, a cryopump, or an oil diffusion pump, Is filled with the discharge gas 6 at the above pressure. Subsequently, as shown in FIG. 8, the discharge electrode 4 </ b> B and the electrode terminal 5 </ b> B coupled thereto are disposed in the second opening 22 of the glass tube 20. Then, the second opening portion 22 of the glass tube 20 is melt-bonded, and the discharge gas 6 is sealed in the glass tube 20 and the excess glass tube 20 is cut off, whereby the cold cathode fluorescent discharge tube shown in FIG. 1 is completed.
[0034]
In such a manufacturing method of the cold cathode fluorescent discharge tube 1, after introducing the fluorescent film forming solvent 31 into the glass tube 20, first, the glass tube 20 is relatively slow with the central axis along the tube length direction as the rotation axis. Since the rotation is performed at the first rotation speed, the fluorescent materials having different specific gravities in the fluorescent film-forming solvent 31 can be uniformly dispersed by centrifugal force, and the fluorescent film-forming solvent 31 has a plurality of types of fluorescent materials in the thickness direction. Can be adhered to the glass tube 20 in a mixed state. Next, since the glass tube 20 is rotated at a relatively high second rotation speed with the central axis along the tube length direction as the rotation axis, the phosphor film-forming solvent is maintained while the fluorescent material is uniformly dispersed. 31 can be strongly adhered to the inner wall of the glass tube. As a result, even when the inner diameter of the glass tube is small, it is possible to easily form a thick fluorescent film with excellent uniformity of composition and film thickness. Therefore, when the cold cathode fluorescent discharge tube 1 is turned on, a fluorescent film with little variation in chromaticity and luminance and high intensity against ultraviolet irradiation and sputtering can be formed, so that high luminance can be stably obtained over a long period of time. Therefore, the highly reliable cold cathode fluorescent discharge tube 1 can be manufactured.
[0035]
Furthermore, the fluorescent film forming solvent 31 can be easily introduced into the glass tube 20 by lowering the viscosity of the fluorescent film forming solvent 31. In particular, even in a glass tube (glass thin tube) 20 having an inner diameter of 1.5 mmφ or less, the fluorescent film forming solvent 31 can be easily sucked into the glass tube 20. Therefore, the process for forming the fluorescent film 3 can be automated and the cold cathode fluorescent discharge tube 1 can be mass-produced, so that the production cost and product cost of the cold cathode fluorescent discharge tube 1 can be reduced.
[0036]
Further, in such a manufacturing method of the cold cathode fluorescent discharge tube 1, a high-quality fluorescent film 3 can be formed on the inner wall of the glass tube 2 having an inner diameter of 1.5 mmφ or less. Miniaturization of a device such as a television can be realized.
[0037]
(Other embodiments)
Although the present invention has been described with reference to the above embodiment, it should not be understood that the description and the drawings, which form a part of this disclosure, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
[0038]
For example, in FIG. 4, a method is adopted in which the glass tube 20 is held upright, the fluorescent film forming solvent 31 is sucked up, and the fluorescent film forming solvent 31 is introduced into the inner wall of the glass tube 20. However, in the present invention, the glass tube 20 is disposed in a horizontal state, that is, in a state in which the glass tube 20 is laid down horizontally, the internal pressure of the glass tube 20 is set to a negative pressure, and the fluorescent film forming solvent 31 is placed in the glass tube 20 from the lateral direction. It may be introduced. Thereafter, the suction from the second opening 22 of the glass tube 20 is released, the glass tube 20 is brought into an upright state, and the excess fluorescent film forming solvent 31 inside the glass tube 20 is removed by its own weight. The container 30 may be discharged from the container. Thereafter, as in FIG. 1, the glass tube 20 is attached to the high-speed spinner 7 while being held in an upright state, and the glass tube 20 is rotated at a relatively low speed with the central axis along the tube length direction as the rotation axis. Rotate at speed.
[0039]
Moreover, in FIG. 1, after applying the fluorescent film forming solvent 31 to the glass tube 20, a method of rotating the glass tube 20 while holding it upright is adopted. However, the present invention is in an upright state depending on the purpose and application. It may be rotated with the rotating shaft held at any angle including the horizontal state. Further, the rotation axis may be moved by a certain angle during the rotation process at the first rotation speed and the rotation process at the second rotation speed.
[0040]
Furthermore, in the manufacturing method of the cold cathode fluorescent discharge tube 1 according to the embodiment of the present invention, after the fluorescent film forming solvent 31 is applied to the glass tube 20, the glass tube 20 is moved to the first rotation speed and the second rotation speed. Although the method of rotating twice at the rotational speed is adopted, the present invention includes a step of rotating at least 3 degrees using the third rotational speed, the fourth rotational speed,... You may have, and you may change each rotational speed.
[0041]
Furthermore, in the manufacturing method of the cold cathode fluorescent discharge tube 1 according to the embodiment of the present invention, after introducing the fluorescent film forming solvent 31 into the glass tube 20, the glass tube 20 is subjected to the first rotation speed. In the present invention, the glass tube 20 may be rotated at the first rotation speed simultaneously with the step of introducing the fluorescent film forming solvent 31 into the glass tube 20.
[0042]
Furthermore, in the manufacturing method of the cold cathode fluorescent discharge tube 1 according to the embodiment of the present invention, the fluorescent film forming solvent 31 is introduced into the glass tube 20, and the glass tube 20 is rotated at the second rotation speed. , The drying gas 80 is fed into the glass tube 20 to form a fluorescent film forming solvent 33 having a uniform film thickness. However, the present invention provides a fluorescent film forming solvent in the glass tube 20. 31 is introduced, a drying gas 80 is fed into the glass tube 20 to form a fluorescent film forming solvent 33 having a uniform film thickness, and then the glass tube 20 is rotated at a second rotational speed. Good. Alternatively, rotation at the second rotation speed may be given while flowing the drying gas 80 into the glass tube 20.
[0043]
Furthermore, in the manufacturing method of the cold cathode fluorescent discharge tube 1 according to the embodiment of the present invention, a method of completing the cold cathode fluorescent discharge tube 1 in 10 steps from the step (1) to the step (10) is adopted. However, according to the present invention, the cold cathode fluorescent lamp 1 is completed by repeating the steps (2) to (6) or the steps (2) to (8) a plurality of times depending on the purpose and application. You may let them.
[0044]
Further, for example, the present invention can be applied to a double tube type discharge tube in which a glass tube is further provided on the outer periphery of the cold cathode fluorescent discharge tube 1.
[0045]
As described above, the present invention naturally includes various embodiments not described herein. Accordingly, the technical scope of the present invention is defined only by the invention-specific matters according to the above-mentioned reasonable claims.
[0046]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the cold cathode fluorescent discharge tube which is excellent in a composition and the uniformity of a film thickness, and can form a thick fluorescent film easily can be provided. In particular, when the inner diameter of the glass tube is 1.5 mmφ or less, when the length of the glass tube exceeds 350 mm, when the glass tube has a slight bend, and there is a difference in specific gravity between the fluorescent materials in the fluorescent material components. Even when it exists, it is possible to provide a cold cathode fluorescent discharge tube having a fluorescent film that is thick and excellent in composition and film thickness uniformity.
[0047]
In addition, according to the present invention, it is possible to provide a method for manufacturing a highly reliable cold cathode fluorescent discharge tube that has little variation in chromaticity and luminance, and that can maintain good luminance over a long period of time.
[0048]
Furthermore, according to this invention, the manufacturing method of the cold cathode fluorescent discharge tube which can improve productivity can be provided.
[0049]
Furthermore, according to the present invention, it is possible to provide a method of manufacturing a cold cathode fluorescent discharge tube that can realize downsizing of devices such as a liquid crystal monitor and a liquid crystal television.
[Brief description of the drawings]
1 is a process cross-sectional view of a cold cathode fluorescent discharge tube according to an embodiment of the present invention, and is a process cross-sectional view subsequent to FIG.
FIG. 2 is a cross-sectional structure diagram of a cold cathode fluorescent discharge tube according to an embodiment of the present invention.
FIG. 3 is an initial process cross-sectional view of a cold cathode fluorescent discharge tube according to an embodiment of the present invention.
4 is a process sectional view of the cold cathode fluorescent discharge tube following FIG. 3 according to the embodiment of the present invention. FIG.
FIG. 5 is a process cross-sectional view of the cold cathode fluorescent discharge tube following FIG. 1 according to the embodiment of the present invention.
6 is a process sectional view of the cold cathode fluorescent discharge tube following FIG. 5 according to the embodiment of the present invention. FIG.
7 is a process cross-sectional view of the cold cathode fluorescent discharge tube following FIG. 6 according to the embodiment of the present invention. FIG.
8 is a process sectional view of the cold cathode fluorescent discharge tube following FIG. 7 according to the embodiment of the present invention. FIG.
[Explanation of symbols]
1 Cold cathode fluorescent discharge tube
2,20 glass tube
3 Fluorescent film
4A, 4B Discharge electrode
5A, 5B electrode terminal
6 Discharge gas
7 High-speed spinner
8 Drying gas generator
9 Firing furnace
21 First opening
22 Second opening
30 containers
31, 32, 33 Phosphor film forming solvent
35 Suction device
80 Drying gas

Claims (2)

両端に開口部を有するガラス管の内部に、前記開口部の少なくとも一方から、比重の異なる複数種類の蛍光材を含有した蛍光膜形成溶剤を導入する工程と、
前記ガラス管の管長方向に沿った中心軸を回転軸として、前記ガラス管を100rpm以上1000rpm以下の、前記比重の異なる複数種類の蛍光材に対する遠心分離能力の小さい、第一の回転速度で回転させ、前記ガラス管の内壁に前記複数種類の蛍光材を均一に分散させる工程と、
前記ガラス管の内壁に前記複数種類の蛍光材を均一に分散させた後、前記回転軸を用いて、前記ガラス管を前記第一の回転速度よりも高速の第二の回転速度で回転させることにより、均一に分散させた前記複数種類の蛍光材を前記ガラス管の内壁に押圧する工程
とを備え、前記蛍光膜形成溶剤から前記ガラス管の内壁に前記複数種類の蛍光材からなる蛍光膜を形成することを特徴とする冷陰極蛍光放電管の製造方法。
Introducing a fluorescent film forming solvent containing a plurality of types of fluorescent materials having different specific gravities from at least one of the openings into a glass tube having openings at both ends;
Using the central axis along the tube length direction of the glass tube as a rotation axis, the glass tube is rotated at a first rotation speed with a low centrifugal separation ability for a plurality of types of fluorescent materials having different specific gravities of 100 rpm to 1000 rpm. A step of uniformly dispersing the plurality of types of fluorescent materials on the inner wall of the glass tube;
After uniformly dispersing the plural types of fluorescent materials on the inner wall of the glass tube, the glass tube is rotated at a second rotation speed higher than the first rotation speed using the rotation shaft. And pressing the plurality of types of fluorescent materials uniformly dispersed against the inner wall of the glass tube, and forming a fluorescent film made of the plurality of types of fluorescent material on the inner wall of the glass tube from the fluorescent film forming solvent. A method of manufacturing a cold cathode fluorescent discharge tube, comprising: forming a cold cathode fluorescent discharge tube.
前記複数種類の蛍光材は、青色系蛍光体と、該青色系蛍光体よりも比重が大きく粒子の径も大きい赤色系蛍光体及び緑色系蛍光体とを含むことを特徴とする請求項1記載の冷陰極蛍光放電管の製造方法。 The plurality of types of fluorescent materials include a blue phosphor, and a red phosphor and a green phosphor having a specific gravity larger than that of the blue phosphor and a larger particle diameter. Of manufacturing a cold cathode fluorescent discharge tube.
JP2001002608A 2001-01-10 2001-01-10 Method for manufacturing a cold cathode fluorescent discharge tube Expired - Fee Related JP3666647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002608A JP3666647B2 (en) 2001-01-10 2001-01-10 Method for manufacturing a cold cathode fluorescent discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002608A JP3666647B2 (en) 2001-01-10 2001-01-10 Method for manufacturing a cold cathode fluorescent discharge tube

Publications (2)

Publication Number Publication Date
JP2002208350A JP2002208350A (en) 2002-07-26
JP3666647B2 true JP3666647B2 (en) 2005-06-29

Family

ID=18871090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002608A Expired - Fee Related JP3666647B2 (en) 2001-01-10 2001-01-10 Method for manufacturing a cold cathode fluorescent discharge tube

Country Status (1)

Country Link
JP (1) JP3666647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172978A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Fluorescent lamp, backlight unit, liquid crystal television, and manufacturing method of fluorescent lamp
KR100865858B1 (en) * 2008-06-18 2008-10-29 배병선 Soldering apparatus combining cold cathode fluorescent lamp soldering with external electrode fluorescent lamp soldering
CN113019866B (en) * 2021-03-17 2023-10-17 黄石 Fluorescent material coating method

Also Published As

Publication number Publication date
JP2002208350A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
TW201241861A (en) Double-sided light emitting field emission device and manufacturing method thereof
JP2008297194A (en) Method for production of adhesive for fluorescent dye, and method of using the same
JP3666647B2 (en) Method for manufacturing a cold cathode fluorescent discharge tube
JP3381688B2 (en) Manufacturing method of cold cathode fluorescent discharge tube
WO1993016484A1 (en) Fluorescent display and method of forming fluorescent layer therein, and vacuum sealing method and vacuum level accelerating method for space in the display
JP2006221984A (en) Manufacturing method of fluorescent lamp, and fluorescent lamp
JP4922624B2 (en) Discharge lamp and manufacturing method thereof
WO2006051979A1 (en) Fluorescent lamp
JP2003115261A (en) Method for manufacturing display panel
JP2006172978A (en) Fluorescent lamp, backlight unit, liquid crystal television, and manufacturing method of fluorescent lamp
JP3299707B2 (en) Method for manufacturing plasma display panel
KR100202775B1 (en) Fabrication method of a metallized luminescent screen for a crt
TWI303075B (en) Field emission double planes light source and method for making the same
JPS6340010B2 (en)
JP2001126624A (en) Substrate for plasma display panel and method of fabricating it
EP1173877B1 (en) Field emission device using a reducing gas and method for making same
JPH1167085A (en) Manufacture of fluorescent lamp
WO2005091325A1 (en) Electric field emission type image display unit and production method therefor
JPH11283513A (en) Substrate for plasma display device
KR100575025B1 (en) The method of field emission display panel sealing at the vacuum state
JP2001129467A (en) Method and device for holding coating film formed plate
KR100863581B1 (en) Structure formation method for enhancing of contrast
TWI247034B (en) A spray coating liquid of phosphors and its spray coating method
JP5029149B2 (en) Nitrocellulose solution, phosphor slurry and method for producing the same, phosphor film, and fluorescent lamp
JP3363141B2 (en) Display panel and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees