JP4922624B2 - Discharge lamp and manufacturing method thereof - Google Patents

Discharge lamp and manufacturing method thereof Download PDF

Info

Publication number
JP4922624B2
JP4922624B2 JP2006046661A JP2006046661A JP4922624B2 JP 4922624 B2 JP4922624 B2 JP 4922624B2 JP 2006046661 A JP2006046661 A JP 2006046661A JP 2006046661 A JP2006046661 A JP 2006046661A JP 4922624 B2 JP4922624 B2 JP 4922624B2
Authority
JP
Japan
Prior art keywords
glass
discharge lamp
glass tube
convex
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006046661A
Other languages
Japanese (ja)
Other versions
JP2007227144A (en
Inventor
敏信 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006046661A priority Critical patent/JP4922624B2/en
Publication of JP2007227144A publication Critical patent/JP2007227144A/en
Application granted granted Critical
Publication of JP4922624B2 publication Critical patent/JP4922624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放電ランプおよびその製造方法に関するものであり、詳しくはガラス管内壁面に蛍光体層を具備した放電ランプおよびその製造方法に関する。   The present invention relates to a discharge lamp and a method for manufacturing the same, and more particularly to a discharge lamp having a phosphor layer on the inner wall surface of a glass tube and a method for manufacturing the same.

熱陰極管や冷陰極管等の放電ランプは、両端に電極が設けられたガラス管の内壁に一様に蛍光体が塗布されており、ガラス管内に適量の水銀(Hg)とアルゴン(Ar)あるいはネオン(Ne)等の不活性ガスが数十Torrの圧力で封入されている。   In a discharge lamp such as a hot cathode tube or a cold cathode tube, a phosphor is uniformly applied to the inner wall of a glass tube provided with electrodes at both ends, and an appropriate amount of mercury (Hg) and argon (Ar) are contained in the glass tube. Alternatively, an inert gas such as neon (Ne) is sealed at a pressure of several tens of Torr.

上記放電ランプの発光原理は、外部から両端間に電界を印加すると気体中に存する初期電子が加速され、ガラス管内に封入された水銀の気体原子および不活性ガスに衝突して励起し電離させて電子を発生させるといった連鎖反応を起こしてグロー放電が開始される。また、電子が衝突した水銀原子は励起されて紫外線(λp=253.7nm)を放出し、この紫外線がガラス管の内壁に一様に塗布された蛍光体を励起して可視光に変換され、外部に放出される。というものである。   The light emission principle of the above-mentioned discharge lamp is that when an electric field is applied between both ends from the outside, the initial electrons existing in the gas are accelerated and collide with the mercury gas atoms and inert gas enclosed in the glass tube to be excited and ionized. Glow discharge is started by causing a chain reaction such as generation of electrons. In addition, the mercury atom with which the electrons collide is excited to emit ultraviolet light (λp = 253.7 nm), and this ultraviolet light excites the phosphor uniformly applied to the inner wall of the glass tube to convert it into visible light, Released to the outside. That's it.

ところで、上述のようにガラス管の内壁に形成される蛍光体層は、蛍光体に該蛍光体をガラス管に接着するための結着剤を混入させた蛍光体スラリーをガラス管の内壁に塗布し、乾燥させることによって実現される。   By the way, as described above, the phosphor layer formed on the inner wall of the glass tube is coated on the inner wall of the glass tube with phosphor slurry in which the phosphor is mixed with a binder for adhering the phosphor to the glass tube. And then dried.

その場合、結着剤には一般的に、粒径約1.0μm以下のピロリン酸カルシウム(Ca)等を用いた微粒子型と、粒径約2.0μm以下のホウ酸(B)を主成分とした低融点型があり、夫々単独にあるいは両者を混合して用いられる。 In that case, the binder generally includes a fine particle type using calcium pyrophosphate (Ca 2 P 2 O 7 ) or the like having a particle size of about 1.0 μm or less, and boric acid (B There are low melting point types mainly composed of 2 O 3 ), which are used alone or in combination.

前者の微粒子型は蛍光体の粒子の隙間を埋めた結着剤により、後者の低融点型は乾燥時の熱処理で軟化した結着剤の表面により、夫々蛍光体同士あるいは蛍光体とガラスを接着するものである。   The former fine-particle type uses a binder that fills the gaps between the phosphor particles, and the latter low-melting type uses a binder that has been softened by heat treatment during drying, thereby bonding phosphors to each other or phosphor and glass. To do.

特に、前者の微粒子型については、図3に示すような方法が提案されている。それは、平均粒径が3〜10μmの蛍光体粉体30と、平均粒径が蛍光体粉体30の平均粒径の1/3以下の無機粉体(例えば、ピロリン酸カルシウム(Ca)粉体)31を混合した蛍光体ペーストを隔壁32表面に塗布し、焼成処理を施して蛍光体層33を得るものである。 In particular, for the former fine particle type, a method as shown in FIG. 3 has been proposed. That is, phosphor powder 30 having an average particle diameter of 3 to 10 μm and inorganic powder having an average particle diameter of 1/3 or less of the average particle diameter of phosphor powder 30 (for example, calcium pyrophosphate (Ca 2 P 2 O 7 ) A phosphor paste mixed with the powder 31 is applied to the surface of the partition wall 32 and subjected to a firing treatment to obtain a phosphor layer 33.

すると、蛍光体層33の蛍光体粉体30の相互間の比較的大きな隙間に、付着力が重力に比較して極めて大きい無機粉体31が入り込んで埋め尽くし、蛍光体粉体30と無機粉体31の相互間、および蛍光体粉体30と無機粉体31からなる面と隔壁32面との間、の夫々に作用する分子間力によって接着強度が強い蛍光体層33を隔壁32面に形成することができる、というものである(例えば、特許文献1参照。)。
特開2000−87025号公報
As a result, the inorganic powder 31 having an extremely large adhesion force compared to gravity enters the relatively large gap between the phosphor powders 30 of the phosphor layer 33 and fills them up. The phosphor layer 33 having a strong adhesive strength is formed on the surface of the partition wall 32 by the intermolecular force acting between the bodies 31 and between the surface of the phosphor powder 30 and the inorganic powder 31 and the surface of the partition wall 32. It can be formed (for example, refer to Patent Document 1).
JP 2000-87025 A

ところで、上記微粒子型の発光装置は、蛍光体粉体30と無機粉体31からなる面と隔壁32面との間に作用する分子間力によって接着強度が強められるものであるが、蛍光体粉体30と無機粉体31からなる面と接触する隔壁32面の表面積は隔壁32面の大きさによって規定されるものであり、それ以上の接着強度を得ることは困難である。また、蛍光体粉体30の粒径が大きくなるにつれて接着強度が極端に低下するという問題を有している。   By the way, in the fine particle type light emitting device, the adhesive strength is enhanced by the intermolecular force acting between the surface comprising the phosphor powder 30 and the inorganic powder 31 and the surface of the partition wall 32. The surface area of the partition wall 32 surface that contacts the surface made of the body 30 and the inorganic powder 31 is defined by the size of the partition wall 32 surface, and it is difficult to obtain an adhesive strength higher than that. Further, there is a problem that the adhesive strength is extremely lowered as the particle size of the phosphor powder 30 is increased.

その場合、隔壁32面に対して蛍光体層33の接着強度が不十分であると、製造工程において蛍光体層33が隔壁32面から剥離する等の問題が生じることになる。   In that case, if the adhesive strength of the phosphor layer 33 is insufficient with respect to the surface of the partition wall 32, there arises a problem that the phosphor layer 33 is peeled off from the surface of the partition wall 32 in the manufacturing process.

その対策として、蛍光体粉体30に対する無機粉体31の混合比を高めて接着力を強化することが考えられるが、結着剤となる無機粉体31の量が増加すると接着強度は向上するものの、結着剤が光学特性に影響を与えるために光学特性の劣化を招くことになる。   As a countermeasure, it is conceivable to increase the mixing ratio of the inorganic powder 31 to the phosphor powder 30 to enhance the adhesive strength. However, the adhesive strength improves as the amount of the inorganic powder 31 serving as a binder increases. However, since the binder affects the optical characteristics, the optical characteristics are deteriorated.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、放電ランプのガラス管の内壁面に蛍光体層を形成するにあたって、ガラス管の内壁面と蛍光体層との良好な接着強度を確保することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to form the phosphor layer on the inner wall surface of the glass tube of the discharge lamp. It is in ensuring good adhesive strength.

上記課題を解決するために、本発明の請求項1に記載された発明は、ガラス管の少なくとも両端に電極を配設し、前記ガラス管の内壁面に蛍光体層を設けた放電ランプの製造方法であって、前記ガラス管の内面にガラススラリーを塗布して焼成することによって凸状ガラス構造物を複数形成する工程と、前記凸状ガラス構造物の表面と該複数の凸状ガラス構造物の間の該凸状ガラス構造物が形成された部分以外の前記内面とで構成されるガラス管の内壁面に前記蛍光体層を形成する工程とを備え、前記ガラススラリーには粉末ガラスが含まれており、該粉末ガラスは前記焼成温度よりも低い融点を有する粉末ガラスと、前記焼成温度よりも高い融点を有する粉末ガラスの混合であり、焼成時に焼成温度よりも低い融点を有する粉末ガラスが、焼成温度よりも高い融点を有する粉末ガラスと前記ガラス管とを滑らかに接合するよう溶融されることを特徴とするものである。 In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is a discharge lamp manufacturing method in which electrodes are provided at least at both ends of a glass tube, and a phosphor layer is provided on the inner wall surface of the glass tube. A method of forming a plurality of convex glass structures by applying a glass slurry to an inner surface of the glass tube and firing the method; a surface of the convex glass structure; and the plurality of convex glass structures. Forming the phosphor layer on the inner wall surface of a glass tube composed of the inner surface other than the portion on which the convex glass structure is formed, and the glass slurry contains powdered glass The powder glass is a mixture of a powder glass having a melting point lower than the firing temperature and a powder glass having a melting point higher than the firing temperature, and a powder glass having a melting point lower than the firing temperature at the time of firing is , It is characterized in that the melt to smoothly joined to the glass powder having a melting point higher than the forming temperature and the glass tube.

また、本発明の請求項に記載された発明は、請求項において、前記凸状ガラス構造物は、大きさが5〜60μmであることを特徴とするものである。 The invention described in claim 2 of the present invention is characterized in that, in claim 1 , the convex glass structure has a size of 5 to 60 μm.

本発明は、放電ランプのガラス管の内面に凸状ガラス構造物を形成することによって、凸状ガラス構造物の表面と該凸状ガラス構造物が形成された部分以外の前記内面とでガラス管の内壁面を構成し、該内壁面に蛍光体層を形成した。その結果、ガラス管の内壁面と該内壁面に形成される蛍光体層との接触面積が増大して両者間の接着強度が強化された。   According to the present invention, by forming a convex glass structure on the inner surface of the glass tube of the discharge lamp, a glass tube is formed between the surface of the convex glass structure and the inner surface other than the portion where the convex glass structure is formed. An inner wall surface was formed, and a phosphor layer was formed on the inner wall surface. As a result, the contact area between the inner wall surface of the glass tube and the phosphor layer formed on the inner wall surface was increased, and the adhesive strength between them was enhanced.

放電ランプのガラス管の内壁面に蛍光体層を形成するにあたって、ガラス管の内壁面と蛍光体層との良好な接着強度を確保するこという目的を、放電ランプのガラス管の内面に凸状ガラス構造物を形成することによって、凸状ガラス構造物の表面と該凸状ガラス構造物が形成された部分以外の前記内面とでガラス管の内壁面を構成し、該内壁面に蛍光体層を形成することによって実現した。   When forming the phosphor layer on the inner wall surface of the glass tube of the discharge lamp, the purpose of ensuring good adhesion strength between the inner wall surface of the glass tube and the phosphor layer is convex on the inner surface of the glass tube of the discharge lamp. By forming the glass structure, the inner wall surface of the glass tube is constituted by the surface of the convex glass structure and the inner surface other than the portion where the convex glass structure is formed, and the phosphor layer is formed on the inner wall surface. Realized by forming.

以下、この発明の好適な実施例を図1および図2を参照しながら、詳細に説明する。尚、以下に述べる実施例は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施例に限られるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. In addition, since the Example described below is a suitable specific example of this invention, various technically preferable restrictions are attached | subjected, The range of this invention limits this invention especially in the following description. As long as there is no description of that, it is not restricted to these Examples.

本発明の放電ランプの製造方法に係わる実施例1は、
まず、溶媒の酢酸ブチルにニトロセルロースを溶解した1.0wt%ニトロセルロースバインダーにZnO、B、SiOを主成分とする平均粒径が5.2μmで軟化点が630℃の粉末ガラスGP−014(日本電気硝子株式会社製)を30wt%混入し、これを回転台で4〜5日間攪拌・分散攪拌することによってガラススラリーを調整する。
Example 1 relating to the method of manufacturing a discharge lamp according to the present invention includes:
First, powder glass having an average particle diameter of 5.2 μm and a softening point of 630 ° C. mainly composed of ZnO, B 2 O 3 and SiO 2 in a 1.0 wt% nitrocellulose binder in which nitrocellulose is dissolved in butyl acetate as a solvent. GP-014 (manufactured by Nippon Electric Glass Co., Ltd.) is mixed at 30 wt%, and this is stirred and dispersed and stirred for 4 to 5 days on a turntable to adjust the glass slurry.

次に、このガラススラリーを内径2mm、外形3mm、長さ340mmのガラス管の内壁に塗布し、その後、約60%酸素雰囲気下、650℃の温度で1分間熱処理して焼成する。   Next, this glass slurry is applied to the inner wall of a glass tube having an inner diameter of 2 mm, an outer diameter of 3 mm, and a length of 340 mm, and then heat-treated at a temperature of 650 ° C. for 1 minute in an approximately 60% oxygen atmosphere.

すると、熱処理前にガラス管内壁に粒子状に存在していた粉末ガラスが熱処理で焼成されて溶融し、ガラス管内壁に溶着されて粒子状あるいは凸状に変形した構造物を形成する。このときの凸状の構造物の大きさは、粉末ガラス粒子の溶融による凝集等もあるために5〜20μmとなった。   Then, the powder glass existing in the form of particles on the inner wall of the glass tube before the heat treatment is baked and melted by the heat treatment, and is welded to the inner wall of the glass tube to form a structure that is deformed into a particle shape or a convex shape. The size of the convex structure at this time was 5 to 20 μm due to aggregation due to melting of the powder glass particles.

発明者は、粉末ガラス濃度を夫々10wt%、20wt%および30wt%とした3種類のガラススラリーを調整し、夫々のガラススラリーについて上記工程によってガラス管壁面に凸状ガラス構造物を形成する実験を試みた。   The inventor prepared three kinds of glass slurries with powder glass concentrations of 10 wt%, 20 wt% and 30 wt%, respectively, and conducted an experiment to form a convex glass structure on the glass tube wall surface by the above process for each glass slurry. Tried.

その結果、粉末ガラス濃度が30wt%のガラススラリーを使用した場合が、ガラス管内壁全面に亘って最も均一に凸状ガラス構造物を形成できることが確認できた。粉末ガラス濃度が30wt%よりも高くなると、ガラススラリー中での粉末ガラスの分散性が悪くなり、ガラス管内壁に形成する凸状ガラス構造物の均一性が損なわれることもわかった。   As a result, it was confirmed that when a glass slurry having a powder glass concentration of 30 wt% was used, a convex glass structure could be formed most uniformly over the entire inner surface of the glass tube. It has also been found that when the powder glass concentration is higher than 30 wt%, the dispersibility of the powder glass in the glass slurry is deteriorated, and the uniformity of the convex glass structure formed on the inner wall of the glass tube is impaired.

次に、凸状ガラス構造物が形成されたガラス管の内壁に、紫外線で励起されて夫々赤色(R)、緑色(G)および青色(B)の色調の光を放出する3種類の蛍光体と結着剤とを混入したRGB蛍光体スラリーを塗布し、その後、650℃の温度で1分間熱処理して焼成する。   Next, three types of phosphors that emit light of red (R), green (G), and blue (B) tones on the inner wall of the glass tube on which the convex glass structure is formed, when excited by ultraviolet rays. And an RGB phosphor slurry mixed with a binder, and then heat-treated at a temperature of 650 ° C. for 1 minute and fired.

この場合、RGB蛍光体スラリーの焼成温度はガラススラリーの焼成温度と同一であるため、ガラス管内壁に先に形成されている凸状ガラス構造物はRGB蛍光体スラリーの焼成時に再溶融して蛍光体と接着することになる。   In this case, since the firing temperature of the RGB phosphor slurry is the same as the firing temperature of the glass slurry, the convex glass structure previously formed on the inner wall of the glass tube is remelted and fluorescent when the RGB phosphor slurry is fired. It will adhere to the body.

図1は上記製造工程を経て作成された放電ランプの側面図、図2は図1のA部詳細図である。なお図1および図2は同時に後述の実施例2を示す図でもある。また、全ての実施例において、放電ランプは冷陰極放電ランプを示している。   FIG. 1 is a side view of a discharge lamp produced through the above manufacturing process, and FIG. 2 is a detailed view of part A of FIG. 1 and 2 are also diagrams showing a second embodiment described later. In all the examples, the discharge lamp is a cold cathode discharge lamp.

図1より、放電ランプ1のガラス管2の内壁面3に蛍光体層4が形成されている。ガラス管2の内壁面3および蛍光体層4を更に詳細に示した図2より、ガラス管2の内壁面3には凸状ガラス構造物5が形成されており、厳密にいうとガラス管2の実質上の内壁面は、夫々の凸状ガラス構造物5の表面と該凸状ガラス構造物5が形成された部分以外の面とで構成された面からなっている。   From FIG. 1, a phosphor layer 4 is formed on the inner wall surface 3 of the glass tube 2 of the discharge lamp 1. From FIG. 2 showing the inner wall surface 3 and the phosphor layer 4 of the glass tube 2 in more detail, a convex glass structure 5 is formed on the inner wall surface 3 of the glass tube 2, and strictly speaking, the glass tube 2 The substantially inner wall surface is composed of a surface constituted by the surface of each convex glass structure 5 and a surface other than the portion where the convex glass structure 5 is formed.

従って、上記製造工程を経て作成された放電ランプのような凸状ガラス構造物5が形成された実質上のガラス管内壁面は、従来の放電ランプのような凸状ガラス構造物5が形成されていないガラス管内壁面3と比較して表面積が極めて大きくなっている。   Therefore, a substantially glass inner wall surface on which the convex glass structure 5 such as a discharge lamp formed through the above manufacturing process is formed has a convex glass structure 5 like a conventional discharge lamp. The surface area is extremely large compared to the inner wall surface 3 of the glass tube.

そのような表面積が拡大された実質上のガラス管内壁面に結着剤6を混入した蛍光体7を塗布して蛍光体層4を形成すると、従来の放電ランプと比較して実質上のガラス管内壁面と蛍光体層4との接触面積が極めて大きくなり、両者の間の接着強度が著しく強化されることは明らかである。   When the phosphor layer 4 is formed by coating the phosphor 7 mixed with the binder 6 on the substantially inner wall surface of the glass tube having an enlarged surface area, the inside of the glass tube is substantially compared with the conventional discharge lamp. It is clear that the contact area between the wall surface and the phosphor layer 4 becomes extremely large, and the adhesive strength between them is remarkably enhanced.

以下、上記製造工程を経て作成された放電ランプの、凸状ガラス構造物が形成されたガラス管内壁面と蛍光体層との接着強度の評価試験方法および評価結果について説明する。   Hereinafter, an evaluation test method and an evaluation result of the adhesive strength between the inner wall surface of the glass tube on which the convex glass structure is formed and the phosphor layer of the discharge lamp produced through the above manufacturing process will be described.

評価試験方法は、放電ランプを幅6mm、長さ300mm、深さ10mmの箱型ケースに収容し、両端をケースの側板部に固定する。そして、放電ランプの長手方向中心上方の長手方向中心線から100mm離れた位置にエアガンのノズル噴射口を設け、窒素ガスを3.5Kgの吐出圧力で30秒間放電ランプに吹き付ける。   In the evaluation test method, the discharge lamp is accommodated in a box-type case having a width of 6 mm, a length of 300 mm, and a depth of 10 mm, and both ends are fixed to the side plate portions of the case. Then, a nozzle injection port of an air gun is provided at a position 100 mm away from the longitudinal center line above the longitudinal center of the discharge lamp, and nitrogen gas is blown onto the discharge lamp at a discharge pressure of 3.5 kg for 30 seconds.

すると、ケース内に収容された放電ランプが窒素ガスの風圧を受けて振動・衝突するため、試験後のガラス管内壁に対する蛍光体層の剥離の有無を観察することによって接着強度を評価することができる。   Then, since the discharge lamp accommodated in the case receives the wind pressure of nitrogen gas and vibrates and collides, it is possible to evaluate the adhesive strength by observing whether the phosphor layer peels off the inner wall of the glass tube after the test. it can.

そこで、本実施例の放電ランプと、ガラス管内壁に凸状ガラス構造物を形成しない従来の放電ランプを夫々5本づつ評価試験に投入した結果、従来の放電ランプには5本全てにガラス管内壁面と蛍光体層の剥離が確認されたが、本実施例の放電ランプには全く剥離が確認されなかった。   Therefore, as a result of putting the discharge lamp of this example and five conventional discharge lamps each having no convex glass structure on the inner wall of the glass tube into the evaluation test, all five of the conventional discharge lamps are contained in the glass tube. Although peeling of the wall surface and the phosphor layer was confirmed, no peeling was confirmed in the discharge lamp of this example.

次に、本実施例の放電ランプの光学特性を測定した。その結果、光束については従来の放電ランプと同等の153lm(ランプ電流6mA)が確保できることが確認できた。   Next, the optical characteristics of the discharge lamp of this example were measured. As a result, it was confirmed that a luminous flux of 153 lm (lamp current 6 mA) equivalent to that of a conventional discharge lamp can be secured.

以上より、上記製造工程を経て作成された放電ランプは、良好な信頼性を有すると共に、放電・発光とも良好な特性を示すことが確認できた。   From the above, it has been confirmed that the discharge lamp produced through the above manufacturing process has good reliability and exhibits good characteristics in both discharge and light emission.

本発明に係わる実施例2では、粉末ガラスとしてZnO、Bを主成分とする平均粒径が2.2μmで軟化点が595℃の粉末ガラスASF1495(旭硝子株式会社製)とZnO、B、SiOを主成分とする平均粒径が25.0μmで軟化点が657℃の粉末ガラスASF1620M(旭硝子株式会社製)の等重量混合物を使用した。 In Example 2 according to the present invention, powder glass ASF1495 (manufactured by Asahi Glass Co., Ltd.) and ZnO, B having an average particle size of 2.2 μm and a softening point of 595 ° C. as the main components are ZnO and B 2 O 3. An equal weight mixture of powdered glass ASF1620M (Asahi Glass Co., Ltd.) having an average particle size of 25.0 μm and a softening point of 657 ° C. containing 2 O 3 and SiO 2 as main components was used.

なお、この混合粉末ガラスは上記実施例1と同様に、溶媒の酢酸ブチルにニトロセルロースを溶解した1.0wt%ニトロセルロースバインダーに30wt%混入し、これを回転台で4〜5日間攪拌・分散攪拌することによってガラススラリーを調整する。   This mixed powder glass was mixed with 30 wt% in a 1.0 wt% nitrocellulose binder in which nitrocellulose was dissolved in butyl acetate as a solvent in the same manner as in Example 1 above, and this was stirred and dispersed on a turntable for 4 to 5 days. The glass slurry is adjusted by stirring.

次に、このガラススラリーを内径2mm、外形3mm、長さ340mmのガラス管の内壁に塗布し、その後、約60%酸素雰囲気下、650℃の温度で1分間熱処理して焼成する。   Next, this glass slurry is applied to the inner wall of a glass tube having an inner diameter of 2 mm, an outer diameter of 3 mm, and a length of 340 mm, and then heat-treated at a temperature of 650 ° C. for 1 minute in an approximately 60% oxygen atmosphere.

すると、粉末ガラスASF1495はASF1620Mよりも粒径が小さく軟化点が焼成温度よりも低いために、熱処理前にガラス管内壁に粒子状に存在していたものが熱処理で焼成されて溶融し、一方、粉末ガラスASF1620MはASF1495よりも粒径が大きく軟化点が焼成温度よりも高いために、溶解することなく焼成前の形状を維持する。   Then, since the powder glass ASF1495 has a smaller particle size than the ASF1620M and the softening point is lower than the firing temperature, what was present in the form of particles on the inner wall of the glass tube before the heat treatment is fired and melted by the heat treatment, Since powder glass ASF1620M has a particle size larger than ASF1495 and a softening point higher than the firing temperature, it maintains the shape before firing without melting.

よって、この場合、ASF1620Mがガラス管内壁に形成される凸状ガラス構造物の支柱となり、ASF1495が支柱を支える結着剤と共に凸状ガラス構造物の形状を滑らかにする平滑化剤の役目を担っている。このときの凸状の構造物の大きさは、粉末ガラス粒子の凝集等もあるために10〜60μmとなった。   Therefore, in this case, ASF1620M serves as a column of convex glass structure formed on the inner wall of the glass tube, and ASF1495 plays a role of a smoothing agent that smoothes the shape of the convex glass structure together with a binder that supports the column. ing. The size of the convex structure at this time was 10 to 60 μm due to aggregation of powder glass particles and the like.

なお、蛍光体塗布以降の工程は上記実施例1の放電ランプを作成する工程と同一であるので説明は省略する。   In addition, since the process after fluorescent substance application is the same as the process of producing the discharge lamp of Example 1, the description is omitted.

本実施例の放電ランプ5本を上記実施例1と同様の手法で評価試験した結果、ガラス管内壁面と蛍光体層との剥離は全く確認されなかった。光束についても従来の放電ランプと同等の値が確保できることが確認できた。   As a result of evaluating and testing five discharge lamps of this example by the same method as in Example 1, no separation between the inner wall surface of the glass tube and the phosphor layer was confirmed. It was confirmed that a value equivalent to that of the conventional discharge lamp could be secured for the luminous flux.

つまり、上記製造工程を経て作成された本実施例の放電ランプも、上記実施例1の放電ランプと同様な信頼性および光学特性を有することが確認できた。   That is, it was confirmed that the discharge lamp of this example produced through the above manufacturing process also has the same reliability and optical characteristics as the discharge lamp of Example 1.

本発明に係わる実施例3は、上記実施例1とほぼ同様の条件下で作成したものであり、異なるところは、結着剤を混入しないRGB蛍光体スラリーを使用したことのみである。本実施例においても5本の放電ランプを作成し、従来の放電ランプ5本と共に評価試験に投入した。   Example 3 according to the present invention was prepared under substantially the same conditions as in Example 1 described above, and the only difference was that an RGB phosphor slurry containing no binder was used. Also in this example, five discharge lamps were prepared and put into an evaluation test together with five conventional discharge lamps.

評価試験方法は、上記実施例1および実施例2とほぼ同様の手法で行なったが、異なるところは、放電ランプに対する窒素ガスの吹き付け時間を10秒にしたことのみである。   The evaluation test method was carried out by substantially the same method as in Example 1 and Example 2, except that the nitrogen gas blowing time for the discharge lamp was set to 10 seconds.

そこで、評価試験後の結果は、従来の放電ランプの3本にガラス管内壁面と蛍光体層との剥離が確認され、本実施例の放電ランプの2本に剥離が確認された。   Therefore, as a result after the evaluation test, peeling of the inner wall surface of the glass tube and the phosphor layer was confirmed in three conventional discharge lamps, and peeling was confirmed in two discharge lamps of this example.

また、光学特性については、従来の放電ランプの光束が158lm(ランプ電流6mA)であるのに対し、本実施例の放電ランプの光束は160lm(ランプ電流6mA)であった。   As for the optical characteristics, the luminous flux of the conventional discharge lamp is 158 lm (lamp current 6 mA), whereas the luminous flux of the discharge lamp of this embodiment is 160 lm (lamp current 6 mA).

以上より、ガラス管内壁面と蛍光体層の接着強度に関しては、本実施例の放電ランプは従来の放電ランプと同等の性能を有しており、光学特性に関しては、従来の放電ランプと比較して光束が約1%以上向上していることがわかる。これは、結着剤を混入しないRGB蛍光体スラリーを使用したことによって光学特性に影響を与える要因が取り除かれた結果であると考えられる。   From the above, regarding the adhesive strength between the inner wall surface of the glass tube and the phosphor layer, the discharge lamp of this example has the same performance as the conventional discharge lamp, and the optical characteristics are compared with the conventional discharge lamp. It can be seen that the luminous flux is improved by about 1% or more. This is considered to be a result of removing factors that affect the optical characteristics by using the RGB phosphor slurry not containing the binder.

なお、実施例1〜実施例3において、蛍光体スラリーは必ずしも(R)、(G)、(B)全ての蛍光体を含む必要はなく、所望する放電ランプの発光色を得るために単独あるいは2種類以上の組み合わせでもよい。   In Examples 1 to 3, the phosphor slurry is not necessarily required to contain all the phosphors (R), (G), and (B), and may be used alone or in order to obtain a desired emission color of the discharge lamp. Two or more combinations may be used.

以上説明したように、本発明の放電ランプは、放電ランプのガラス管内壁面に凸状ガラス構造物を形成して内壁面の実質上の表面積を増やし、該内壁面上に形成された結着剤を混入した蛍光体層との接触面積を大きくするようにした。   As described above, the discharge lamp of the present invention has a convex glass structure formed on the inner wall surface of the glass tube of the discharge lamp to increase the substantial surface area of the inner wall surface, and the binder formed on the inner wall surface. The contact area with the phosphor layer mixed with was increased.

その結果、ガラス管内壁に凸状ガラス構造物を形成しない従来の放電ランプと同等の光束を確保でき、且つ従来の放電ランプと比較してガラス内壁面と蛍光体層との接着強度を強化して信頼性を向上させた放電ランプを実現することができる。   As a result, a luminous flux equivalent to that of a conventional discharge lamp that does not form a convex glass structure on the inner wall of the glass tube can be secured, and the adhesive strength between the glass inner wall surface and the phosphor layer is enhanced compared to the conventional discharge lamp. Thus, a discharge lamp with improved reliability can be realized.

また、放電ランプのガラス管内壁面に凸状ガラス構造物を形成して内壁面の実質上の表面積を増やし、該内壁面上に形成された結着剤を混入しない蛍光体層との接触面積を大きくするようにした。   Further, a convex glass structure is formed on the inner wall surface of the glass tube of the discharge lamp to increase the substantial surface area of the inner wall surface, and the contact area with the phosphor layer not mixed with the binder formed on the inner wall surface is increased. I tried to make it bigger.

その結果、ガラス管内壁に凸状ガラス構造物を形成しない従来の放電ランプと同等のガラス内壁面と蛍光体層との接着強度を確保でき、且つ従来の放電ランプと比較して光束を増加させて光学特性を向上させた放電ランプを実現することができる。などの優れた効果を奏するものである。   As a result, the adhesive strength between the glass inner wall surface and the phosphor layer equivalent to that of a conventional discharge lamp that does not form a convex glass structure on the inner wall of the glass tube can be secured, and the luminous flux can be increased as compared with the conventional discharge lamp. Thus, a discharge lamp with improved optical characteristics can be realized. It has excellent effects such as.

本発明に係わる実施例1および実施例2の放電ランプの側面図である。It is a side view of the discharge lamp of Example 1 and Example 2 concerning this invention. 図1のA部詳細図である。FIG. 2 is a detailed view of part A in FIG. 1. 従来の放電ランプの部分断面図である。It is a fragmentary sectional view of the conventional discharge lamp.

符号の説明Explanation of symbols

1 放電ランプ
2 ガラス管
3 内壁面
4 蛍光体層
5 凸状ガラス構造物
6 結着剤
7 蛍光体
DESCRIPTION OF SYMBOLS 1 Discharge lamp 2 Glass tube 3 Inner wall surface 4 Phosphor layer 5 Convex glass structure 6 Binder 7 Phosphor

Claims (2)

ガラス管の少なくとも両端に電極を配設し、前記ガラス管の内壁面に蛍光体層を設けた放電ランプの製造方法であって、前記ガラス管の内面にガラススラリーを塗布して焼成することによって凸状ガラス構造物を複数形成する工程と、前記凸状ガラス構造物の表面と該複数の凸状ガラス構造物の間の該凸状ガラス構造物が形成された部分以外の前記内面とで構成されるガラス管の内壁面に前記蛍光体層を形成する工程とを備え、前記ガラススラリーには粉末ガラスが含まれており、該粉末ガラスは前記焼成温度よりも低い融点を有する粉末ガラスと、前記焼成温度よりも高い融点を有する粉末ガラスの混合であり、焼成時に焼成温度よりも低い融点を有する粉末ガラスが、焼成温度よりも高い融点を有する粉末ガラスと前記ガラス管とを滑らかに接合するよう溶融されることを特徴とする放電ランプの製造方法。 A method of manufacturing a discharge lamp in which electrodes are disposed at at least both ends of a glass tube, and a phosphor layer is provided on an inner wall surface of the glass tube, wherein a glass slurry is applied to the inner surface of the glass tube and fired. A step of forming a plurality of convex glass structures, and a surface of the convex glass structure and the inner surface other than a portion where the convex glass structure is formed between the plurality of convex glass structures. Forming the phosphor layer on the inner wall surface of the glass tube, and the glass slurry contains powdered glass, the powdered glass having a melting point lower than the firing temperature, It is a mixture of powder glass having a melting point higher than the firing temperature, and a powder glass having a melting point lower than the firing temperature at the time of firing slides the powder glass having a melting point higher than the firing temperature and the glass tube. Method for producing a discharge lamp, characterized in that it is melted so as to bond to. 前記凸状ガラス構造物は、大きさが5〜60μmであることを特徴とする請求項に記載の放電ランプの製造方法。 2. The method of manufacturing a discharge lamp according to claim 1 , wherein the convex glass structure has a size of 5 to 60 [mu] m.
JP2006046661A 2006-02-23 2006-02-23 Discharge lamp and manufacturing method thereof Expired - Fee Related JP4922624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046661A JP4922624B2 (en) 2006-02-23 2006-02-23 Discharge lamp and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046661A JP4922624B2 (en) 2006-02-23 2006-02-23 Discharge lamp and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007227144A JP2007227144A (en) 2007-09-06
JP4922624B2 true JP4922624B2 (en) 2012-04-25

Family

ID=38548766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046661A Expired - Fee Related JP4922624B2 (en) 2006-02-23 2006-02-23 Discharge lamp and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4922624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644039B2 (en) * 2008-08-29 2014-12-24 ウシオ電機株式会社 Fluorescent lamp emitting ultraviolet light and method for manufacturing the same
JP5581635B2 (en) * 2009-09-24 2014-09-03 ウシオ電機株式会社 Fluorescent lamp
JP5350987B2 (en) * 2009-11-13 2013-11-27 株式会社ピュアロンジャパン Field emission lamp

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332632B2 (en) * 1973-04-06 1978-09-09
JPS59143254A (en) * 1983-02-04 1984-08-16 Shigeo Yoshino Fluorescent lamp
JPH06349447A (en) * 1993-06-04 1994-12-22 Iwasaki Electric Co Ltd High pressure discharge lamp
JP3588243B2 (en) * 1998-01-30 2004-11-10 京セラ株式会社 Plasma display device and method of manufacturing the same
JP2003031135A (en) * 2001-07-18 2003-01-31 Toppan Printing Co Ltd Back surface plate for reflection type color plasma display, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2007227144A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP2007291389A (en) Phosphor for plasma display panel and plasma display panel having phosphor layer composed of the phosphor
JP4922624B2 (en) Discharge lamp and manufacturing method thereof
JP2007103052A (en) Plasma display panel
JP4077448B2 (en) Fluorescent lamp, illumination device, and method of manufacturing fluorescent lamp
JP2006019254A (en) Multi-color luminous fluorescent display tube
JP2006190658A (en) Fluorescent lamp
JP2000294130A (en) Phosphor layer forming method and plasma display panel
KR20060116117A (en) Manufacturing method of plasma display panel
JPH07192690A (en) Fluorescent tube and manufacturing method thereof
JP2009181867A (en) Coating material for fluorescent lamp and coating, and method of manufacturing coating and fluorescent lamp
JP2007161904A (en) Fluorescent material, fluorescent paste, fluorescent film and plasma display panel
JP2004263068A (en) Green light emitting fluorescent substance for low voltage/high current density use, and field emission type display unit using the same
JP5182080B2 (en) Paint for fluorescent lamp, coating film using the same, method for producing coating film, and fluorescent lamp
JP2009206045A (en) Coating for fluorescent lamp, coating film using the same, method of manufacturing coating film, and fluorescent lamp
KR100309633B1 (en) Fluorescent tube
JPH0554860A (en) Fluorescent lamp
JP2001266757A (en) Fluorescent film structure, paste for forming the fluorescent film, and plasma display panel using the fluorescent film
JP2001057152A (en) Manufacture of color pdp
JP2002298785A (en) Fluorescent lamp and compact self-ballasted fluorescent lamp
KR20010091313A (en) Barrier for the plasma display panel and Method for the plasma display panel using the barrier
KR100996614B1 (en) Photoluminescence phosphor composite and plasma display panel using the same
JPH10204429A (en) Fluorescent substance particle and fluorescent lamp
JP2858203B2 (en) Fluorescent display tube and method of manufacturing the same
JP2007227248A (en) Fluorescent lamp and its manufacturing method
JP2010027270A (en) Coating material, coating film using same, method for forming coating film, and fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees