JP3664567B2 - Ceramic heater and ceramic glow plug - Google Patents

Ceramic heater and ceramic glow plug Download PDF

Info

Publication number
JP3664567B2
JP3664567B2 JP10413197A JP10413197A JP3664567B2 JP 3664567 B2 JP3664567 B2 JP 3664567B2 JP 10413197 A JP10413197 A JP 10413197A JP 10413197 A JP10413197 A JP 10413197A JP 3664567 B2 JP3664567 B2 JP 3664567B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic heater
weight
oxide
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10413197A
Other languages
Japanese (ja)
Other versions
JPH10300084A (en
Inventor
一穂 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10413197A priority Critical patent/JP3664567B2/en
Publication of JPH10300084A publication Critical patent/JPH10300084A/en
Application granted granted Critical
Publication of JP3664567B2 publication Critical patent/JP3664567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンに配設するセラミックグロープラグに好適なセラミックヒータに関する。
【0002】
【従来の技術】
窒化珪素を主成分とするセラミック中に発熱体を埋設してなる窒化珪素質のセラミックヒータでは、従来より、焼結助剤としてAl2 3 - Y2 3 や希土類酸化物を用いていた(特開平3- 315074号公報、特開平3- 344341号公報、特開平4- 31824号公報等)。
【0003】
【発明が解決しようとする課題】
上記のセラミックヒータを試作して試験した結果、以下の不具合があることを発明者らは見出した。
Al2 3 - Y2 3 焼結助剤を使用した窒化珪素質セラミックは、高温強度や耐酸化性が劣る。
希土類酸化物の焼結助剤を使用した窒化珪素質セラミックは、高温強度および耐酸化性共、Al2 3 - Y2 3 焼結助剤を使用したものよりは優れているが、エンジン中(特にO2 、S、Ca雰囲気)での耐蝕性が劣る。
【0004】
本発明の第1の目的は、高温強度、耐酸化性および耐蝕性に優れたセラミックヒータの提供にある。
本発明の第2の目的は、高温強度、耐酸化性およびエンジン中での耐蝕性に優れたセラミックグロープラグの提供にある。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明は、以下の構成を採用した。
(1)窒化珪素を主成分とするセラミック中に、W、Ta、Nb、Ti、Mo、Zr、Hf、VおよびCrより選ばれる1種類以上の珪化物、炭化物、又は窒化物を主体とする発熱体を埋設してなるセラミックヒータにおいて、前記セラミックは、焼結助剤としてCr2 3 換算で0.1重量%〜10重量%のCr化合物と、希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%とを含有する。
【0006】
(2)セラミックヒータは、70重量%〜90重量%の窒化珪素と、焼結助剤としてCr2 3 換算で0.1重量%〜10重量%のCr化合物と、希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%とを調製してなる未焼成の混合粉末中に、W、Ta、Nb、Ti、Mo、Zr、Hf、VおよびCrより選ばれる1種類以上の珪化物、炭化物、又は窒化物を主体とする未焼成の発熱体を埋設し、ホットプレス焼成して製造される。
【0007】
(3)セラミックグロープラグは、上記(1) 又は(2) の構成を有するセラミックヒータを使用した。
【0008】
【作用および発明の効果】
〔請求項1について〕
Cr2 3 換算で0.1重量%〜10重量%のCr化合物を含有しているので、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)が向上する。
希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%により、高温強度および耐酸化性が向上する。
これにより、セラミックヒータは高温強度、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)が優れる。
【0009】
尚、Cr化合物がCr2 3 換算で0.1重量%未満であると、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)の向上効果が顕著に現れない。又、10重量%を越えると、焼結性が悪化し強度が著しく低下する。
又、希土類酸化物等の酸化物が1重量%未満であると、焼結性が劣り強度が低下する。又、25重量%を越えると耐酸化性および強度(特に高温強度)が低下する。
【0010】
〔請求項2について〕
70重量%〜90重量%の窒化珪素に対し、Cr2 3 換算で0.1重量%〜10重量%のCr化合物を含有しているので、焼結体(セラミックヒータ)の耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)が向上する。
70重量%〜90重量%の窒化珪素に対し、希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%により、焼結体(セラミックヒータ)の高温強度および耐酸化性が向上する。
よって、セラミックヒータは高温強度、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)が優れる。
【0011】
尚、70重量%〜90重量%の窒化珪素に対し、Cr化合物がCr2 3 換算で0.1重量%未満であると、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)の向上効果が顕著に現れない。又、10重量%を越えると、焼結性が悪化し強度が著しく低下する。
又、70重量%〜90重量%の窒化珪素に対し、希土類酸化物等の酸化物が1重量%未満であると、焼結性が劣り強度が低下する。又、25重量%を越えると焼結体(セラミックヒータ)の耐酸化性および強度(特に高温強度)が低下する。
【0012】
〔請求項3について〕
セラミックグロープラグは、高温強度、耐酸化性および耐蝕性(O2 、S、Ca雰囲気中)に優れたセラミックヒータを使用しているので、高温強度、耐酸化性およびエンジン中での耐蝕性が優れる。
【0013】
【発明の実施の形態】
本発明の実施例(請求項1、2、3に対応)を図に基づいて説明する。
図1に示すグロープラグAは、金属外筒1と、該金属外筒1の後部11を保持する筒状主体金具2と、金属外筒1内に嵌挿されるセラミックヒータ3と、主体金具2に絶縁状態に配設される端子電極4とを備える。
【0014】
金属外筒1(肉厚0.6mm)は、耐熱金属で形成され、後部11が主体金具2の先端内周20に銀ろう付けされている。
主体金具2(炭素鋼製)は、レンチ嵌合用の六角部22を後端に形成し、ディーゼルエンジンの燃焼室に螺着するためのねじ23を先端外周に形成している。
【0015】
セラミックヒータ3は、後述する方法で製造され、Si3 4 質セラミック31中に取出しリード線33、34およびU字状の発熱抵抗体32を埋設している{取出しリード線33、34間の抵抗値(設計値)は750mΩ}。
発熱抵抗体32は、Si3 4 質セラミック31中に埋設(埋設深さは0.3mm以上)され、通電発熱時には800℃〜1300℃に昇温する。
【0016】
取出しリード線33、34は、直径0.3mmのW(タングステン製)線であり、一端331、341を発熱抵抗体32の端部321、322に連結し、他端332、342をSi3 4 質セラミック31の中間および後部でセラミック表面に露出させている。
【0017】
取出しリード線33の他端332は、金属筒51から金属外筒1を介して主体金具2に電気接続されている。
また、取出しリード線34の他端342は、金属金具52を介して端子電極4に電気接続されている。
【0018】
ねじ41が形成される端子電極4は、インシュレータ61およびナット62により主体金具2に絶縁して固定される。また、63は給電金具(図示せず)を端子電極4に固定するためのナットである。
【0019】
つぎに、セラミックヒータ3(比較品のセラミックヒータも同様)の製造方法を説明する。
(1) 平均粒径0.5μmのWC(炭化タングステン)に、平均粒径0.7μmの窒化珪素を40重量%、Yb2 3 を5重量%添加し、50時間湿式混合し、泥漿を製造する。
尚、W、Ta、Nb、Ti、Mo、Zr、Hf、VおよびCrより選ばれる1種類以上の珪化物、炭化物、又は窒化物であればWC(炭化タングステン)以外でも良い{例えばMoSi(二硫化モリブデン)}。
【0020】
(2) 泥漿を150℃で12時間乾燥させ、粉末にする。
(3) この粉末に、数種のバインダー30〜70体積%を添加し、混練ニーダー中で3時間混練する。尚、数種のバインダーには、例えば、ポリエチレン或いはワックスと、酢酸ビニルと、ポリエチレンとを混合したもの(合成樹脂系のバインダー)を使用する。
【0021】
(4) この混練物をペレタイザーにて約3mm粒に造粒する。
(5) 取出しリード線33、34をセットした射出成形機に造粒物を入れ、図3に示す、立体U字状の未焼成発熱抵抗体が完成する。
【0022】
【表1】

Figure 0003664567
【0023】
(6) 表1に示す様に、平均粒径0.7μmの窒化珪素と、平均粒径0.5〜3μmのCr化合物(Cr2 3 、Cr2 N、Cr3 2 、CrSi2 、Crなど)と、平均粒径0.8〜3μmの酸化物とを配合し、ボールミル中で湿式混合し、バインダーを加えた後、スプレードライにより混合粉末を得る。
【0024】
(7) 先に製造した未焼成の発熱抵抗体(図3に示す)を上記混合粉末中に埋設し、プレス成形後にホットプレス焼成法で、N2 ガス雰囲気、1750℃×60分、300kgf/cm2 にて焼成し、焼結体を得る。
【0025】
(8) この焼結体をφ3.5の略円筒状に研摩(研摩により他端332、342が露出)し、金属筒51、金属金具52をろう付けし、図2に示すセラミックヒータ3が完成する。
【0026】
尚、以下の工程を行うとグロープラグAが完成する。
取出しリード線33、34の他端332、342(露出面)に、金属筒51、金属金具52をろう付けして金属外筒1に嵌め込み、金属外筒1の後部11を主体金具2の先端内周20に銀ろう付けする。
更に、インシュレータ61およびナット62によって端子電極4を主体金具2に固定する。
【0027】
セラミックヒータ3{(1) 〜(7) }および比較品のセラミックヒータ{(8) 〜(11)}に対して以下の試験を実施した。尚、結果を表1に示す。
セラミックヒータ3および比較品の機械的強度(常温/高温)を調べるため、常温および高温(1400℃)での三点曲げ強度(MPa)を測定した。
【0028】
セラミックヒータ3および比較品の耐酸化性を評価するため、1400℃の炉内に100時間放置し、酸化増量(mg/cm2 )を測定した。
エンジン内の雰囲気は、主にO2 、S、Caである。そこで、セラミックヒータ3および比較品を1100℃のCaSO4 雰囲気に20時間放置してやせ量(mm)を測定し、耐蝕性を評価した。
【0029】
セラミックヒータ3および比較品の耐久性を調べるため、セラミックヒータ3{(1) 〜(7) }および比較品のセラミックヒータ{(8) 〜(11)}をグロープラグとして組み付けた後にエンジンに装着し、エンジン耐久テスト(400℃〜900℃に晒されるサイクル運転)を非通電状態で10000サイクル繰り返し、やせ量(mm)を測定した。
【0030】
表1から明らかな様に、セラミックヒータ3{(1) 〜(7) }は、機械的強度(常温、高温)、耐酸化性および耐蝕性の全てについて、比較品のセラミックヒータ{(8) 〜(11)}と比較して優れていることが確認された。
又、表1から明らかな様に、セラミックヒータ3{(1) 〜(7) }を使用したグロープラグAは、エンジンに装着した状態での耐久性について、比較品のセラミックヒータ{(8) 〜(11)}を使用したグロープラグと比較して優れていることが確認された。
【図面の簡単な説明】
【図1】本発明に係るセラミックヒータを使用したグロープラグの断面図である。
【図2】本発明に係るセラミックヒータの断面図である。
【図3】未焼成の発熱抵抗体の斜視図である。
【符号の説明】
A グロープラグ(セラミックグロープラグ)
1 金属外筒
2 筒状主体金具
3 セラミックヒータ
31 Si3 4 質セラミック
32 発熱抵抗体(発熱体)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic heater suitable for a ceramic glow plug disposed in a diesel engine.
[0002]
[Prior art]
In a silicon nitride ceramic heater in which a heating element is embedded in a ceramic mainly composed of silicon nitride, Al 2 O 3 -Y 2 O 3 or a rare earth oxide has been conventionally used as a sintering aid. (Japanese Patent Laid-Open Nos. 3-315074, 3-344341, 4-31824, etc.).
[0003]
[Problems to be solved by the invention]
As a result of trial manufacture and test of the above ceramic heater, the inventors have found that there are the following problems.
Silicon nitride ceramics using Al 2 O 3 —Y 2 O 3 sintering aids are inferior in high-temperature strength and oxidation resistance.
Silicon nitride ceramics using rare earth oxide sintering aids are superior to those using Al 2 O 3 -Y 2 O 3 sintering aids for both high temperature strength and oxidation resistance, but for engines Corrosion resistance in the middle (especially O 2 , S, Ca atmosphere) is poor.
[0004]
The first object of the present invention is to provide a ceramic heater excellent in high temperature strength, oxidation resistance and corrosion resistance.
A second object of the present invention is to provide a ceramic glow plug excellent in high temperature strength, oxidation resistance and corrosion resistance in an engine.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
(1) Mainly composed of one or more silicides, carbides, or nitrides selected from W, Ta, Nb, Ti, Mo, Zr, Hf, V, and Cr in a ceramic mainly composed of silicon nitride. in the ceramic heater formed by burying a heating element, the ceramic, and Cr 2 O 3 0.1 wt% in terms of 10% by weight of Cr compound as a sintering aid, rare earth oxides, aluminum oxide, vanadium oxide, 1% by weight to 25% by weight of one or more oxides selected from tungsten oxide and molybdenum oxide.
[0006]
(2) The ceramic heater comprises 70 wt% to 90 wt% silicon nitride, 0.1 wt% to 10 wt% Cr compound in terms of Cr 2 O 3 as a sintering aid, rare earth oxide, aluminum oxide W, Ta, Nb, Ti, Mo, Zr in an unfired mixed powder prepared by preparing 1 wt% to 25 wt% of one or more oxides selected from vanadium oxide, tungsten oxide and molybdenum oxide It is manufactured by embedding an unfired heating element mainly composed of one or more silicides, carbides, or nitrides selected from Hf, V, and Cr and performing hot press firing.
[0007]
(3) The ceramic glow plug used was a ceramic heater having the configuration of (1) or (2).
[0008]
[Operation and effect of the invention]
[About claim 1]
Since 0.1 to 10% by weight of Cr compound in terms of Cr 2 O 3 is contained, the oxidation resistance and the corrosion resistance (in an O 2 , S, and Ca atmosphere) are improved.
High-temperature strength and oxidation resistance are improved by 1 wt% to 25 wt% of one or more oxides selected from rare earth oxide, aluminum oxide, vanadium oxide, tungsten oxide, and molybdenum oxide.
Thereby, the ceramic heater is excellent in high temperature strength, oxidation resistance, and corrosion resistance (in an atmosphere of O 2 , S, and Ca).
[0009]
If the Cr compound is less than 0.1% by weight in terms of Cr 2 O 3 , the effect of improving oxidation resistance and corrosion resistance (in the atmosphere of O 2 , S, Ca) does not appear remarkably. On the other hand, if it exceeds 10% by weight, the sinterability is deteriorated and the strength is remarkably lowered.
If the oxide such as rare earth oxide is less than 1% by weight, the sinterability is inferior and the strength is lowered. On the other hand, if it exceeds 25% by weight, the oxidation resistance and strength (especially high temperature strength) are lowered.
[0010]
[About claim 2]
Since 70 wt% to 90 wt% silicon nitride contains 0.1 wt% to 10 wt% Cr compound in terms of Cr 2 O 3 , the oxidation resistance of the sintered body (ceramic heater) and Corrosion resistance (in O 2 , S, Ca atmosphere) is improved.
With respect to 70% to 90% by weight of silicon nitride, 1% to 25% by weight of one or more oxides selected from rare earth oxides, aluminum oxide, vanadium oxide, tungsten oxide, and molybdenum oxide, The high temperature strength and oxidation resistance of the ceramic heater are improved.
Therefore, the ceramic heater is excellent in high temperature strength, oxidation resistance and corrosion resistance (in an O 2 , S, Ca atmosphere).
[0011]
When the Cr compound is less than 0.1% by weight in terms of Cr 2 O 3 with respect to 70% to 90% by weight of silicon nitride, oxidation resistance and corrosion resistance (in an O 2 , S, Ca atmosphere) The improvement effect does not appear remarkably. On the other hand, if it exceeds 10% by weight, the sinterability is deteriorated and the strength is remarkably lowered.
Further, if the oxide such as rare earth oxide is less than 1% by weight relative to 70% by weight to 90% by weight of silicon nitride, the sinterability is inferior and the strength is lowered. On the other hand, if it exceeds 25% by weight, the oxidation resistance and strength (particularly high-temperature strength) of the sintered body (ceramic heater) are lowered.
[0012]
[About claim 3]
Ceramic glow plugs use ceramic heaters with excellent high-temperature strength, oxidation resistance and corrosion resistance (in O 2 , S, and Ca atmospheres), so they have high-temperature strength, oxidation resistance, and corrosion resistance in the engine. Excellent.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention (corresponding to claims 1, 2, and 3) will be described with reference to the drawings.
A glow plug A shown in FIG. 1 includes a metal outer cylinder 1, a cylindrical metal shell 2 that holds the rear portion 11 of the metal outer cylinder 1, a ceramic heater 3 that is inserted into the metal outer cylinder 1, and a metal shell 2. And a terminal electrode 4 disposed in an insulated state.
[0014]
The metal outer cylinder 1 (thickness: 0.6 mm) is made of a heat-resistant metal, and the rear portion 11 is silver-brazed to the inner peripheral edge 20 of the metal shell 2.
The metal shell 2 (made of carbon steel) has a hexagonal portion 22 for fitting a wrench at its rear end, and a screw 23 for screwing it into a combustion chamber of a diesel engine on its outer periphery.
[0015]
The ceramic heater 3 is manufactured by a method to be described later, and lead wires 33 and 34 and a U-shaped heating resistor 32 are embedded in a Si 3 N 4 ceramic 31 {between the lead wires 33 and 34. The resistance value (design value) is 750 mΩ}.
The heat generating resistor 32 is embedded in the Si 3 N 4 quality ceramic 31 (the embedding depth is 0.3 mm or more), and the temperature is raised to 800 ° C. to 1300 ° C. during energization heat generation.
[0016]
The lead wires 33 and 34 are W (tungsten) wires having a diameter of 0.3 mm, one ends 331 and 341 are connected to the end portions 321 and 322 of the heating resistor 32, and the other ends 332 and 342 are connected to Si 3 N. The four- quality ceramic 31 is exposed to the ceramic surface in the middle and rear part.
[0017]
The other end 332 of the lead wire 33 is electrically connected to the metal shell 2 from the metal cylinder 51 through the metal outer cylinder 1.
Further, the other end 342 of the lead wire 34 is electrically connected to the terminal electrode 4 via the metal fitting 52.
[0018]
The terminal electrode 4 on which the screw 41 is formed is insulated and fixed to the metal shell 2 by an insulator 61 and a nut 62. Reference numeral 63 denotes a nut for fixing a power supply fitting (not shown) to the terminal electrode 4.
[0019]
Next, a method for manufacturing the ceramic heater 3 (the same applies to the comparative ceramic heater) will be described.
(1) 40% by weight of silicon nitride with an average particle size of 0.7 μm and 5% by weight of Yb 2 O 3 are added to WC (tungsten carbide) with an average particle size of 0.5 μm, and wet-mixed for 50 hours. To manufacture.
Note that other than WC (tungsten carbide) may be used as long as it is at least one silicide, carbide, or nitride selected from W, Ta, Nb, Ti, Mo, Zr, Hf, V, and Cr {for example, MoSi (two Molybdenum sulfide)}.
[0020]
(2) Dry the slurry at 150 ° C. for 12 hours to make a powder.
(3) To this powder, 30 to 70% by volume of several kinds of binders are added and kneaded for 3 hours in a kneading kneader. As some types of binders, for example, polyethylene (wax), vinyl acetate, and a mixture of polyethylene (synthetic resin binder) are used.
[0021]
(4) This kneaded product is granulated to about 3 mm by a pelletizer.
(5) The granulated material is put into an injection molding machine in which the extraction lead wires 33 and 34 are set, and a solid U-shaped unheated heating resistor shown in FIG. 3 is completed.
[0022]
[Table 1]
Figure 0003664567
[0023]
(6) As shown in Table 1, silicon nitride having an average particle diameter of 0.7 μm and Cr compound having an average particle diameter of 0.5 to 3 μm (Cr 2 O 3 , Cr 2 N, Cr 3 C 2 , CrSi 2 , Cr and the like) and an oxide having an average particle size of 0.8 to 3 μm are blended, wet mixed in a ball mill, a binder is added, and then mixed powder is obtained by spray drying.
[0024]
(7) The previously produced unfired heating resistor (shown in FIG. 3) was embedded in the above mixed powder, and after press molding, a hot press firing method was performed in an N 2 gas atmosphere, 1750 ° C. × 60 minutes, 300 kgf / Firing at cm 2 yields a sintered body.
[0025]
(8) The sintered body is polished into a substantially cylindrical shape of φ3.5 (the other ends 332 and 342 are exposed by polishing), the metal cylinder 51 and the metal fitting 52 are brazed, and the ceramic heater 3 shown in FIG. Complete.
[0026]
The glow plug A is completed when the following steps are performed.
The metal cylinder 51 and the metal fitting 52 are brazed to the other ends 332 and 342 (exposed surfaces) of the lead wires 33 and 34 and fitted into the metal outer cylinder 1, and the rear portion 11 of the metal outer cylinder 1 is attached to the tip of the metal shell 2. The inner circumference 20 is brazed with silver.
Further, the terminal electrode 4 is fixed to the metal shell 2 by the insulator 61 and the nut 62.
[0027]
The following tests were performed on the ceramic heaters 3 {(1) to (7)} and the comparative ceramic heaters {(8) to (11)}. The results are shown in Table 1.
In order to examine the mechanical strength (normal temperature / high temperature) of the ceramic heater 3 and the comparative product, the three-point bending strength (MPa) at normal temperature and high temperature (1400 ° C.) was measured.
[0028]
In order to evaluate the oxidation resistance of the ceramic heater 3 and the comparative product, the ceramic heater 3 was left in a furnace at 1400 ° C. for 100 hours, and the increase in oxidation (mg / cm 2 ) was measured.
The atmosphere in the engine is mainly O 2 , S, and Ca. Therefore, the ceramic heater 3 and the comparative product were allowed to stand in a CaSO 4 atmosphere at 1100 ° C. for 20 hours, and the amount of thinning (mm) was measured to evaluate the corrosion resistance.
[0029]
In order to check the durability of the ceramic heater 3 and the comparative product, the ceramic heater 3 {(1) to (7)} and the comparative ceramic heater {(8) to (11)} are assembled as glow plugs and then attached to the engine. The engine durability test (cycle operation exposed to 400 ° C. to 900 ° C.) was repeated 10,000 cycles in a non-energized state, and the amount of thinning (mm) was measured.
[0030]
As is apparent from Table 1, the ceramic heater 3 {(1) to (7)} is a comparative ceramic heater {(8) for mechanical strength (room temperature, high temperature), oxidation resistance and corrosion resistance. It was confirmed to be superior to (11)}.
Further, as is apparent from Table 1, the glow plug A using the ceramic heater 3 {(1) to (7)} is a comparative ceramic heater {(8) for durability when mounted on the engine. It was confirmed to be superior to the glow plug using ~ (11)}.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a glow plug using a ceramic heater according to the present invention.
FIG. 2 is a cross-sectional view of a ceramic heater according to the present invention.
FIG. 3 is a perspective view of an unfired heating resistor.
[Explanation of symbols]
A Glow plug (ceramic glow plug)
1 Metal outer cylinder 2 Cylindrical metal shell 3 Ceramic heater 31 Si 3 N 4 quality ceramic 32 Heating resistor (heating element)

Claims (3)

窒化珪素を主成分とするセラミック中に、
W、Ta、Nb、Ti、Mo、Zr、Hf、VおよびCrより選ばれる1種類以上の珪化物、炭化物、又は窒化物を主体とする発熱体を埋設してなるセラミックヒータにおいて、
前記セラミックは、焼結助剤としてCr2 3 換算で0.1重量%〜10重量%のCr化合物と、
希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%とを含有することを特徴とするセラミックヒータ。
In ceramics mainly composed of silicon nitride,
In a ceramic heater in which a heating element mainly composed of one or more silicides, carbides, or nitrides selected from W, Ta, Nb, Ti, Mo, Zr, Hf, V and Cr is embedded,
The ceramic has a Cr 2 O 3 0.1 wt% in terms of 10% by weight of Cr compound as a sintering aid,
A ceramic heater comprising 1% by weight to 25% by weight of one or more oxides selected from rare earth oxides, aluminum oxides, vanadium oxides, tungsten oxides, and molybdenum oxides.
70重量%〜90重量%の窒化珪素と、
焼結助剤としてCr2 3 換算で0.1重量%〜10重量%のCr化合物と、
希土類酸化物、酸化アルミニウム、酸化バナジウム、酸化タングステンおよび酸化モリブデンより選ばれる1種類以上の酸化物1重量%〜25重量%とを調製してなる未焼成の混合粉末中に、
W、Ta、Nb、Ti、Mo、Zr、Hf、VおよびCrより選ばれる1種類以上の珪化物、炭化物、又は窒化物を主体とする未焼成の発熱体を埋設し、
ホットプレス焼成して製造されるセラミックヒータ。
70% to 90% by weight of silicon nitride;
And Cr 2 O 3 0.1 wt% in terms of 10% by weight of Cr compound as a sintering aid,
In an unsintered mixed powder prepared by preparing 1 wt% to 25 wt% of one or more oxides selected from rare earth oxide, aluminum oxide, vanadium oxide, tungsten oxide, and molybdenum oxide,
An unfired heating element mainly composed of one or more silicides, carbides, or nitrides selected from W, Ta, Nb, Ti, Mo, Zr, Hf, V and Cr is embedded,
Ceramic heater manufactured by hot press firing.
請求項1又は請求項2記載のセラミックヒータを使用したセラミックグロープラグ。A ceramic glow plug using the ceramic heater according to claim 1.
JP10413197A 1997-04-22 1997-04-22 Ceramic heater and ceramic glow plug Expired - Fee Related JP3664567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10413197A JP3664567B2 (en) 1997-04-22 1997-04-22 Ceramic heater and ceramic glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10413197A JP3664567B2 (en) 1997-04-22 1997-04-22 Ceramic heater and ceramic glow plug

Publications (2)

Publication Number Publication Date
JPH10300084A JPH10300084A (en) 1998-11-13
JP3664567B2 true JP3664567B2 (en) 2005-06-29

Family

ID=14372565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10413197A Expired - Fee Related JP3664567B2 (en) 1997-04-22 1997-04-22 Ceramic heater and ceramic glow plug

Country Status (1)

Country Link
JP (1) JP3664567B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847040B2 (en) 2004-04-19 2010-12-07 Mitsu Chemicals, Inc. α-olefin-based polymer composition, molded product formed from the composition, and novel polymer
JP5030630B2 (en) * 2007-03-20 2012-09-19 日本特殊陶業株式会社 Ceramic heater
JP4996283B2 (en) * 2006-05-18 2012-08-08 日本特殊陶業株式会社 Ceramic heater and glow plug
JP5876566B2 (en) * 2012-02-29 2016-03-02 京セラ株式会社 Heater and glow plug equipped with the same
WO2014073267A1 (en) * 2012-11-08 2014-05-15 ボッシュ株式会社 Ceramic heater type glow plug
CN104320866A (en) * 2014-09-19 2015-01-28 王晨 Composite-material-based thick-film circuit rare earth electrode slurry and preparation process thereof
US11013066B2 (en) * 2016-01-27 2021-05-18 Kyocera Corporation Heater

Also Published As

Publication number Publication date
JPH10300084A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP3411498B2 (en) Ceramic heater, method of manufacturing the same, and ceramic glow plug
US5883360A (en) Ceramic heater ceramic glow plug and method of manufacturing the ceramic heater
JP4445595B2 (en) Ceramic heater, ceramic glow plug and manufacturing method thereof
JP3766786B2 (en) Ceramic heater and glow plug including the same
JP3664567B2 (en) Ceramic heater and ceramic glow plug
JP3889536B2 (en) Ceramic heater, method for manufacturing the same, and glow plug including the ceramic heater
JP4699816B2 (en) Manufacturing method of ceramic heater and glow plug
JP4562029B2 (en) Ceramic heater, manufacturing method thereof, and glow plug
JP3807813B2 (en) Ceramic heater and ceramic glow plug
JP3078418B2 (en) Ceramic heating element
JP4803651B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP3962216B2 (en) Ceramic heater and glow plug provided with the same
JP2002289327A (en) Ceramic heater and glow plug equipped with the same
JP4064277B2 (en) Ceramic heater
JP3874581B2 (en) Ceramic heater and glow plug using the same
KR102224530B1 (en) Manufacturing Method of Glow Plug of Silicon Nitride for Diesel Vehicles
JP3115254B2 (en) Ceramic heater
JP4597352B2 (en) Ceramic heater
JP3689526B2 (en) Ceramic heater
JP4262847B2 (en) Ceramic heater and glow plug including the same
JP2001132947A (en) Ceramic heater and glow plug equipped with it
JP2000173749A (en) Ceramic heater heating resistor, ceramic heater, and manufacture of ceramic heater
JP3877532B2 (en) Ceramic heater and glow plug including the same
JP3903458B2 (en) Ceramic heater and glow plug including the same
JP3819705B2 (en) Ceramic heater and glow plug

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees