JP4803651B2 - Method for manufacturing ceramic heater and method for manufacturing glow plug - Google Patents

Method for manufacturing ceramic heater and method for manufacturing glow plug Download PDF

Info

Publication number
JP4803651B2
JP4803651B2 JP2005336428A JP2005336428A JP4803651B2 JP 4803651 B2 JP4803651 B2 JP 4803651B2 JP 2005336428 A JP2005336428 A JP 2005336428A JP 2005336428 A JP2005336428 A JP 2005336428A JP 4803651 B2 JP4803651 B2 JP 4803651B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic heater
manufacturing
firing
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005336428A
Other languages
Japanese (ja)
Other versions
JP2007141740A (en
Inventor
良仁 猪飼
豊 関口
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005336428A priority Critical patent/JP4803651B2/en
Publication of JP2007141740A publication Critical patent/JP2007141740A/en
Application granted granted Critical
Publication of JP4803651B2 publication Critical patent/JP4803651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性セラミック製の発熱部材が絶縁性セラミック製の基体に埋設されてなるセラミックヒータの製造方法に関し、またそのセラミックヒータを備えたグロープラグを製造する方法に関するものである。   The present invention relates to a method for manufacturing a ceramic heater in which a heat generating member made of conductive ceramic is embedded in a base made of insulating ceramic, and to a method for manufacturing a glow plug provided with the ceramic heater.

ディーゼルエンジンの始動補助として用いられるグロープラグは、従来からヒータ部材として有底筒状の金属シース内に絶縁性セラミック粉末と金属製発熱コイルとを内装させてなるヒータを使用した、いわゆるメタルグロープラグが使用されてきた。近年では耐熱性や耐久性の観点からこのようなヒータに変わって絶縁性セラミック基体に導電性のセラミックからなる発熱部材を埋設させたセラミックヒータを使用したセラミックグロープラグが注目されつつある。セラミックヒータは長期間にわたる耐久性や急速昇温に対する耐久性に優れるためである。   A glow plug used as a starting aid for a diesel engine is a so-called metal glow plug that uses a heater in which an insulating ceramic powder and a metal heating coil are internally incorporated in a bottomed cylindrical metal sheath as a heater member. Has been used. In recent years, a ceramic glow plug using a ceramic heater in which a heat generating member made of conductive ceramic is embedded in an insulating ceramic base instead of such a heater is attracting attention from the viewpoint of heat resistance and durability. This is because the ceramic heater is excellent in durability over a long period of time and durability against rapid temperature rise.

年々高まりつつある地球規模での環境意識の高まりからエンジンには排気ガスの低エミッション化の要求がある。低エミッション化を達成するためにはエンジン自身の改良にとどまらず、エンジンを如何に効率よく始動させ、また安定化させるかということも検討され、グロープラグにはより過酷な状況下・使用条件にも耐えうる性能を備えていることが望まれている。このような要求に応えるヒータとしてセラミックヒータがあげられる。   Due to the increasing environmental awareness on a global scale, which is increasing year by year, there is a demand for lower emissions of engines. In order to achieve low emissions, not only improvements to the engine itself, but also how to start and stabilize the engine efficiently is considered, and glow plugs are subject to more severe conditions and usage conditions. It is desirable to have the performance that can withstand. A ceramic heater is an example of a heater that meets such requirements.

セラミックヒータは絶縁性のセラミックと導電性のセラミックとが組み合わされ一体となって構成される。その種類も多岐にわたり、自身の表層に発熱する導電性セラミックを配置して表面が発熱するように構成したタイプ(たとえば特許文献1参照)、自身の表層は絶縁性セラミックとし、その内部に導電性セラミックからなる発熱部材と、その発熱部材への電力供給用リード線として金属線を内在させたタイプ(たとえば特許文献2参照)、電力供給用リード線をも導電性セラミックとして構成したオールセラミックタイプ(たとえば特許文献3)等、様々である。(なお、本明細書において特許文献1のようにヒータの表層が導電性セラミックである表面が発熱するタイプを"表面発熱タイプ"、特許文献2,3のようにヒータの表層が絶縁性セラミックであり、発熱部材がその絶縁性セラミックの内部に収容されたタイプを"内部発熱タイプ"と便宜的に呼称する。)   The ceramic heater is formed by combining an insulating ceramic and a conductive ceramic. There are a wide variety of types, in which the surface is heated by placing conductive ceramics that generate heat on its surface (see, for example, Patent Document 1). A heat generating member made of ceramic, a type in which a metal wire is incorporated as a lead wire for supplying power to the heat generating member (see, for example, Patent Document 2), and an all ceramic type in which the power supply lead wire is also configured as a conductive ceramic ( For example, it is various, such as patent document 3). (In this specification, the surface layer of the heater is a conductive ceramic as in Patent Document 1 is a surface heat generating type, and the surface layer of the heater is an insulating ceramic as in Patent Documents 2 and 3. The type in which the heat generating member is housed in the insulating ceramic is referred to as “internal heat generation type” for convenience.)

表面発熱タイプのセラミックヒータは、導電性セラミックがヒータの表面を構成して露出しているので、ヒータ表面への付着物があるとヒータの特性が変わってしまうおそれがあったり、外部からの応力によって導電性セラミックに亀裂が入ったりしてしまうおそれがある。このため、特に耐久性の面では内部発熱タイプのセラミックヒータが優位性をもつ。このような観点においては内部発熱タイプのものが好ましいともいえる。   In the surface heating type ceramic heater, the conductive ceramic constitutes the surface of the heater and is exposed, so there is a possibility that the characteristics of the heater may change if there is an adhering material on the heater surface, or external stress May cause cracks in the conductive ceramic. For this reason, especially in terms of durability, the internal heat generation type ceramic heater has an advantage. From such a viewpoint, it can be said that the internal heat generation type is preferable.

ところでセラミックヒータの製造方法には、未焼成状態の絶縁性セラミックを基体とし、その内部に導電性セラミック(および金属線)を内在させ一体とした後に同時に焼成するという手法がある。絶縁性セラミックの内部に金属線を内在するタイプのものは金属線の熱膨張係数が絶縁性セラミックや導電性セラミックに比較して大きいため、クラック等を生じ不良を生じ得やすい。この観点においては内部発熱タイプのものでも特にオールセラミックタイプのものが製造工程上でも優位性を持つといえる。   By the way, as a method of manufacturing a ceramic heater, there is a method in which an unfired insulating ceramic is used as a base, and a conductive ceramic (and a metal wire) is contained inside and integrated, and then fired simultaneously. The type in which the metal wire is embedded in the insulating ceramic has a larger thermal expansion coefficient than that of the insulating ceramic or the conductive ceramic, so that a crack or the like is likely to occur and a defect is likely to occur. From this viewpoint, it can be said that the internal heat generation type, especially the all ceramic type, has an advantage in the manufacturing process.

そしてその製造方法は、特許文献3によると概略次の通りである。
まず、基体となる窒化珪素粉末を種々の材料と混合・調製し、所望の形状に成形する。別途、発熱部材となる材料を混合・調製し、前記基体に所望の形状に発熱体パターンを形成する。こうして得られるヒータ成形体を、窒素圧1.5気圧以上の雰囲気中にて1700℃〜1900℃の範囲で焼成する。さらに、上記焼成後に、1000気圧以上の不活性雰囲気中で1600℃〜1900℃で熱間静水圧(HIP)焼成を行う。
特表2003−503228 特開2005−147533 特開平10−106728
According to Patent Document 3, the manufacturing method is as follows.
First, silicon nitride powder as a base is mixed and prepared with various materials and formed into a desired shape. Separately, a material to be a heating member is mixed and prepared, and a heating element pattern is formed in a desired shape on the substrate. The heater molded body thus obtained is fired in the range of 1700 ° C. to 1900 ° C. in an atmosphere having a nitrogen pressure of 1.5 atm or higher. Further, after the firing, hot isostatic pressure (HIP) firing is performed at 1600 ° C. to 1900 ° C. in an inert atmosphere of 1000 atm or more.
Special table 2003-503228 JP 2005-147533 A JP-A-10-106728

上記の製造方法に従いセラミックヒータを作製すると、"良好に"作製できたものは優れた耐久性を持ち得ていた。しかしながら、本発明者等の試行によると"良好に"セラミックヒータを製造すること自体が困難であった。これは次のような相違に基づくものと考えられる。   When ceramic heaters were produced according to the above manufacturing method, those that could be produced “good” could have excellent durability. However, according to the present inventors' trial, it has been difficult to produce a “good” ceramic heater. This is thought to be based on the following differences.

特許文献3では導電性セラミックをペースト状に印刷することによって発熱部材(ヒータ成形体)を得ることを当該製造方法の例とし、また発熱部材を「高融点金属化合物を発熱体形状に成形したもの」であってもよいとしている。そこで本発明者等は焼成後に発熱部材を構成する材料をあらかじめ形成しておき、その成形体を焼成後に絶縁性セラミック基体をなす材料に埋設し、一体としたものを特許文献3に記載の条件にてホットプレス焼成・HIP焼成をすることによってセラミックヒータを作製したが、かような方法にて作製したセラミックヒータは"良好に"作製できたものはわずかであった。   In Patent Document 3, an example of the manufacturing method is to obtain a heat generating member (heater molded body) by printing a conductive ceramic in a paste form, and the heat generating member is formed by forming a refractory metal compound into a heat generating body shape. It may be. Therefore, the present inventors previously formed a material constituting the heat generating member after firing, embedded the molded body in the material forming the insulating ceramic base after firing, and integrated the condition described in Patent Document 3 Ceramic heaters were produced by hot press firing and HIP firing at 1. However, few ceramic heaters produced by such a method could be produced “good”.

この問題につき、本発明者等が鋭意研究・試行を重ねたところ次のような考察に至った。
セラミックヒータ、特にグロープラグに用いるものは急速昇温を行うため、セラミックヒータの全体が均一に加熱するようにするためには発熱部材の体積は比較的大きい方が有利であることから、埋設する導電性セラミックからなる発熱部材を比較的太く構成することが好ましく、そのような構成のセラミックヒータの作製を試みた。しかしながら、比較的太い発熱部材を内在するセラミックヒータの作製においてホットプレス焼成を行っても、セラミックヒータ全体に均一な圧力を与えた状態での焼成は困難である。そのため、セラミックヒータは不均一な圧力下での焼成となるため、残留気孔等を生じ、欠陥を持つセラミックヒータとなってしまう。このようなセラミックヒータに対してHIP焼成を行うことにより、基体が緻密化し、信頼性の高いセラミックヒータを得ることが期待できることが特許文献3による効果である。
As a result of extensive research and trials by the inventors of the present invention, the following consideration was reached.
Since ceramic heaters, particularly those used for glow plugs, are rapidly heated, it is advantageous that the volume of the heat generating member is relatively large in order to uniformly heat the entire ceramic heater. It is preferable to make the heat generating member made of conductive ceramic relatively thick, and an attempt was made to produce a ceramic heater having such a configuration. However, even when hot press firing is performed in the production of a ceramic heater having a relatively thick heat generating member, firing in a state where a uniform pressure is applied to the entire ceramic heater is difficult. Therefore, since the ceramic heater is fired under non-uniform pressure, residual pores or the like are generated, resulting in a ceramic heater having defects. The effect of Patent Document 3 is that by performing HIP firing on such a ceramic heater, the substrate can be densified and a highly reliable ceramic heater can be expected.

埋設された発熱部材がペースト状とは異なりある程度の太さを有すると、発熱部材の周囲では特に不均一な圧力による悪影響が生じやすい。HIP焼成によって上記欠陥を解消するためには、ペースト状に形成した発熱部材を用いたセラミックヒータと、あらかじめ太めに形成した発熱部材(成形体)を用いたセラミックヒータとでは同一の条件では良好なものを得ることは困難である。   If the embedded heat generating member has a certain thickness unlike the paste, an adverse effect due to uneven pressure is likely to occur around the heat generating member. In order to eliminate the defects by HIP firing, a ceramic heater using a heat-generating member formed in a paste and a ceramic heater using a heat-generating member (molded body) formed thick in advance are good under the same conditions. Getting things is difficult.

本発明者等は急速昇温に適したセラミックヒータを実現するために、特有の形状とその形状に対する特殊な焼成条件を見いだしたものである。本発明は、上記問題を解決するためのセラミックヒータの製造方法を提供することを目的の一つとしている。   In order to realize a ceramic heater suitable for rapid temperature increase, the present inventors have found a specific shape and special firing conditions for the shape. An object of the present invention is to provide a method for manufacturing a ceramic heater for solving the above problems.

上記課題を解決するために、本発明は、
窒化珪素を主成分とする絶縁性セラミック基体に、導電性セラミックからなる発熱部材が埋設された構成を備えるセラミックヒータの製造方法であって、
前記構成を備えるよう、焼成後に前記発熱部材になる原料を射出成形して前記発熱部材の射出成形体を形成し、当該射出成形体を前記絶縁性セラミック基体とともにプレス工程により一体成形して一体成形物を形成した後に、
前記一体成形物を1700℃以上でホットプレス焼成する第1焼成工程と、
前記ホットプレス工程後に1500℃以上1800℃以下、50MPa以上200MPa以下の窒素雰囲気でHIPを行う第2焼成工程と、
を備えることを特徴とする。
In order to solve the above problems, the present invention provides:
A method of manufacturing a ceramic heater comprising a structure in which a heat generating member made of a conductive ceramic is embedded in an insulating ceramic base mainly composed of silicon nitride,
The raw material that becomes the heat generating member after firing is injection-molded so as to have the above- described configuration to form an injection-molded body of the heat generating member, and the injection-molded body is integrally molded together with the insulating ceramic base by a pressing process. After forming things,
A first firing step of hot-press firing the integrally molded product at 1700 ° C. or higher;
A second firing step of performing HIP in a nitrogen atmosphere of 1500 to 1800 ° C. and 50 to 200 MPa after the hot pressing step;
It is characterized by providing.

また、本発明により製造されるセラミックヒータの発熱部材の一端および他端に端子金具と主体金具とをそれぞれ電気的に接続してグロープラグを製造してもよい。   Further, a glow plug may be manufactured by electrically connecting a terminal metal fitting and a metal shell to one end and the other end of a heating member of a ceramic heater manufactured according to the present invention.

上記のセラミックヒータの製造方法により急速昇温に適したセラミックヒータ、およびそのセラミックヒータを用いたグロープラグを製造することが可能となる。なお、請求項1に記載するセラミックヒータの製造方法では、絶縁性セラミック基体の内部において金属製のリード線と導電性発熱部材とが接続されていない構成を意とする。   With the ceramic heater manufacturing method described above, it is possible to manufacture a ceramic heater suitable for rapid temperature rise and a glow plug using the ceramic heater. In addition, in the manufacturing method of the ceramic heater of Claim 1, the structure which the metal lead wire and the electroconductive heat generating member are not connected in the inside of an insulating ceramic base is meant.

以下、本発明の実施の形態について図面を参照して説明する。図1に本発明の製造方法により作製されるセラミックヒータ100を使用したグロープラグ500を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a glow plug 500 using a ceramic heater 100 manufactured by the manufacturing method of the present invention.

セラミックヒータ100は軸線O方向に伸びた棒状をなし、焼成されて絶縁性を備えるセラミックからなる基体10に、略U字状に焼成されて導電性を備えるセラミックからなる発熱部材20が埋設された構成を備える。発熱部材20の先端(図面下方)はU字状に後方へ曲げ返された形状であるとともに、後方へ向かって伸びるリード部21,22に比べて断面積が小さくなるように形状とされている。一方、発熱部材20のうちの後端側には電極取出部23,24がリード部21,22からそれぞれ軸線Oに垂直な径方向へ向かい、基体10の表面に露出するように形成されている。なお、基体10が請求項に記載する絶縁性セラミック基体であり、発熱部材20が導電性セラミックからなる発熱部材に相当する。   The ceramic heater 100 has a rod shape extending in the direction of the axis O, and a heating member 20 made of ceramic that is fired in a substantially U shape and embedded in ceramic is embedded in the base 10 made of fired ceramic having insulation. It has a configuration. The front end (lower side of the drawing) of the heat generating member 20 has a U-shaped shape that is bent back and has a cross-sectional area that is smaller than the lead portions 21 and 22 that extend rearward. . On the other hand, on the rear end side of the heat generating member 20, electrode extraction portions 23 and 24 are formed from the lead portions 21 and 22 in the radial direction perpendicular to the axis O, respectively, so as to be exposed on the surface of the base 10. . The base 10 is an insulating ceramic base described in the claims, and the heat generating member 20 corresponds to a heat generating member made of conductive ceramic.

この電極取出部23,24はたとえば図1に示すようなグロープラグ500として構成されるときに、電極取出部23、24のそれぞれにセラミックヒータ100を発熱させるための電源の正極と負極とが接続されるためのものである。図1の形態では電極取出部23は主体金具510と電気的に接続し、電極取出部24は中軸520と電気的に接続した状態にある。グロープラグ500は図示しないエンジンに雄ねじ部511が螺合されることにより発熱部材20の一端側(電極取出部23)が電気的に接地される。他方、中軸520の後端に固着されたピン端子530には図示しない電源(たとえばバッテリ)の正極が接続され、セラミックヒータ100に電力が供給されることによって、グロープラグ500は発熱する機能を果たす。   For example, when the electrode lead-out portions 23 and 24 are configured as a glow plug 500 as shown in FIG. 1, the electrode lead-out portions 23 and 24 are connected to the positive electrode and the negative electrode of a power source for causing the ceramic heater 100 to generate heat. Is to be done. In the form of FIG. 1, the electrode extraction portion 23 is electrically connected to the metal shell 510, and the electrode extraction portion 24 is electrically connected to the center shaft 520. The glow plug 500 is electrically grounded at one end side (electrode extraction portion 23) of the heat generating member 20 when the male screw portion 511 is screwed into an engine (not shown). On the other hand, a positive terminal of a power source (not shown) (for example, a battery) is connected to the pin terminal 530 fixed to the rear end of the middle shaft 520, and power is supplied to the ceramic heater 100, whereby the glow plug 500 functions to generate heat. .

さて、本発明のセラミックヒータ100の製造方法について説明する。
図2は、セラミックヒータ100の各製造工程を示すフローチャートである。なお、各ステップを「S」と表記する。セラミックヒータ100はこのフローチャートに示すように、まず材料が調製される(S1)。この材料調製工程S1では基体10の材料と発熱部材20の材料がそれぞれ別個に調製される。基体10の材料の調製工程は、平均粒子径が0.7μmの窒化珪素(Si3N4)粉末と平均粒子径が1.0μmの焼結助剤としての希土類酸化物(Er2O3)、さらにCrSi2、WSi2を窒化珪素玉石を使用し、エタノール中にて40時間の湿式混合粉砕を行う工程である。このようにして基体10の材料を得る。他方、発熱部材20の材料の調製工程は、平均粒子径0.7μmの窒化珪素(Si3N4)粉末とタングステンカーバイド粉末(WC)さらに焼結助剤としての希土類酸化物(Er2O3)および有機バインダを溶媒と混合し、泥漿を得、攪拌、乾燥を経るものであり、このようにして材料粉末を得る。
Now, a method for manufacturing the ceramic heater 100 of the present invention will be described.
FIG. 2 is a flowchart showing each manufacturing process of the ceramic heater 100. Each step is expressed as “S”. As shown in this flowchart, first, a material is prepared for the ceramic heater 100 (S1). In the material preparation step S1, the material of the base 10 and the material of the heat generating member 20 are separately prepared. The process for preparing the material of the substrate 10 includes silicon nitride (Si3N4) powder having an average particle size of 0.7 μm, rare earth oxide (Er2O3) as a sintering aid having an average particle size of 1.0 μm, and CrSi2 and WSi2. This is a step of performing wet mixing and grinding for 40 hours in ethanol using silicon nitride cobblestone. In this way, the material of the substrate 10 is obtained. On the other hand, the process for preparing the material of the heat generating member 20 includes silicon nitride (Si3N4) powder having an average particle diameter of 0.7 μm, tungsten carbide powder (WC), rare earth oxide (Er2O3) as a sintering aid, and an organic binder as a solvent. To obtain a slurry, and after stirring and drying, a material powder is obtained in this way.

S2はそれぞれ得られた材料をセラミックヒータ100の概形を成すように成形する工程である。S1にて得られた基体10の材料を図3に示す分割成形体310にプレス成型する。他方、発熱部材20の材料を図3に示す射出成形体320に射出成形する。   S <b> 2 is a step of forming the obtained materials so as to form the general shape of the ceramic heater 100. The material of the base 10 obtained in S1 is press-molded into the divided molded body 310 shown in FIG. On the other hand, the material of the heat generating member 20 is injection molded into an injection molded body 320 shown in FIG.

次いで得られた分割成形体310,310と射出成形体320とをプレスし、一体成形体350を得る(一体プレス工程S3)。この工程は、一方の分割成形体の凹部に射出成形体320を収容し、対となる他方の分割成形体310で挟み込み、図示外のプレス機にてプレス加工を施し、一体成形体350を形成する工程である(図4に一体成形体350を示す。)。   Next, the obtained divided molded bodies 310 and 310 and the injection molded body 320 are pressed to obtain an integrally molded body 350 (integrated pressing step S3). In this step, the injection molded body 320 is accommodated in the concave portion of one divided molded body, sandwiched by the other divided molded body 310 to be paired, and pressed by a press machine not shown to form an integrally molded body 350. (The integrally molded body 350 is shown in FIG. 4).

次の脱脂工程S4では、一体成形体350に含まれるバインダを取り除く工程である。この処理は一体成形体350に対し、800℃の窒素雰囲気下で、1時間の脱バインダ処理が施される。   In the next degreasing step S4, the binder contained in the integrally molded body 350 is removed. In this treatment, the integrally molded body 350 is subjected to a binder removal treatment for 1 hour in a nitrogen atmosphere at 800 ° C.

次に焼成が行われる。この焼成工程は第1焼成工程であるホットプレス焼成S5と第2焼成工程であるHIP焼成S6とが行われる。これら第1,第2焼成工程の詳細条件については後述する。焼成を経て焼成体400が得られる。   Next, baking is performed. In this firing step, hot press firing S5 as a first firing step and HIP firing S6 as a second firing step are performed. Detailed conditions of these first and second firing steps will be described later. A fired body 400 is obtained through firing.

次いで焼成体400の後端を切断する端部切断工程が行われる(S7)。この工程は、図5に示すように、焼成体400の後端が軸線に直交する断面で切断され、発熱部材20が閉路から開路とされる工程である。   Next, an end cutting step for cutting the rear end of the fired body 400 is performed (S7). As shown in FIG. 5, this step is a step in which the rear end of the fired body 400 is cut in a cross section perpendicular to the axis, and the heat generating member 20 is opened from the closed circuit.

さらに、センタレス研磨工程S8を経てセラミックヒータ100は完成する。完成したセラミックヒータ100は基体10に対して発熱部材20が占める体積の割合が10%以上となるように構成されている。   Furthermore, the ceramic heater 100 is completed through the centerless polishing step S8. The completed ceramic heater 100 is configured such that the ratio of the volume occupied by the heat generating member 20 to the base body 10 is 10% or more.

さて、前述の第1および第2焼成工程の焼成条件について説明する。
本発明は焼成条件により上記セラミックヒータ100が欠陥なく作製できるようにするものである。下表1に実施例1〜4および比較例1〜4として焼成条件を示す。なお、それぞれの実施例および比較例で作製したセラミックヒータ100の材料、寸法等はすべて上記説明したものと同一のものである。
Now, the firing conditions of the first and second firing steps described above will be described.
The present invention enables the ceramic heater 100 to be manufactured without defects depending on firing conditions. Table 1 below shows firing conditions as Examples 1 to 4 and Comparative Examples 1 to 4. The materials, dimensions, etc. of the ceramic heaters 100 produced in the respective examples and comparative examples are all the same as those described above.

Figure 0004803651
Figure 0004803651

まず、比較のために一体成形体350を1780℃、25MPaの一軸加圧下にて2時間のホットプレス焼成を行う。次いで行うHIP焼成はそれぞれ焼成温度、焼成圧力を異ならせた窒素雰囲気下で行う(比較例1はHIP焼成自体を行わない)。焼成されたそれぞれの焼成体400についてその断面の観察を行い、気孔の残り度合い(残留気孔)および粒径の観察を行った。   First, for comparison, the integrally molded body 350 is subjected to hot press firing for 2 hours under uniaxial pressure at 1780 ° C. and 25 MPa. Next, the HIP firing performed is performed in a nitrogen atmosphere with different firing temperatures and firing pressures (Comparative Example 1 does not perform HIP firing itself). The cross-section of each fired fired body 400 was observed, and the degree of remaining pores (residual pores) and the particle size were observed.

HIP焼成条件が1500℃以上1800℃以下、圧力50MPa〜200MPaであった実施例1〜4についてはいずれも残留気孔がわずかであり、異常粒成長したものもみられず、良好な焼成体400を得られた。一方、HIP焼成を行わなかった比較例1、HIP焼成温度が1300℃と1500℃未満であった比較例2については異常粒成長はみられないものの残留気孔が本発明の実施例である1〜4に比べると多かった。また、HIP焼成温度が1850℃と1800℃を超えた条件の比較例3については、残留気孔は少ないものの異常粒成長してしまっており、強度が低下しているおそれがある。また、HIP焼成圧力が0.9MPaと低い条件であった比較例4では、HIP焼成による残留気孔の減少の効果が少なく、比較例1,2同様に残留気孔が多くみられた。 In Examples 1 to 4 in which the HIP firing conditions were 1500 ° C. or more and 1800 ° C. or less and the pressure was 50 MPa to 200 MPa, there were few residual pores, no abnormal grain growth was observed, and a good fired body 400 was obtained. Obtained. On the other hand, in Comparative Example 1 in which HIP firing was not performed, and in Comparative Example 2 in which HIP firing temperatures were less than 1300 ° C. and 1500 ° C., although no abnormal grain growth was observed, residual pores are examples of the present invention. Compared to 4, it was more. Moreover, about the comparative example 3 of the conditions which HIP baking temperature exceeded 1850 degreeC and 1800 degreeC, although there are few residual pores, it has grown abnormally and there exists a possibility that intensity | strength may fall. In Comparative Example 4 where the HIP firing pressure was as low as 0.9 MPa, the effect of reducing the residual pores due to HIP firing was small, and many residual pores were observed as in Comparative Examples 1 and 2.

以上説明したように、導電性発熱部材が絶縁性セラミック基体に対して占める体積割合を10%以上とするような太い発熱部材を有するセラミックヒータを製造する際には、1700℃以上のホットプレス焼成後に行うHIP焼成の条件を1500℃以上1800℃以下とし、50MPa以上200MPa以下の窒素雰囲気とすることが有効である。 As described above, when manufacturing a ceramic heater having a thick heat generating member in which the volume ratio of the conductive heat generating member to the insulating ceramic base is 10% or more, hot press firing at 1700 ° C. or higher is performed. It is effective to set the conditions for the HIP firing performed later to 1500 ° C. or higher and 1800 ° C. or lower and a nitrogen atmosphere of 50 MPa or higher and 200 MPa or lower.

このように作製したセラミックヒータを使用してグロープラグを製造すれば容易に良好なものを製造することができ、また、優れた耐久性をも備えるものとなる。   If a glow plug is manufactured using the ceramic heater manufactured in this way, a good one can be easily manufactured and also has excellent durability.

また、本発明の製造方法のように、基体に対する発熱部材が占める体積割合が大きいセラミックヒータを製造する際、ホットプレス焼成後にHIP焼成を行うことによって、HIP焼成前までに発熱部材に形成されていたマイクロクラックや残留気孔を取り除き、良好なセラミックヒータを製造することが可能となる。その結果としてクラックが形成されていたために発熱部材の抵抗値がわずかに高く、ばらつきを生じていてもそれらの悪影響を減じることが可能となる。   Moreover, when manufacturing a ceramic heater in which the volume ratio of the heat generating member to the substrate is large as in the manufacturing method of the present invention, HIP baking is performed after the hot press baking, so that the heat generating member is formed before the HIP baking. It is possible to remove the microcracks and residual pores and manufacture a good ceramic heater. As a result, since cracks are formed, the resistance value of the heat generating member is slightly high, and even if variations occur, it is possible to reduce the adverse effects thereof.

本発明の製造方法によって製造されるセラミックヒータ100の半断面図と、そのセラミックヒータ100を使用して製造されるグロープラグ500の半断面図である。FIG. 2 is a half sectional view of a ceramic heater 100 manufactured by the manufacturing method of the present invention and a half sectional view of a glow plug 500 manufactured using the ceramic heater 100. セラミックヒータ100の各製造工程を示すフローチャートである。3 is a flowchart showing each manufacturing process of the ceramic heater 100. 一体プレス工程において一体とされる前の基体310と射出成形体320とを示す斜視図である。It is a perspective view which shows the base | substrate 310 and the injection-molded body 320 before being integrated in an integrated press process. 一体プレス工程後の一体成形体350を示す図である。It is a figure which shows the integrally molded body 350 after an integral press process. 焼成工程後に行う端部切断工程を説明する図である。It is a figure explaining the edge part cutting process performed after a baking process.

10 絶縁性セラミック基体
20 (導電性セラミック)発熱部材
100 セラミックヒータ
350 一体成形体
500 グロープラグ
10 Insulating Ceramic Base 20 (Conductive Ceramic) Heating Member 100 Ceramic Heater 350 Integrated Molded Body 500 Glow Plug

Claims (2)

窒化珪素を主成分とする絶縁性セラミック基体に、導電性セラミックからなる発熱部材が埋設された構成を備えるセラミックヒータの製造方法であって、
前記構成を備えるよう、焼成後に前記発熱部材になる材料を射出成形して前記発熱部材の射出成形体を形成し、当該射出成形体を前記絶縁性セラミック基体とともにプレス工程により一体成形して一体成形物を形成した後に、
前記一体成形物を1700℃以上でホットプレス焼成する第1焼成工程と、
前記ホットプレス工程後に1500℃以上1800℃以下、50MPa以上200MPa以下の窒素雰囲気でHIPを行う第2焼成工程と、
を備えることを特徴とするセラミックヒータの製造方法。
A method of manufacturing a ceramic heater comprising a structure in which a heat generating member made of a conductive ceramic is embedded in an insulating ceramic base mainly composed of silicon nitride,
In order to have the above-described configuration, the material that becomes the heat generating member after firing is injection molded to form an injection molded body of the heat generating member, and the injection molded body is integrally molded together with the insulating ceramic substrate by a pressing process. After forming things,
A first firing step of hot-press firing the integrally molded product at 1700 ° C. or higher;
A second firing step of performing HIP in a nitrogen atmosphere of 1500 to 1800 ° C. and 50 to 200 MPa after the hot pressing step;
A method of manufacturing a ceramic heater, comprising:
請求項1に記載のセラミックヒータの製造方法によって製造したセラミックヒータに対し、
当該セラミックヒータの発熱部材の一端および他端に端子金具と主体金具とをそれぞれ電気的に接続してグロープラグを製造するグロープラグの製造方法。
For the ceramic heater manufactured by the method for manufacturing a ceramic heater according to claim 1,
A glow plug manufacturing method for manufacturing a glow plug by electrically connecting a terminal fitting and a metallic shell to one end and the other end of a heating member of the ceramic heater, respectively.
JP2005336428A 2005-11-21 2005-11-21 Method for manufacturing ceramic heater and method for manufacturing glow plug Expired - Fee Related JP4803651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336428A JP4803651B2 (en) 2005-11-21 2005-11-21 Method for manufacturing ceramic heater and method for manufacturing glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336428A JP4803651B2 (en) 2005-11-21 2005-11-21 Method for manufacturing ceramic heater and method for manufacturing glow plug

Publications (2)

Publication Number Publication Date
JP2007141740A JP2007141740A (en) 2007-06-07
JP4803651B2 true JP4803651B2 (en) 2011-10-26

Family

ID=38204347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336428A Expired - Fee Related JP4803651B2 (en) 2005-11-21 2005-11-21 Method for manufacturing ceramic heater and method for manufacturing glow plug

Country Status (1)

Country Link
JP (1) JP4803651B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280877B2 (en) * 2009-02-03 2013-09-04 日本特殊陶業株式会社 Ceramic heater and glow plug
WO2013047849A1 (en) * 2011-09-29 2013-04-04 京セラ株式会社 Heater and glow plug provided with same
JP2019128994A (en) * 2018-01-22 2019-08-01 日本特殊陶業株式会社 Ceramic heater, ceramic heater with cylindrical member, and glow plug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147501B2 (en) * 1992-06-02 2001-03-19 株式会社デンソー Electric heating device of ceramic glow plug
JP3351573B2 (en) * 1993-06-15 2002-11-25 株式会社デンソー Ceramic heating element
JP3398274B2 (en) * 1995-12-27 2003-04-21 京セラ株式会社 Ceramic heater
JP3441313B2 (en) * 1996-09-30 2003-09-02 京セラ株式会社 Ceramic heater and method of manufacturing the same
JP3766786B2 (en) * 2000-12-28 2006-04-19 日本特殊陶業株式会社 Ceramic heater and glow plug including the same
JP2003068433A (en) * 2001-08-28 2003-03-07 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, and manufacturing method of glow plug

Also Published As

Publication number Publication date
JP2007141740A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP3411498B2 (en) Ceramic heater, method of manufacturing the same, and ceramic glow plug
US10309650B2 (en) Ceramic heater
EP2343949B1 (en) Ceramic heater
WO2005117492A1 (en) Ceramic heater, and glow plug using the same
JP4851570B2 (en) Glow plug
JPH10300085A (en) Ceramic heater and ceramic glow plug
JP5342694B2 (en) Ceramic heater element, ceramic heater, and glow plug
US7020952B2 (en) Method for producing a glow plug
US7282669B2 (en) Ceramic heater and method for manufacturing the same
JP4803651B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP2009224317A (en) Ceramic heater and glow plug
JP4546756B2 (en) Ceramic heater and glow plug
JP4699816B2 (en) Manufacturing method of ceramic heater and glow plug
JP2006024394A (en) Ceramic heater and glow plug
JP5449794B2 (en) Ceramic heater and glow plug
JP2017053619A (en) Ceramic heater and glow plug
JP2010277706A (en) Ceramic heater-manufacturing method
JP2004259610A (en) Ceramic heater, manufacturing method thereof, and glow plug
JP6869839B2 (en) Ceramic heater and glow plug
JP3807813B2 (en) Ceramic heater and ceramic glow plug
JP2002289327A (en) Ceramic heater and glow plug equipped with the same
KR102224530B1 (en) Manufacturing Method of Glow Plug of Silicon Nitride for Diesel Vehicles
JP2018129211A (en) Ceramic heater and glow plug
JP3115254B2 (en) Ceramic heater
JP5744482B2 (en) Method for manufacturing ceramic heater element and method for manufacturing glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4803651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees