JP4064277B2 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP4064277B2
JP4064277B2 JP2003089087A JP2003089087A JP4064277B2 JP 4064277 B2 JP4064277 B2 JP 4064277B2 JP 2003089087 A JP2003089087 A JP 2003089087A JP 2003089087 A JP2003089087 A JP 2003089087A JP 4064277 B2 JP4064277 B2 JP 4064277B2
Authority
JP
Japan
Prior art keywords
heater
heater member
heating element
compound
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089087A
Other languages
Japanese (ja)
Other versions
JP2004296337A (en
Inventor
浩二 舟木
桂 松原
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003089087A priority Critical patent/JP4064277B2/en
Publication of JP2004296337A publication Critical patent/JP2004296337A/en
Application granted granted Critical
Publication of JP4064277B2 publication Critical patent/JP4064277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はセラミックヒータに関するものであり、更に詳しくは、ディーゼルエンジン等に使用されるセラミックグロープラグや、センサー加熱用またはファンヒータ加熱用に用いられるセラミックヒータに関するものである。
【0002】
【従来の技術】
従来のディーゼルエンジンの始動時や各種センサーの早期活性に使用されるセラミックヒータは、導電性セラミックからなる発熱体をヒータ部材に埋設した構造である。特に、1200℃以上の高温性能が要求される場合、MoまたはWの珪化物、窒化物、炭化物を主成分とする発熱体を、高温での耐食性に優れた窒化珪素セラミックからなるヒータ部材に埋設したセラミックヒータを使用している。
【0003】
このようなセラミックヒータにおいては、ヒータ部材の熱膨張係数と発熱体の熱膨張係数との差が大きく、使用時に、熱による応力がセラミックヒータにかかる。その結果、ヒータ部材に亀裂等が生じ、場合によっては、折損してしまうおそれがあった。そこで、従来のセラミックヒータでは、ヒータ部材の熱膨張係数を発熱体に近づけるべく、様々な検討がなされている。例えば、窒化物セラミックよりなるヒータ部材に、このヒータ部材よりも大きな熱膨張係数を有する金属の炭化物、珪化物、窒化物、硼化物のうち一種以上を、1vol%以上、5vol%未満含有させている。(特許文献1参照)
【0004】
【特許文献1】
特開平10−25162(第2頁)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1のセラミックヒータでは、ヒータ部材の絶縁性を確保するために、上記のような金属の炭化物、珪化物、窒化物、硼化物のヒータ部材への含有量が限られる。よって、ヒータ部材と発熱体との熱膨張係数の差を十分に小さくすることはできなかった。
【0006】
本発明は、こうした問題を鑑みてなされたものであって、ヒータ部材と発熱体との熱膨張係数の差を小さくし、ヒータ部材の亀裂や折損を抑制するセラミックヒータを提供することを目的とする。
【0007】
【発明を解決するための手段】
本発明のセラミックヒータは、ヒータ部材に、MoまたはWの珪化物、窒化物、炭化物を主成分とする発熱体を埋設してなるセラミックヒータにおいて、
前記ヒータ部材は、窒化珪素を主成分とし、希土類元素と、Cr化合物と、粒径が3μm未満で5〜10vol%のCrとWとからなる化合物と、0.4〜1.1vol%のWの化合物を含有することを特徴とする。
【0008】
本発明者等が検討した結果、所定の粒径のCr化合物をヒータ部材中に分散させることにより、ヒータ部材の更なる高熱膨張化が可能と成ることが明らかになった。なお、Cr化合物は従来のセラミックヒータにも含まれているが、従来の含有量よりも多量に含有することで、高熱膨張化が可能となる。しかしながら、単純にヒータ部材にCr化合物を多量に含有すると、ヒータ部材と発熱体との境界付近でヒータ部材のCr成分が凝集してしまい、発熱体が折損する等の強度低下を引き起こす問題があった。そこで、発明者等が更に検討を進めた結果、Crの化合物を多量に含有する代わりに、Crの化合物を所定量含有しつつ、さらにCrとWとからなる化合物を所定量含有させることにより、ヒータ部材のCr成分が境界付近に凝集しないようにできることが判明した。つまり、CrとWからなる化合物をヒータ部材に所定量含有することにより、ヒータ部材の熱膨張係数を向上し、ヒータ部材と発熱体との熱膨張係数の差を少なくでき、且つCr成分がヒータ部材と発熱体との境界付近に凝集することなく、発熱体の強度低下を抑制することができる。
【0009】
なお、CrとWとからなる化合物の含有量は、5〜10vol%とする。CrとWとからなる化合物の含有量が5vol%未満の場合は、上記に示したような効果が得られない。一方、CrとWとからなる化合物の含有量が10vol%を越える場合、ヒータ部材中のCr成分が多くなり、ヒータ部材と発熱体との境界付近でCr成分が凝集し、発熱体強度が低下する。また、得られるヒータ部材の絶縁抵抗値が低下してしまう。
【0010】
また、CrとWとからなる化合物の平均粒径が3μm以下とする。CrとWとからなる化合物の平均粒径が3μmを超えると、粒径が窒化珪素セラミックの粒径よりも大きいCrとWとからなる化合物がヒータ部材中に増加し、ヒータ部材の強度を低下させてしまうので好ましくない。
【0011】
そして、ヒータ部材は、0.4〜1.1vol%のWの化合物含有するとよい。Wの化合物を含有させることで、ヒータ部材に含有されるCr化合物がヒータ部材と発熱体の界面に凝集することも抑制することができる。なお、0.4vol未満の場合、上記のような効果が得られず、また、1.1volを越えると、ヒータ部材と発熱体との熱膨張係数の差が大きくなり、ヒータ部材の亀裂、折損を抑制することができない。
【0012】
さらに、セラミックヒータは、CrとWとからなる化合物がCrの珪化物とWの珪化物の固溶体であることがよい。
【0013】
Crの珪化物(CrSi2)は熱膨張係数が大きいことから、多量に添加することなく高熱膨張化が可能である。よって、それに伴い、W成分も珪化物となる。つまり、CrとWとからなる化合物がCrの珪化物とWの珪化物の固溶体であれば、CrとWとからなる化合物を多量に添加することなく、高熱膨張化が可能となる。
【0014】
さらに、平均粒径0.1〜1.0μmの炭化珪素を1.5〜4vol%で含有することがよい。炭化珪素をヒータ部材に含有することにより、窒化珪素の粒子の粒成長を抑えることができる。これにより、絶縁物である窒化珪素の粒子の比表面積が増大し、導電性を有するCrとWとからなる化合物の粒子が導電経路を形成することを抑えることができる。よって、ヒータ部材の絶縁性を保つことができる。炭化珪素の平均粒径が0.1μm未満の場合、上記効果を得ることができない。また、炭化珪素の平均粒径が1.0μmを越える場合、窒化珪素の粒成長を抑制することができず、ヒータ部材の絶縁抵抗値が低下してしまう。
【0015】
さらに、炭化珪素の含有量が1.5vol%未満の場合は、窒化珪素の粒子の粒成長を抑えることができず、上記効果を得ることができない。一方、炭化珪素の含有量が4vol%をこえる場合、炭化珪素自体の導電性により、ヒータ部材の絶縁抵抗値が低下してしまう。
【0016】
【発明の実施の形態】
以下、本発明を、図面を参照しつつ説明する。
図1は、本発明のヒータの一例であるグロープラグ1の内部構造を示すものである。また、図2は、その要部を拡大して示すものである。該グロープラグ1はセラミックヒータ本体2とこれを保持する外筒3、該外筒3を保持する主体金具4とセラミックヒータ本体2の後端側に配置された中軸5とを有する。
【0017】
セラミックヒータ本体2は棒状の形態であるヒータ部材21の先端側に発熱体22が埋設され、該発熱体22に通電する一対のリード端子23、24がヒータ部材21の後端部外周面に露出形成されている。発熱体22は、炭化タングステン(WC)、二珪化モリブデン(MoSi2)の導電性セラミックと絶縁性セラミックとの混合物からなり、U字形状をなしている。また、ヒータ部材21は、窒化珪素を主成分とし、Yb等の希土類元素と、Cr等のCr化合物と、粒径が3μm未満で5〜10vol%のCrとWとからなる化合物とを含有する。これにより、ヒータ部材21の熱膨張係数を向上させ、ヒータ部材21とリード端子23、24あるいは発熱体22との熱膨張係数の差を少なくし、且つCr成分がヒータ部材21と発熱体22の界面に凝集することを抑制する。さらに、Wの化合物を0.4〜1.1vol%含有することがよい。これにより、さらなるヒータ部材22のCr成分がヒータ部材21と発熱体22の界面に凝集することを抑制することができる。また、CrとWとからなる化合物がCrの珪化物とWの珪化物の固溶体であることがよい。これにより、CrとWとからなる化合物を多量に含有させることなく、ヒータ部材21の高熱膨張化が可能となる。さらに、平均粒径0.1〜1.0μmの炭化珪素を1.5〜4vol%含有することがよい。これにより、ヒータ部材22の絶縁性を保つことができる。そして、リード端子23、24は、発熱体22と電気抵抗率の異なる導電性セラミックと絶縁セラミックとの混合物からなる。
【0018】
外筒3はSUS630、SUS430等のステンレス鋼の筒状部材であって、セラミックヒータ本体2の先端側及び後端側を突出させた状態で自身の内側に保持する。そして、S40Cからなる主体金具4の先端面と外筒3の後端面とを接合させ、外筒3の後端側を主体金具4に嵌合している。また、外筒3と、一方のリード端子24が機械的、電気的に接続している。
【0019】
そして、主体金具4の外周面には図示しないエンジンブロックにグロープラグ1を固定するための、ねじ部41が形成され、後端側には、中軸5が取り付けられている。
【0020】
次に、中軸5は主体金具4と絶縁状態にて配置され、中軸5の後端側外周面と、主体金具4の内周面との間にセラミックリング6を配置し、その後端側にガラス充填層7を固定する形となっている。なお、セラミックリング6の外周面には、径大部の形でリング側係合部61が形成され、主体金具4の内周面後端寄りに、周方向段部の形で形成された金具側係合部42に係合することで、先端側への抜け止めがなされている。また、中軸5のガラス充填層7と接触する外周面部分には、ローレット加工等による凹凸が施されている。さらに、中軸5の後端部は主体金具4の後方に延出し、その延出部に絶縁ブッシュ8を介して端子金具9がはめ込まれている。端子金具9は、周方向の加締め部91により、中軸5の外周面に対して導通状態で固定されている。
【0021】
一方、セラミックヒータ本体2の後端側外周面には、リード端子23(外筒3と電気的に接続するリード端子24とは別のリード端子23)と導通するSUS630、SUS430等のステンレス鋼のリング部材100が、リード端子23を覆うように取り付けられる。なお、リング部材100はろう付けや縛り嵌め、溶接等により取り付けられる。そして、中軸5と、リング部材100とは、一端がリング部材100に溶接され、他端が中軸5に溶接された金属リード110により、電気的に接続されている。
【0022】
以下、グロープラグ1の製造方法について説明する。まず、図3に示すように、発熱体22とリード端子23、24を一体とした発熱体粉末成形体220を射出成形により作成する。また、セラミック本体21を形成するための原料粉末を予め金型プレス成形することにより、上下別体に形成された本体成形体としての分割成形体211、212を用意しておく。これら分割成形体211、212には、発熱体粉末成形体220に対応した形状の凹部をそのあわせ面に形成しておき、ここに発熱体粉末成形体220を収容して分割予備成形体を上記合わせ面において嵌め合わせ、さらにプレス・圧縮することにより、図3(b)に示すように、これらが一体化された複合成形体200を作る。
【0023】
こうして得られた複合成形体200を脱バインダ処理後、ホットプレス等により1700℃以上、例えば、約1800℃前後で焼成することにより、焼成体とし、さらに外周面を円筒状に研磨すればセラミックヒータ本体2が得られる。そして、図4に示すように、リング部材100を一対のリード端子23と電気的に接続させるように圧入等により取り付ける。さらに同様に、該セラミックヒータ本体2に外筒3を一対のリード端子24と電気的に接続させるように、圧入等により取り付ける。
【0024】
そして、リング部材100に金属リード110の一端を抵抗溶接等により溶接する。その後、金属リード100の他端を中軸5の先端側に抵抗溶接等により溶接する。そして、主体金具4及び必要な部品を公知の方法で組み付ければ、図1に示すグロープラグ1が完成する。
【0025】
【実施例】
以下、本発明について実施例及び比較例を挙げて具体的に説明する。
平均粒径0.7μmの窒化珪素粉末に、希土類酸化物として平均粒径1.0μmのYb、平均粒径1.0μmのCr・CrSi等のCr化合物粉末、平均粒径1.0μmで結晶構造としてαあるいはβの炭化珪素粉末及び二酸化珪素の粉末、平均粒径1.0μmのWSi等のW化合物粉末を表1に示した組成で配合し、これを窒化珪素製の球石を使用してエタノール中で40時間湿式混合し、次いで湯煎乾燥した。その後、このようにして得られたヒータ部材の粉末を加圧成形することにより、上下別体に形成された本体成形体としての分割成形体を用意しておく。そして、分割成形体にWC・Si3N4を主成分とし助剤として希土類酸化物からなる発熱体を収容して窒素雰囲気下、1800℃、25MPaの条件で1時間かけてホットプレスで同時に焼成し、20mm×40mm×40mmの棒状部材1〜9を得た。そして、この棒状部材No.1〜9を3mm×4mm×40mmの形状に加工し、セラミックヒータ本体No.1〜11を得た。
【0026】
【表1】

Figure 0004064277
【0027】
上記で得られたセラミックヒータ本体1〜11についての熱膨張係数、粒界強度及び絶縁抵抗値を測定した。その結果を以下の表1に示す。ここで、ヒータ部材の熱膨張係数(ppm/℃)は下記の式により算出することができる。
熱膨張係数(ppm/℃)=−{(1000℃における標準試料長さ−1000℃における測定試料長さ)/〔30℃における測定試料長さ×(1000℃−30℃)〕}+8.45×10−6
なお、上記式において、「1000℃における標準試料長さ」は、標準試料として1000℃における熱膨張係数が8.45×10−6/℃であるアルミナを使用した場合のこのアルミナの1000℃における長さを意味する。尚、この標準試料の30℃における長さは、測定試料の30℃における長さと等しい長さであるとする。また、発熱体の熱膨張係数は上記の式より算出すると、4.6ppm/℃である。また、界面強度(MPa)は、JIS R 1601に準じて界面部の3点曲げ強度を測定して求めた。なお、表1において、No.2〜5が本発明範囲の実施例であり、その他の*で示したのがNo.1、6、7比較例である。
【0028】
これによると、No.6は熱膨張係数が、3.4ppm/℃となり、他の実施例と比較すると、発熱体との熱膨張係数の差が大きくなる。また、No.1、7は界面強度が376MPa、323MPaと他の実施例よりも強度が弱い。よって、No.2〜5の実施例のようにCrとWとからなる化合物を粒径が3μm未満で5〜10vol%とすることで、ヒータ部材の熱膨張係数を向上させ、ヒータ部材と発熱体との熱膨張係数の差を少なくし、且つCr成分がヒータ部材と発熱体の界面に凝集することを抑制することができる。
【0029】
さらに、本発明の実施例である、No.2〜5、8〜11について絶縁抵抗値を測定した。絶縁抵抗値は、上記焼結体を3mm×4mm×17mmの形状の試験片に加工し、測定装置として東亜電波工業株式会社製超絶縁計「SM−8205」を用いて、室温にてこの試験片の両端をワニ口クリップ端子により挟み、1000Vの電圧を1分間チャージした後、抵抗値を測定した。その結果を表1に示す。また、実施例のSiCの平均粒径について表1に示す。
【0030】
さらに、No.8は、SiCの含有量が1.08vol%と少ないため、絶縁性が7×10Ωと少ない。No.9は、SiCの平均粒径が0.05と小さいため、7×10Ωと少ない。No.10は、SiCの平均粒径が1.20と大きいため、10×10Ωと少ない。No.11は、SiCの含有量が4.82vol%と多いため、絶縁性が9×10Ωと少ない。よって、SiCの平均粒径0.1〜1.0μmであって且つ1.5〜4vol%含有することで、ヒータ部材の絶縁性も良好に保つことができることが判る。
【図面の簡単な説明】
【図1】本発明の実施形態1を示すグロープラグ1の縦断面図である。
【図2】図1の要部を示す縦断面図である。
【図3】グロープラグ1のセラミックヒータ2の製造工程の説明図である。
【図4】図3に続く、グロープラグ1の製造工程の説明図である。
【符号の説明】
1・・・グロープラグ、2・・・セラミックヒータ本体、21・・・ヒータ部材、22・・・発熱体、23、24・・・リード端子、3・・・外筒、31・・・突出部、4・・・主体金具、5・・・中軸、6・・・セラミックリング、7・・・ガラス充填層、8・・・絶縁ブッシュ、9・・・端子金具、100・・・リング部材、200・・・複合成形体、211、212・・・分割成形体、220・・・発熱部粉末成形体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic heater, and more particularly to a ceramic glow plug used for a diesel engine or the like, and a ceramic heater used for sensor heating or fan heater heating.
[0002]
[Prior art]
A conventional ceramic heater used for starting a diesel engine or early activation of various sensors has a structure in which a heating element made of conductive ceramic is embedded in a heater member. In particular, when high-temperature performance of 1200 ° C. or higher is required, a heating element mainly composed of Mo, W silicide, nitride, or carbide is embedded in a heater member made of silicon nitride ceramic having excellent corrosion resistance at high temperatures. A ceramic heater is used.
[0003]
In such a ceramic heater, the difference between the thermal expansion coefficient of the heater member and the thermal expansion coefficient of the heating element is large, and stress due to heat is applied to the ceramic heater during use. As a result, a crack or the like is generated in the heater member, and in some cases, the heater member may be broken. Therefore, in the conventional ceramic heater, various studies have been made in order to bring the coefficient of thermal expansion of the heater member closer to that of the heating element. For example, a heater member made of nitride ceramic contains at least 1 vol% and less than 5 vol% of metal carbide, silicide, nitride, boride having a larger thermal expansion coefficient than the heater member. Yes. (See Patent Document 1)
[0004]
[Patent Document 1]
JP 10-25162 (2nd page)
[0005]
[Problems to be solved by the invention]
However, in the ceramic heater disclosed in Patent Document 1, the content of the above-described metal carbide, silicide, nitride, and boride in the heater member is limited in order to ensure the insulation of the heater member. Therefore, the difference in coefficient of thermal expansion between the heater member and the heating element cannot be made sufficiently small.
[0006]
The present invention has been made in view of these problems, and an object of the present invention is to provide a ceramic heater that reduces a difference in thermal expansion coefficient between a heater member and a heating element and suppresses cracking and breakage of the heater member. To do.
[0007]
[Means for Solving the Invention]
The ceramic heater of the present invention is a ceramic heater in which a heating element having Mo or W silicide, nitride, or carbide as a main component is embedded in a heater member.
The heater member includes silicon nitride as a main component, a rare earth element, a Cr compound, a compound having a particle size of less than 3 μm and 5 to 10 vol% Cr and W, and 0.4 to 1.1 vol% W. It is characterized by containing the compound of these.
[0008]
As a result of investigations by the present inventors, it has been clarified that further high thermal expansion of the heater member can be achieved by dispersing a Cr compound having a predetermined particle diameter in the heater member. In addition, although Cr compound is contained also in the conventional ceramic heater, high thermal expansion is attained by containing a larger amount than the conventional content. However, if the heater member simply contains a large amount of Cr compound, the Cr component of the heater member aggregates in the vicinity of the boundary between the heater member and the heating element, and there is a problem that causes a decrease in strength such as breakage of the heating element. It was. Therefore, as a result of further investigation by the inventors, instead of containing a large amount of the compound of Cr, by containing a predetermined amount of the compound of Cr and W while containing a predetermined amount of the compound of Cr, It has been found that the Cr component of the heater member can be prevented from aggregating near the boundary. That is, by containing a predetermined amount of a compound consisting of Cr and W in the heater member, the coefficient of thermal expansion of the heater member can be improved, the difference in coefficient of thermal expansion between the heater member and the heating element can be reduced, and the Cr component is the heater. The strength reduction of the heating element can be suppressed without aggregating near the boundary between the member and the heating element.
[0009]
In addition, content of the compound which consists of Cr and W shall be 5-10 vol%. When the content of the compound consisting of Cr and W is less than 5 vol%, the effects as described above cannot be obtained. On the other hand, when the content of the compound composed of Cr and W exceeds 10 vol%, the Cr component in the heater member increases, the Cr component aggregates near the boundary between the heater member and the heating element, and the heating element strength decreases. To do. Moreover, the insulation resistance value of the heater member obtained will fall.
[0010]
The average particle size of the compound composed of Cr and W is 3 μm or less. When the average particle size of the compound composed of Cr and W exceeds 3 μm, the compound composed of Cr and W whose particle size is larger than the particle size of the silicon nitride ceramic increases in the heater member, and the strength of the heater member decreases. This is not preferable.
[0011]
And a heater member is good to contain the compound of 0.4-1.1 vol% W. By containing the W compound, it is possible to suppress the Cr compound contained in the heater member from aggregating at the interface between the heater member and the heating element. In addition, when it is less than 0.4 vol, the above effects cannot be obtained, and when it exceeds 1.1 vol, the difference in thermal expansion coefficient between the heater member and the heating element becomes large, and the heater member is cracked or broken. Can not be suppressed.
[0012]
Further, in the ceramic heater, the compound composed of Cr and W is preferably a solid solution of Cr silicide and W silicide.
[0013]
Since Cr silicide (CrSi2) has a large thermal expansion coefficient, high thermal expansion can be achieved without adding a large amount. Therefore, W component also becomes silicide accordingly. That is, if the compound composed of Cr and W is a solid solution of Cr silicide and W silicide, high thermal expansion can be achieved without adding a large amount of the compound composed of Cr and W.
[0014]
Furthermore, it is good to contain silicon carbide with an average particle diameter of 0.1-1.0 micrometer by 1.5-4 vol%. By containing silicon carbide in the heater member, grain growth of silicon nitride particles can be suppressed. Thereby, the specific surface area of the silicon nitride particles as an insulator is increased, and it is possible to suppress the formation of a conductive path by conductive particles of Cr and W. Therefore, the insulation of the heater member can be maintained. When the average particle size of silicon carbide is less than 0.1 μm, the above effect cannot be obtained. Moreover, when the average particle diameter of silicon carbide exceeds 1.0 μm, the grain growth of silicon nitride cannot be suppressed, and the insulation resistance value of the heater member decreases.
[0015]
Furthermore, when the silicon carbide content is less than 1.5 vol%, the grain growth of silicon nitride particles cannot be suppressed, and the above effect cannot be obtained. On the other hand, when the content of silicon carbide exceeds 4 vol%, the insulation resistance value of the heater member decreases due to the conductivity of silicon carbide itself.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 shows the internal structure of a glow plug 1 which is an example of the heater of the present invention. FIG. 2 is an enlarged view of the main part. The glow plug 1 includes a ceramic heater body 2, an outer cylinder 3 that holds the ceramic heater body 2, a metal shell 4 that holds the outer cylinder 3, and a middle shaft 5 that is disposed on the rear end side of the ceramic heater body 2.
[0017]
In the ceramic heater body 2, a heating element 22 is embedded on the front end side of the heater member 21 having a rod shape, and a pair of lead terminals 23 and 24 that energize the heating element 22 are exposed on the outer peripheral surface of the rear end portion of the heater member 21. Is formed. The heating element 22 is made of a mixture of tungsten carbide (WC) and molybdenum disilicide (MoSi2) conductive ceramic and insulating ceramic, and has a U-shape. The heater member 21 is composed mainly of silicon nitride, a rare earth element such as Yb 2 O 3 , a Cr compound such as Cr 2 O 3 , and Cr and W having a particle diameter of less than 3 μm and 5 to 10 vol%. And a compound containing Thereby, the thermal expansion coefficient of the heater member 21 is improved, the difference in thermal expansion coefficient between the heater member 21 and the lead terminals 23 and 24 or the heating element 22 is reduced, and the Cr component is between the heater member 21 and the heating element 22. Suppresses aggregation at the interface. Furthermore, it is preferable to contain 0.4 to 1.1 vol% of the W compound. Thereby, it can suppress that Cr component of the further heater member 22 aggregates in the interface of the heater member 21 and the heat generating body 22. FIG. Further, the compound composed of Cr and W is preferably a solid solution of Cr silicide and W silicide. Thereby, the high thermal expansion of the heater member 21 can be achieved without containing a large amount of a compound composed of Cr and W. Furthermore, it is good to contain 1.5-4 vol% of silicon carbide with an average particle diameter of 0.1-1.0 micrometer. Thereby, the insulation of the heater member 22 can be maintained. The lead terminals 23 and 24 are made of a mixture of conductive ceramics and insulating ceramics having different electrical resistivity from the heating element 22.
[0018]
The outer cylinder 3 is a stainless steel cylindrical member such as SUS630 or SUS430, and is held inside itself with the front end side and rear end side of the ceramic heater body 2 protruding. And the front end surface of the metal shell 4 made of S40C and the rear end surface of the outer cylinder 3 are joined, and the rear end side of the outer cylinder 3 is fitted to the metal shell 4. Further, the outer cylinder 3 and one lead terminal 24 are mechanically and electrically connected.
[0019]
A screw portion 41 for fixing the glow plug 1 to an engine block (not shown) is formed on the outer peripheral surface of the metal shell 4, and a middle shaft 5 is attached to the rear end side.
[0020]
Next, the middle shaft 5 is disposed in an insulated state from the metal shell 4, a ceramic ring 6 is disposed between the outer peripheral surface of the rear end side of the middle shaft 5 and the inner peripheral surface of the metal shell 4, and glass is disposed on the rear end side. The filling layer 7 is fixed. A ring-side engagement portion 61 is formed on the outer peripheral surface of the ceramic ring 6 in the form of a large diameter portion, and the metal fitting formed in the shape of a circumferential step near the rear end of the inner peripheral surface of the metal shell 4. By engaging with the side engaging portion 42, the tip end side is prevented from coming off. Moreover, the outer peripheral surface part which contacts the glass filling layer 7 of the center shaft 5 is provided with irregularities by knurling or the like. Further, the rear end portion of the middle shaft 5 extends rearward of the metal shell 4, and a terminal metal fitting 9 is fitted into the extended portion via an insulating bush 8. The terminal fitting 9 is fixed in a conductive state to the outer peripheral surface of the middle shaft 5 by a caulking portion 91 in the circumferential direction.
[0021]
On the other hand, the rear end side outer peripheral surface of the ceramic heater body 2 is made of stainless steel such as SUS630 or SUS430 that is electrically connected to the lead terminal 23 (lead terminal 23 different from the lead terminal 24 electrically connected to the outer cylinder 3). The ring member 100 is attached so as to cover the lead terminal 23. The ring member 100 is attached by brazing, binding, welding or the like. The middle shaft 5 and the ring member 100 are electrically connected by a metal lead 110 having one end welded to the ring member 100 and the other end welded to the middle shaft 5.
[0022]
Hereinafter, a method for manufacturing the glow plug 1 will be described. First, as shown in FIG. 3, a heating element powder molded body 220 in which the heating element 22 and the lead terminals 23 and 24 are integrated is formed by injection molding. Moreover, the division | segmentation molded bodies 211 and 212 as a main body molded object formed in the upper-lower separate body are prepared by carrying out the die press molding of the raw material powder for forming the ceramic main body 21 previously. In these divided molded bodies 211 and 212, concave portions having a shape corresponding to the heating element powder molded body 220 are formed on the mating surfaces thereof, and the heating element powder molded body 220 is accommodated therein to form the divided preforms as described above. As shown in FIG. 3 (b), a composite molded body 200 in which these are integrated is produced by fitting on the mating surfaces and further pressing and compressing.
[0023]
The composite molded body 200 thus obtained is subjected to a binder removal process, and then fired at 1700 ° C. or higher, for example, around about 1800 ° C. by hot pressing or the like to obtain a fired body, and further, the outer peripheral surface is polished into a cylindrical shape. The main body 2 is obtained. Then, as shown in FIG. 4, the ring member 100 is attached by press fitting or the like so as to be electrically connected to the pair of lead terminals 23. Similarly, the outer cylinder 3 is attached to the ceramic heater body 2 by press-fitting or the like so as to be electrically connected to the pair of lead terminals 24.
[0024]
Then, one end of the metal lead 110 is welded to the ring member 100 by resistance welding or the like. Thereafter, the other end of the metal lead 100 is welded to the distal end side of the middle shaft 5 by resistance welding or the like. When the metal shell 4 and necessary parts are assembled by a known method, the glow plug 1 shown in FIG. 1 is completed.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.
Silicon nitride powder having an average particle size of 0.7 μm, Cr compound powder such as Yb 2 O 3 having an average particle size of 1.0 μm and Cr 2 O 3 .CrSi 2 having an average particle size of 1.0 μm as the rare earth oxide, A silicon carbide powder having a diameter of 1.0 μm and α or β as a crystal structure, a powder of silicon dioxide, and a W compound powder such as WSi 2 having an average particle diameter of 1.0 μm are blended in the composition shown in Table 1, and this is mixed with silicon nitride. Wet mixing was performed in ethanol for 40 hours using a manufactured cobblestone, and then dried in a hot water bath. Thereafter, the powder of the heater member obtained in this way is pressure-molded to prepare a divided molded body as a main body molded body formed separately in upper and lower parts. Then, a heating element composed of WC.Si3N4 as a main component and a rare earth oxide as an auxiliary agent is accommodated in the divided molded body, and simultaneously fired by hot pressing in a nitrogen atmosphere at 1800 ° C. and 25 MPa for 1 hour, 20 mm The bar-shaped members 1-9 of x40mmx40mm were obtained. And this rod-shaped member No. 1-9 are processed into a shape of 3 mm × 4 mm × 40 mm, and the ceramic heater body No. 1 is processed. 1 to 11 were obtained.
[0026]
[Table 1]
Figure 0004064277
[0027]
The thermal expansion coefficient, grain boundary strength, and insulation resistance value of the ceramic heater bodies 1 to 11 obtained above were measured. The results are shown in Table 1 below. Here, the thermal expansion coefficient (ppm / ° C.) of the heater member can be calculated by the following equation.
Thermal expansion coefficient (ppm / ° C.) = − {(Standard sample length at 1000 ° C.−measured sample length at 1000 ° C.) / [Measured sample length at 30 ° C. × (1000 ° C.−30 ° C.)]} + 8. 45 × 10 −6
In the above formula, “standard sample length at 1000 ° C.” means that when alumina having a thermal expansion coefficient of 8.45 × 10 −6 / ° C. at 1000 ° C. is used as a standard sample, this alumina at 1000 ° C. It means length. It is assumed that the length of the standard sample at 30 ° C. is equal to the length of the measurement sample at 30 ° C. Further, the thermal expansion coefficient of the heating element is 4.6 ppm / ° C. when calculated from the above formula. The interface strength (MPa) was determined by measuring the three-point bending strength at the interface according to JIS R 1601. In Table 1, no. Nos. 2 to 5 are examples of the scope of the present invention. 1, 6, and 7 are comparative examples.
[0028]
According to this, no. No. 6 has a coefficient of thermal expansion of 3.4 ppm / ° C., and the difference in coefficient of thermal expansion from that of the heating element is larger than in other examples. No. Nos. 1 and 7 have interfacial strengths of 376 MPa and 323 MPa, which are weaker than other examples. Therefore, no. The thermal expansion coefficient of the heater member is improved by making the compound composed of Cr and W 5 to 10 vol% with a particle size of less than 3 μm as in the examples 2 to 5, and the heat of the heater member and the heating element It is possible to reduce the difference in expansion coefficient and to suppress the Cr component from aggregating at the interface between the heater member and the heating element.
[0029]
Furthermore, No. 1, which is an example of the present invention. The insulation resistance values were measured for 2 to 5 and 8 to 11. Insulation resistance value was determined by processing the above sintered body into a test piece having a shape of 3 mm × 4 mm × 17 mm and using a super insulation meter “SM-8205” manufactured by Toa Denpa Kogyo Co., Ltd. as a measuring device. Both ends of the piece were sandwiched between alligator clip terminals and charged with a voltage of 1000 V for 1 minute, and then the resistance value was measured. The results are shown in Table 1. Moreover, it shows in Table 1 about the average particle diameter of SiC of an Example.
[0030]
Furthermore, no. No. 8 has a low SiC content of 1.08 vol%, and therefore has a low insulating property of 7 × 10 3 Ω. No. No. 9 is as small as 7 × 10 3 Ω because the average particle size of SiC is as small as 0.05. No. No. 10 is as small as 10 × 10 3 Ω because the average particle size of SiC is as large as 1.20. No. No. 11 has a high SiC content of 4.82 vol%, and therefore has a low insulating property of 9 × 10 3 Ω. Therefore, it can be seen that the insulating property of the heater member can be kept good by containing SiC with an average particle size of 0.1 to 1.0 μm and containing 1.5 to 4 vol%.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a glow plug 1 showing a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a main part of FIG.
FIG. 3 is an explanatory diagram of a manufacturing process of the ceramic heater 2 of the glow plug 1;
4 is an explanatory diagram of a manufacturing process of the glow plug 1 subsequent to FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Glow plug, 2 ... Ceramic heater main body, 21 ... Heater member, 22 ... Heat generating body, 23, 24 ... Lead terminal, 3 ... Outer cylinder, 31 ... Projection 4, 4 ... metal shell, 5 ... middle shaft, 6 ... ceramic ring, 7 ... glass-filled layer, 8 ... insulating bush, 9 ... terminal fitting, 100 ... ring member , 200... Composite molded body, 211, 212... Split molded body, 220.

Claims (4)

ヒータ部材に、MoまたはWの珪化物、窒化物、炭化物を主成分とする発熱体を埋設してなるセラミックヒータにおいて、
前記ヒータ部材は、窒化珪素を主成分とし、希土類元素と、Cr化合物と、粒径が3μm未満で5〜10vol%のCrとWとからなる化合物と、を含有することを特徴とするセラミックヒータ。
In a ceramic heater in which a heating element having Mo or W silicide, nitride or carbide as a main component is embedded in a heater member,
The heater member contains silicon nitride as a main component, and contains a rare earth element, a Cr compound, and a compound composed of Cr and W having a particle diameter of less than 3 μm and 5 to 10 vol%. .
前記ヒータ部材は、0.4〜1.1vol%のWの化合物含有することを特徴とする請求項1記載のセラミックヒータ。The ceramic heater according to claim 1, wherein the heater member contains 0.4 to 1.1 vol% of a W compound. 前記CrとWとからなる化合物が、Crの珪化物とWの珪化物との固溶体であることを特徴とする請求項1または2に記載のセラミックヒータ。3. The ceramic heater according to claim 1, wherein the compound composed of Cr and W is a solid solution of a silicide of Cr and a silicide of W. 4. 平均粒径0.1〜1.0μmの炭化珪素粒子を1.5〜4vol%含有することを特徴とする請求項1乃至3に記載のセラミックヒータ。4. The ceramic heater according to claim 1, comprising 1.5 to 4 vol% of silicon carbide particles having an average particle diameter of 0.1 to 1.0 μm.
JP2003089087A 2003-03-27 2003-03-27 Ceramic heater Expired - Fee Related JP4064277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089087A JP4064277B2 (en) 2003-03-27 2003-03-27 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089087A JP4064277B2 (en) 2003-03-27 2003-03-27 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2004296337A JP2004296337A (en) 2004-10-21
JP4064277B2 true JP4064277B2 (en) 2008-03-19

Family

ID=33403051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089087A Expired - Fee Related JP4064277B2 (en) 2003-03-27 2003-03-27 Ceramic heater

Country Status (1)

Country Link
JP (1) JP4064277B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107854B1 (en) 2006-05-18 2012-04-11 NGK Spark Plug Co., Ltd. Ceramic heater and glow plug
JP5132188B2 (en) * 2007-05-18 2013-01-30 日本特殊陶業株式会社 Ceramic heater
EP2822356B1 (en) * 2012-02-29 2018-05-30 Kyocera Corporation Heater and glow plug equipped with heater

Also Published As

Publication number Publication date
JP2004296337A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5989896B2 (en) Ceramic heater
JP5261103B2 (en) Ceramic heater
JP5166451B2 (en) Ceramic heater and glow plug
US20100213188A1 (en) Ceramic heater and glow plug
JP4546756B2 (en) Ceramic heater and glow plug
JP4064277B2 (en) Ceramic heater
JP3078418B2 (en) Ceramic heating element
CN102933903B (en) Heater and glow plug provided with same
JP3664567B2 (en) Ceramic heater and ceramic glow plug
JP2001280640A (en) Glow plug and production method for the same
JP3962216B2 (en) Ceramic heater and glow plug provided with the same
JP5449794B2 (en) Ceramic heater and glow plug
JP2004061041A (en) Ceramic glow plug
JP6786412B2 (en) Ceramic heater and glow plug
JP2001052845A (en) Ceramic heater
JP4253444B2 (en) Ceramic glow plug
JP3807813B2 (en) Ceramic heater and ceramic glow plug
EP2869666A1 (en) Heater and glow plug equipped with same
KR0148449B1 (en) Ceramic glow plug with spiral heating tip
JP2002289327A (en) Ceramic heater and glow plug equipped with the same
JP2003056849A (en) Glow plug
JP6725653B2 (en) Heater and glow plug equipped with the same
JP4597352B2 (en) Ceramic heater
JP3903458B2 (en) Ceramic heater and glow plug including the same
WO2019102708A1 (en) Glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Ref document number: 4064277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees