JP3663083B2 - 波長変換装置及びそれを用いた光伝送システム - Google Patents

波長変換装置及びそれを用いた光伝送システム Download PDF

Info

Publication number
JP3663083B2
JP3663083B2 JP20439799A JP20439799A JP3663083B2 JP 3663083 B2 JP3663083 B2 JP 3663083B2 JP 20439799 A JP20439799 A JP 20439799A JP 20439799 A JP20439799 A JP 20439799A JP 3663083 B2 JP3663083 B2 JP 3663083B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
converted
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20439799A
Other languages
English (en)
Other versions
JP2001033841A (ja
Inventor
敏夫 伊藤
里江子 佐藤
克明 曲
昇 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20439799A priority Critical patent/JP3663083B2/ja
Publication of JP2001033841A publication Critical patent/JP2001033841A/ja
Application granted granted Critical
Publication of JP3663083B2 publication Critical patent/JP3663083B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、波長多重を利用した光通信、光変換、光情報処理などの光伝送システムに用いる波長変換装置及びそれを用いた光伝送システムに関するものである。
【0002】
【従来の技術】
従来、複数の異なる波長の光信号を伝送する光伝送システムとして、前記複数の異なる波長の光信号を1本の光ファイバに結合して伝送する、波長多重を利用した光伝送システム(WDMシステム)がある。前記WDMシステムでは、光伝送技術の高度化に伴ない、前記光ファイバを伝送する光信号の波長を異なる波長へと変換する、いわゆる波長変換が必要とされる。
【0003】
図9は、WDMシステムにおける従来の波長変換の例を示すブロック図であって、1001は例えば2.5Gb/sの信号を伝播する被変換波長光(例えば波長1555nm)、1002は前記被変換波長光1001が伝播する光ファイバ、1003は変換波長の連続(CW)光を出力する光源、1004はCW変換波長入力光(例えば波長1560nm)、1005は前記CW変換波長入力光1004が伝播する光ファイバ、1006は前記被変換波長光1001とCW変換入波長力光1004を合波する光カプラ、1007は光ファイバ、1008は半導体光増幅器、1009は出力用光ファイバ、1010は増幅された被変換波長光、1011は前記CW変換波長入力光1004が前記被変換波長光1001によって逆相に変調された2.5Gb/sの信号を持つ波長変換出力光(波長1560nm)である。
【0004】
WDMシステムにおける前記波長変換では、図9に示すように、まず、光ファイバ1002中を伝播する、波長が1555nmで2.5Gb/sの信号を持つ被変換波長光1001と、前記光源1003から出力される、波長が1560nmのCW変換波長入力光1004を、光カプラ1006により合波する。前記光カプラ1006で合波された前記被変換波長光1001とCW変換波長入力光1004は光ファイバ1007を伝播して半導体光増幅器1008による相互利得変調(XGM;cross gain modulation)を行い、前記CW変換波長入力光1004を前記被変換波長光1001の逆相に変調した、波長が1560nmで2.5Gb/sの信号を持つ波長変換出力光1011を得る。すなわち、前記被変換波長光1001のオン信号は前記波長変換出力光1011のオフ信号となり、前記被変換波長光1001のオフ信号は前記波長変換出力光1011のオン信号となる。
【0005】
前記半導体光増幅器1008で変調された波長変換出力光1011と前記増幅された被変換波長光1010は出力用光ファイバ1009に出力される。
【0006】
前記半導体光増幅器1008による相互利得変調は簡単な構成で、容易に、かつ効率良く波長変換を実現することができるため有望である(S.Chelles et al., IEEE Photonics Technology Letters, vol.9, pp.758, 1997 参照)。
【0007】
図10は、前記半導体光増幅器1008による相互利得変調を説明するための図であり、横軸は前記被変換波長光1001の強度、縦軸は前記波長変換出力光1011の強度を示している。ここで、前記半導体光増幅器1008には、例えばバルクのInGaAsP狭メサを活性層とし、pn接合による埋め込み構造を持つもの(T.Ito et al., IEICE Transactions on Electronics, Vol.E81-C, pp1237, 1998 参照)を利用し、注入電流は75mAとした。
【0008】
前記半導体光増幅器1008では、図10に示すように、前記被変換波長光1001の強度が0dBm(1mW)を越える時点で、前記波長変換出力光1011の強度が減少しはじめ、前記被変換波長光1001の強度が10dBm(10mW)になると、前記波長変換出力光1011の強度が10dB減少する。そのため、前記被変換波長光1001の強度が0dBm〜10dBmの間で前記CW変換波長入力光1004を変調させることにより、前記被変換波長光1001と逆相の前記波長変換出力光1011を出力することができる。
【0009】
【発明が解決しようとする課題】
しかしながら、前記従来の技術では、前記半導体光増幅器1008による相互利得変調の際に要求される前記被変換波長光1001の強度が0dBm〜10dBmときわめて大きい。通常の光伝送システム(WDMシステム)で利用される光信号の強度は−10dBm〜0dBm程度であるため、前記半導体光増幅器1008による相互利得変調を行うためには、別の半導体光増幅器もしくは光ファイバアンプを設けて前記被変換波長光1001を0dBm〜10dBmに増幅しなければならないという問題があった。
【0010】
また、前記出力用光ファイバ1009には、前記半導体光増幅器1008で増幅された被変換波長光1010と前記波長変換出力光1011の異なる波長を持った2つの光信号が伝播するため、前記波長変換出力光1011の使用者(ユーザ)は、光信号用のバンドパスフィルタを用いて、不要な前記増幅された被変換波長光1010をカットしなければならない。そのため、前記波長変換出力光1011を利用するユーザは、比較的高価な前記バンドパスフィルタを設置しなければならないという問題があった。
【0011】
また、設置した前記バンドパスフィルタが前記波長変換出力光1011のみを透過するように調整しなければならないという問題があった。
【0012】
本発明の目的は、半導体光増幅器による相互利得変調を行う波長変換装置において、入力信号光の強度を小さくすることが可能な技術を提供することにある。
【0013】
本発明の他の目的は、半導体光増幅器による相互利得変調を行う波長変換装置において、入力信号光と出力信号光の分離を容易にすることが可能な技術を提供することにある。
【0014】
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
【0015】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
【0016】
(1)所定波長の入力信号光と、前記入力信号光の波長と異なる別波長の光とを合波して第1の合波光を出力する光合波手段と、前記光合波手段で合波された第1の合波光を入力し、前記入力信号光の強度に応じて前記別波長の光の光強度増幅特性を変調し、前記入力信号光と前記変調された別波長の光とで構成される第2の合波光を出力する光増幅手段を具備する波長変換装置であって、前記第2の合波光の入力信号光を反射し、前記変調された別波長の光を透過する入力信号反射手段と、前記光増幅手段からの第2の合波光を前記入力信号反射手段に導波する光導波路を具備し、前記第2の合波光の入力信号光が前記光増幅手段に再度入力され、前記第1の合波光の入力信号光と同一ビットで重なるように前記光導波路の長さを設定するものである。
【0017】
(2)前記手段(1)の波長変換装置において、前記入力信号反射手段は、特定波長の光信号を反射する光ファイバグレーティングである。
【0018】
(3)前記手段(1)の波長変換装置において、前記入力信号反射手段は、特定波長の光信号を反射する誘電体多層膜フィルタである。
【0019】
(4)前記手段(1)乃至(3)のいずれか1つの波長変換装置において、前記光増幅手段と前記入力信号反射手段との間に設けられる光伝送路の長さLは、前記光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記入力信号光の1ビット当たりの時間間隔をt(秒)としたときに、L≦(c・t)/(20・n)である。
【0020】
(5)光ファイバ中に伝送される複数波長の光が光分波手段で各波長光に分波され、前記光分波手段のそれぞれの出力端子に前記手段(1)乃至(4)のいずれか1つの波長変換装置がアレイ状に接続され、前記各波長変換装置の各々の出力光が光合波手段で合波されて光ファイバ中に伝送される光伝送システムである。
【0021】
前記手段(1)は、クロック信号などの繰り返し信号の波長を変換する場合に有効である。
【0022】
以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。
【0023】
【発明の実施の形態】
(実施形態1)
図1は、本発明による実施形態1の波長変換装置の概略構成を示すブロック図である。図1において、101は例えば2.5Gb/sの信号を持つ被変換波長光(例えば波長1555nm)、102は前記被変換波長光101が伝播する光ファイバ、103は変換波長の連続(CW)光を出力する光源、104はCW変換波長入力光(例えば波長1560nm)、105は前記CW変換波長入力光104が伝播する光ファイバ、106は前記被変換波長光101とCW変換波長入力光104を合波する光カプラ、107は光カプラ106の出力光を伝播する光ファイバ、108は半導体光増幅器または光ファイバアンプ、109は出力用光ファイバ、110は被変換波長光、111は前記CW変換波長入力光104が前記被変換波長光101によって逆相に変調された2.5Gb/sの信号を持つ波長変換出力光(波長1560nm)、112は前記被変換波長光110を反射し、前記波長変換出力光111を透過する光ファイバグレーティングである。この光ファイバグレーティング112は、例えば光ファイバに紫外線を照射して、光の通るコアの屈折率を長手方向に周期的に変化させることにより、特定波長(Bragg波長)の光信号のみを反射させる。
【0024】
本実施形態1の波長変換装置は、図1に示すように、被変換波長光101が伝播する光ファイバ102と、変換波長の連続(CW)光を出力する光源103と、前記CW変換波長入力光104が伝播する光ファイバ105と、前記被変換波長光101とCW変換波長入力光104を合波する光カプラ106と、光カプラ106の出力光を伝播する光ファイバ107と、半導体光増幅器(または光ファイバアンプ)108と、被変換波長光110を反射し、前記波長変換出力光111を透過する光ファイバグレーティング112と、出力用光ファイバ109を備えている。
【0025】
この構成により前記半導体光増幅器108の相互利得変調を利用して、前記被変換波長光101が持つ2.5Gb/sの信号を異なる波長の前記波長変換出力光111にうつす、いわゆる波長変換が可能になる。
【0026】
ここでの特徴は、前記被変換波長光110のみを折り返し、前記被変換波長光110を前記半導体光増幅器108において二重に利用することができるために、前記被変換波長光110に要求される光強度を理想的には3dB減少させることができること、また、前記出力用光ファイバ109に前記被変換波長光110が出力されるのを防ぐことができる2点である。
【0027】
また、前記光ファイバグレーティング112に反射波長を制御する機能を持たせることもできる。これは光ファイバグレーティング112を加熱または物理的に伸張することで行う。
【0028】
さらに別な構成としては、前記光ファイバグレーティング112を半導体導波路で作製し、前記半導体光増幅器1008とモノリシック集積する方法もある(K.Sato et al., IEEE Journal of selected topics in quantum electronics, vol.3, no.2, pp250-255, 1997 参照)。この場合、反射させる光信号の波長の制御はグレーティング部分に注入する電流の量により行う。
【0029】
図2は、前記半導体光増幅器108の一実施例の概略構成を示す図である。本実施例の半導体光増幅器108では、図2に示すように、素子長は1200ミクロンで、うち活性層領域が600ミクロン、両端のスポットサイズ変換領域SSがそれぞれ300ミクロンである。前記活性層領域は厚さ0.4ミクロンでバンドギャップ波長1.55ミクロンのInGaAsPバルク層、前記スポットサイズ変換領域SSはバンドギャップ波長1.3ミクロン、出射先端部で厚さ0.2ミクロンの垂直テーパー層で形成している。0.5ミクロン幅のメサ形成はメタン/水素のドライエッチングを用い、pn層により埋め込んでいる。素子の両端面にはSiO2/TiO2の多層膜により反射防止膜を形成し、平面ファイバを結合してモジュールにする。
【0030】
典型的な静特性として、波長1555nm、−10dBmの入力光に対し、注入電流0〜10mAで30dB以上のファイバ間損失、20mAでファイバ間無損失、40mAで10dBの光増幅度が得られる。この半導体光増幅器108は本質的に偏波依存性が0.2dB以下と小さく、使用波長帯域が1530nm〜1600nmと、広いという優れた特徴を持つ。
【0031】
前記半導体光増幅器108にCW変換波長入力光104を入射すると、注入電流すなわちキャリアが光子に変換されるため前記CW変換波長入力光104は増幅される。ところがここに別の波長で、かつ変調された被変換波長光101を入射すると、前記被変換波長光101が「1」のとき(すなわち光がある場合)には前記被変換波長光101も増幅されるためキャリアが消費され、前記CW変換波長入力光104を増幅するためのキャリアが減少するために前記CW変換波長入力光104の増幅度が減少する。逆に前記被変換波長光101が「0」のとき(すなわち光がない場合)もとの増幅度を回復する。これは一般に相互利得変調と呼ばれる効果である。
【0032】
図3は、前記光ファイバグレーティングの一実施例の概略構成を示す図である。
【0033】
ゲルマニウム(Ge)を添加した石英(SiO2)ガラスに紫外線を照射すると屈折率が上昇することが知られている。
【0034】
光ファイバグレーティング(Fiber Bragg Grating:FBG)はこの現象を利用し、光ファイバのコア部の屈折率を一定の周期で変化させ、その周期Λと実効屈折率neffに対応した波長(Bragg波長)λBの光を選択的に反射させる反射型光フィルタである。その波長特性形状の自由度は高く、紫外線照射条件や位相マスクパターンにより、バンド幅が0.1nmと非常に狭帯域なものから数十nmの広帯域なものまで作製可能である。
【0035】
図4は、前記半導体光増幅器108の動作を説明するための図である。前記光ファイバ107から入射する前記被変換波長光101(行き信号)と前記光ファイバグレーティング112で反射されて一定時間後に戻ってくる被変換波長光110(帰り信号)の2つの変調信号によって前記CW変換波長光104を変調した結果が前記波長変換出力光111になる。このとき、前記被変換波長光101あるいは110の「0」は、前記波長変換出力光111の「1」に、前記被変換波長光101あるいは110の「1」は前記波長変換出力光111の「0」にと逆相に変調される。また、前記波長変換出力光111の斜線部分は前記被変換波長光101と110が一致しないことからくる時間ばらつき(ジッタ)で、これを1ビットの10分の1以内にすることが要求される。
【0036】
本発明は、図4から明らかなように、1回目の入力と2回目の入力が同一のビット情報であるものに限定される。
【0037】
(実施形態2)
図5は、本発明による実施形態2の波長変換装置の概略構成を示すブロック図である。図5において、201は例えば2.5Gb/sの信号を持つ被変換波長光(例えば波長1555nm)、202は前記被変換波長光201が伝播する光ファイバ、203は変換波長の連続(CW)光を出力する光源、204はCW変換波長入力光(例えば波長1560nm)、205は前記CW変換波長入力光204が伝播する光ファイバ、206は前記被変換波長光201とCW変換波長入力光204を合波する光カプラ、207は光ファイバ、208は半導体光増幅器あるいは光ファイバアンプ、209は出力用光ファイバである。
【0038】
210は被変換波長光、211は前記CW変換波長入力光204が前記被変換波長光201によって逆相に変調された2.5Gb/sの信号を持つ波長変換出力光(波長1560nm)、212は前記被変換波長光210を反射し、前記波長変換出力光211を透過する誘電体多層膜フィルタである。
【0039】
前記誘電体多層膜フィルタ212は、例えば石英ガラスにSiO2やTiO2を蒸着して、伝播光の屈折率を長手方向に周期的に変化させることにより、特定波長(Bragg波長)の光信号のみを反射させるものである。
【0040】
この構成により、前記半導体光増幅器208の相互利得変調を利用して、前記被変換波長光201が持つ2.5Gb/sの信号を異なる波長の前記波長変換出力光211にうつす、いわゆる波長変換が可能になる。ここでの特徴は、前記被変換波長光210のみを折り返し、前記被変換波長光210を前記半導体光増幅器208において二重に利用することができるために、前記被変換波長光210に要求される光強度を理想的には3dB減少させることができること、また、出力用光ファイバ209に前記被変換波長光210が出力されることを防ぐことができることの2点である。
【0041】
また、前記誘電体多層膜フィルタ212に反射波長を制御する機能を持たせることもできる。これは前記誘電体多層膜フィルタ212の伝播光に対する角度を変えることで、等価的に多層膜の厚みを変化することで行う。
【0042】
図6(a)は、前記誘電体多層膜フィルタ212の一実施例を示す図である。
【0043】
誘電体多層膜フィルタ212では、低屈折率媒体であるSiO2と高屈折率媒体であるTiO2の層を交互に重ね、さらに各層の厚さを所望の波長の4分の1に設定した多層膜は所望の波長に対して高い反射率を持つ現象を利用している。
【0044】
また、図6(b)に示すように、誘電体多層膜フィルタ212を傾けることによって等価的に各層の厚さが厚く見える。前記誘電体多層膜フィルタ212は各層の厚みの4倍に対応した波長に対して高い反射率を持つので、各層が厚く見えることによって反射する波長を変えることができる。
【0045】
また、前記光ファイバグレーティング112または誘電体多層膜フィルタ212として、前記波長変換出力光111,211のみを透過し、残りすべての波長を反射するものを使用することができる。このような構成をとると前記被変換波長光101,201の波長に係わらず、所望の波長変換出力光111,211の波長変換をすることができる。さらに、図7(a)に示すように、前記被変換波長光101,201として、例えばファブリペローレーザのような波長精度の緩い波長を用い、これを波長変換装置のCW光源103,203の波長に波長変換できる。
【0046】
これは、各ユーザの持つ安価な光源から発信された波長精度の緩い被変換波長光101,201を、図7(b)に示すような、WDM信号として使用できる波長精度の高い波長変換出力光111,211に直すことを意味する。
【0047】
(実施形態3)
実際の波長変換装置においては、前記被変換波長光110,210の行きと帰りで異なるビット情報が前記半導体光増幅器108,208に入力される可能性がある。例えば、2.5Gb/sの信号の場合1ビットの間に要する時間は400psとなるので、この間信号は光ファイバ中を1ビットあたり約8cm伝播する。これは光速の3×1010cm/sを光ファイバの屈折率1.5で割り、400psを掛けた値に等しい。今、波長変換に許容される時間ばらつき(ジッタ)を1ビットの10分の1とすると、光信号が行きと帰りで40ps、すなわち8mmの伝播が許される。従って、前記半導体光増幅器108と光ファイバグレーティング112は位置的に4mm以下の距離にある必要がある。
【0048】
より一般的には、前記半導体光増幅器108と光ファイバグレーティング112の間の位置的な距離L(mm)が、光導波路の屈折率をn、真空中の光速をc(mm/秒)、前記被変換波長光101の1ビットあたりに要する時間をt(秒)とした場合に、
【0049】
【数1】
L≦(c・t)/(20・n)
であることが必要になる。また、クロック信号や疑似ランダム(PRBS:pseudo random bit sequence)信号のように特定のビットまたはビット列を繰り返す特殊な光信号を波長変換する場合には、行きの信号と帰りの信号が同じになるようにL(mm)を調整することもできる。
【0050】
(実施形態4)
図8は、本発明による実施形態4の光伝送システムの概略構成を示すブロック図である。本実施形態3の光伝送システムは、図8に示すように、光ファイバ中に伝送される複数波長の光を各波長光に分波する光分波手段と、前記実施形態1の波長変換装置が前記光分波手段のそれぞれの出力端にアレイ状に接続され、前記各波長変換装置の出力光を合波する光合波手段を具備するものである。
【0051】
図8において、301は入力用光ファイバ、302はアレイ導波路格子のような光分波器、303〜306は光ファイバ、307〜310は光カプラ、311〜314はCW変換波長入力光を入力するための光ファイバ、315〜318は半導体光増幅器または光ファイバアンプ、319〜322は光ファイバグレーティングまたは誘電体多層膜フィルタ、323は波長変換出力光を合波するためのアレイ導波路格子のような光合波器、324は出力用光ファイバである。
【0052】
前記入力用光ファイバ301には4波長のWDM多重された被変換波長光が入力される。この4波長は光分波器302によって光ファイバ303から306へと分波される。一方、光ファイバ311〜314からそれぞれの被変換波長光に対するCW変換波長入力光が入射され、それぞれの被変換波長光とCW変換波長光は光カプラ307〜310で合波され、半導体光増幅器315から318で相互利得変調による波長変換を行う。さらに光ファイバグレーティングあるいは誘電体多層膜フィルタ319〜322は前記被変換波長光のみを反射し、波長変換出力光を透過する。前記被変換波長光は、前記半導体光増幅器315〜318を2回通過することになるため、二重に利用することで効率が上がる。一方、それぞれの波長変換出力光は光合波器323で合波され、WDM多重されて出力用光ファイバ324に出力される。
【0053】
以上、本発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることはもちろんである。
【0054】
【発明の効果】
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
【0055】
(1)半導体光増幅器を用いた波長変換装置において、被変換波長光の強度を低くすることができる。
【0056】
(2)半導体光増幅器を用いた波長変換装置において、被変換波長光と波長変換出力光の分離を容易にすることができる。
【図面の簡単な説明】
【図1】本発明による実施形態1の波長変換装置の概略構成を示すブロック図である。
【図2】本実施形態1の波長変換装置に用いる半導体光増幅器の概略構成を示す図である。
【図3】本実施形態1の波長変換装置に用いるグレーティングの概略構成を示す図である。
【図4】本実施形態1の波長変換装置の動作を示すための図である。
【図5】本発明による実施形態2の波長変換装置の概略構成を示すブロック図である。
【図6】図5に示す誘電体多層膜フィルタの概略構成を示す図である。
【図7】本発明の実施形態の波長変換装置の特性の例を示す図である。
【図8】本発明による実施形態4の波長変換装置を用いた光伝送システムの概略構成を示すブロック図である。
【図9】従来の波長変換装置の概略構成を示すブロック図である。
【図10】半導体光増幅器による相互利得変調の特性の例を示す図である。
【符号の説明】
101,201,1001…被変換波長光、102,202,1002…被変換波長光が伝搬する光ファイバ、103,203,1003…光源、104,204,1004…CW変換波長入力光、105,205,1005…CW変換波長入力光が伝播する光ファイバ、106,206,1006…光カプラ、107,207,1007…光ファイバ、108,208,1008…半導体光増幅器(光ファイバアンプ)、109,209,1009…出力用光ファイバ、110,210,1010…被変換波長光,111,211,1011…波長変換出力光、112…光ファイバグレーティング、212…誘電体多層膜フィルタ、301…入力用光ファイバ、302…光分波器(アレイ導波路格子)、303,304,305,306…光ファイバ、307,308,309,310…光カプラ、311,312,313,314…光ファイバ、315,316,317,318…半導体光増幅器(光ファイバアンプ)、319,320,321,322…光ファイバグレーティング(誘電体多層膜フィルタ)、323…光合波器(アレイ導波路格子)、324…出力用光ファイバ。

Claims (5)

  1. 所定波長の入力信号光と、前記入力信号光の波長と異なる別波長の光とを合波して第1の合波光を出力する光合波手段と、前記光合波手段で合波された第1の合波光を入力し、前記入力信号光の強度に応じて前記別波長の光の光強度増幅特性を変調し、前記入力信号光と前記変調された別波長の光とで構成される第2の合波光を出力する光増幅手段を具備する波長変換装置であって、前記第2の合波光の入力信号光を反射し、前記変調された別波長の光を透過する入力信号反射手段と、前記光増幅手段からの第2の合波光を前記入力信号反射手段に導波する光導波路を具備し、前記第2の合波光の入力信号光が前記光増幅手段に再度入力され、前記第1の合波光の入力信号光と同一ビットで重なるように前記光導波路の長さを設定することを特徴とする波長変換装置。
  2. 前記請求項1に記載の波長変換装置において、前記入力信号反射手段は、特定波長の光信号を反射する光ファイバグレーティングであることを特徴とする波長変換装置。
  3. 前記請求項1に記載の波長変換装置において、前記入力信号反射手段は、特定波長の光信号を反射する誘電体多層膜フィルタであることを特徴とする波長変換装置。
  4. 前記請求項1乃至3のいずれか1項に記載の波長変換装置において、前記光増幅手段と前記入力信号反射手段との間に設けられる光伝送路の長さLは、前記光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記入力信号光の1ビット当たりの時間間隔をt(秒)としたときに、L≦(c・t)/(20・n)であることを特徴とする波長変換装置。
  5. 光ファイバ中に伝送される複数波長の光が光分波手段で各波長光に分波され、前記光分波手段のそれぞれの出力端子に請求項1乃至のいずれか1つの波長変換装置がアレイ状に接続され、前記各波長変換装置の各々の出力光が光合波手段で合波されて光ファイバ中に伝送されることを特徴とする光伝送システム。
JP20439799A 1999-07-19 1999-07-19 波長変換装置及びそれを用いた光伝送システム Expired - Fee Related JP3663083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20439799A JP3663083B2 (ja) 1999-07-19 1999-07-19 波長変換装置及びそれを用いた光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20439799A JP3663083B2 (ja) 1999-07-19 1999-07-19 波長変換装置及びそれを用いた光伝送システム

Publications (2)

Publication Number Publication Date
JP2001033841A JP2001033841A (ja) 2001-02-09
JP3663083B2 true JP3663083B2 (ja) 2005-06-22

Family

ID=16489875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20439799A Expired - Fee Related JP3663083B2 (ja) 1999-07-19 1999-07-19 波長変換装置及びそれを用いた光伝送システム

Country Status (1)

Country Link
JP (1) JP3663083B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380881A4 (en) * 2001-04-19 2006-10-25 Japan Science & Tech Agency OPTICAL FUNCTIONAL ELEMENT AND OPTICAL OPTICAL DEVICE

Also Published As

Publication number Publication date
JP2001033841A (ja) 2001-02-09

Similar Documents

Publication Publication Date Title
JP4792046B2 (ja) 光双安定シリコン・ラマン・レーザーを用いた、デジタル信号の再生、再形成、および、波長変換
US5946331A (en) Integrated multi-wavelength transmitter
US6785430B2 (en) Method and apparatus for integrating an optical transmit module
JP3262331B2 (ja) 周波数分割光通信システムのための端子
EP1730559B1 (en) Method and apparatus providing an output coupler for an optical beam
US8050525B2 (en) Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
WO2013145271A1 (ja) 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
TW552753B (en) Tunable semiconductor laser with integrated wideband reflector
EP1028333B1 (en) Multiple wavelength optical multiplexing device, multiple wavelength light source incorporating aforementioned device, and optical amplifier
JP3152189B2 (ja) 平板導波路型グレーティング素子
CA2463545A1 (en) An optical signal receiver photonic integrated circuit (rxpic), an associated optical signal transmitter photonic integrated circuit (txpic) and an optical transport network utilizing these circuits
JP2011023466A (ja) 反射型半導体光増幅器
US7747114B2 (en) Tilted combiners/decombiners and photonic integrated circuits (PICs) employing the same
US6845186B2 (en) Optical circuit with harmonic generator
JP2001174653A (ja) アレイ導波路格子
JP3663083B2 (ja) 波長変換装置及びそれを用いた光伝送システム
WO2014100942A1 (zh) 一种激光光源输出装置及激光输出系统
Rani et al. Semiconductor optical amplifiers in optical communication system-review
JP2003207665A (ja) 光導波路
WO2021257663A1 (en) Athermal wdm multistripe arrayed waveguide grating integrated-cavity laser
JP3529275B2 (ja) 波長多重光源
JP4153613B2 (ja) 波長選択フィルタ素子および光集積回路
JP2004288921A (ja) 半導体光集積回路
JP3621868B2 (ja) 波長変換装置
JP2001085799A (ja) 光送受信デバイス

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees