JP3662712B2 - Method of melting high cleanliness steel - Google Patents

Method of melting high cleanliness steel Download PDF

Info

Publication number
JP3662712B2
JP3662712B2 JP11177097A JP11177097A JP3662712B2 JP 3662712 B2 JP3662712 B2 JP 3662712B2 JP 11177097 A JP11177097 A JP 11177097A JP 11177097 A JP11177097 A JP 11177097A JP 3662712 B2 JP3662712 B2 JP 3662712B2
Authority
JP
Japan
Prior art keywords
slag
immersion
high cleanliness
metal interface
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11177097A
Other languages
Japanese (ja)
Other versions
JPH10287911A (en
Inventor
尚近 今村
重範 矢倉
公一 遠藤
昌光 若生
勝弘 淵上
司 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11177097A priority Critical patent/JP3662712B2/en
Publication of JPH10287911A publication Critical patent/JPH10287911A/en
Application granted granted Critical
Publication of JP3662712B2 publication Critical patent/JP3662712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、取鍋中の溶鋼を浸漬式簡易精錬装置で処理して高清浄度鋼を溶製する方法に関するものである。
【0002】
【従来の技術】
近年の自動車用鋼板、ブリキ材を中心とした冷延鋼板に対するユーザー要求は一段と厳しさを増し、これに伴い素材の高清浄化が求められている。
製鋼工程においては、溶鋼清浄化には特に真空2次精錬工程が重要な役割を果しており、溶鋼清浄化の徹底を図るために、真空2次精錬工程前において溶鋼汚染の原因となる取鍋スラグを脱酸・無害化を行い、アルミナ介在物吸収能の高いスラグとすることが重要である。
【0003】
一般的に取鍋スラグの脱酸・無害化手段として、溶鋼を取鍋内に受鋼するに際し、スラグ脱酸材を取鍋内に投入し、浮遊するスラグを改質する方法があり、この取鍋内のスラグ改質を図るための数多くの提案がなされている。例えば、特開昭60−152611号には、溶鋼鍋内に浮上しているスラグ中にスラグ還元材と共にガス発生物質を併用添加し、酸化性スラグを改質する方法が開示されている。
【0004】
また、特開平4−72009号にはAl滓を還元材として使用し、さらに生石灰粉を添加し、スラグ中にCaO/Al23 の比を1.6〜1.8に制御するスラグ改質方法が開示され、さらに特開平6−330138号には、取鍋溶鋼上の高温スラグにスラグ改質材としてAl灰を添加し、その直後にCaOを添加し、CaO/Al23 比を1.0〜1.1に調整し、さらに出鋼終了直前にAlを添加し、出鋼後の取鍋スラグにAl灰を添加するスラグ改質法が記載されている。
【0005】
【発明が解決しようとする課題】
前記した公開公報に開示された取鍋スラグの改質技術は、何れも大半が流出した取鍋内スラグ全部についての改質を行うもので、コスト的に不利となるばかりではなく、流出スラグ量の多少、またスラグ組成のバラツキにより、改質材の添加量によりスラグ改質の度合そのものが大きくバラツク結果となる。
このようにスラグ改質の完全化を図るためには大量の改質材の使用、それによる改質作業量の増大、改質作業時間の経過による取鍋内溶鋼温度の降下等多くの問題点を有していた。
【0006】
また、何れのスラグ改質においても2次精錬装置として真空脱ガス装置を用いており、精錬総合費用の点からコストアップは免れなかった。特に、冷延鋼板等の素材については溶鋼の2次酸化による脱酸生成物や、スラグ捲き込み等による微細介在物が成品の品質に大きな影響を及ぼす。
しかし、2次精錬工程における取鍋スラグの無害化技術については、今だ確立される技術はなく、そのための開発すべき課題が多く残されてその対策に苦慮していた。
【0007】
本発明はスラグ−メタル界面の改質が可能であり、生成Al23 を効果的に吸収分離すると共に、溶鋼中Alとスラグの反応を最小限とし、溶鋼の清浄度を格段に向上させる2次精錬方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の要旨とするところは、下記手段にある。
(1)取鍋下方から供給された攪拌ガスの気泡領域に浸漬式簡易精錬装置の浸漬槽の下部を浸漬した状態で、該取鍋内に脱酸および成分調整用合金を添加して、前記溶鋼の成分調整を行うに際し、前記成分調整用合金を添加する前に、該浸漬槽の溶鋼中への浸漬深さをスラグ−メタル界面近傍まで浅くし、前記合金を添加した後、該浸漬槽の溶鋼中への浸漬深さを深くすることを特徴とすることを特徴とする高清浄度鋼の溶製方法。
【0009】
(2)攪拌ガスの供給を取鍋底部に設けたガス吹き込みプラグから行なうことを特徴とする(1)記載の高清浄度鋼の溶製方法。
(3)攪拌ガスの供給を浸漬式精錬装置の浸漬槽の下方に浸漬した浸漬ランスのガス吹き込み口から行なうことを特徴とする(1)記載の高清浄度鋼の溶製方法。
(4)前記合金を添加した後、スラグ−メタル界面遮断材を添加し、その後該浸漬槽の溶鋼中への浸漬深さを深くすることを特徴とする(1)ないし(3)のいずれかに記載の高清浄度鋼の溶製方法。
【0010】
(5)スラグ−メタル界面遮断材を浸漬式槽内に添加することを特徴とする(4)記載の高清浄度鋼の溶製方法。
(6)スラグ−メタル界面遮断材を取鍋底部に設けたガス吹き込みプラグから攪拌ガスの供給と共に添加することを特徴とする(4)記載の高清浄度鋼の溶製方法。
(7)スラグ−メタル界面遮断材を浸漬式簡易精錬装置の浸漬槽の下方に浸漬した浸漬ランスのガス吹き込み口から攪拌ガスの供給と共に添加することを特徴とする(4)記載の高清浄度鋼の溶製方法。
【0011】
(8)スラグ−メタル界面遮断材としてMgOを用いることを特徴とする(4)ないし(7)のいずれかに記載の高清浄度鋼の溶製方法。
(9)スラグ−メタル界面遮断材としてCaOを用いることを特徴とする(4)ないし(7)のいずれかに記載の高清浄度鋼の溶製方法。
(10)該合金またはスラグ−メタル界面遮断材を添加すると共に、攪拌用ガス流量を増加することを特徴とする(1)ないし(9)のいずれかに記載の高清浄度鋼の溶製方法。
【0012】
【発明の実施の形態】
本発明は、真空脱ガス処理装置を用いず、簡易な溶鋼への浸漬精錬装置(以下、CASと称す)での処理で真空脱ガス処理と同等程度の2次精錬を行い、高清浄度鋼の溶製を達成させようとするものである。
【0013】
従来、CASでの処理は溶鋼の成分調整を行うことを主な目的として開発されたもので、その目的のために現在多く使用されている。
しかし、本発明者らはCASを使用するに当って種々の検討を重ねた結果、その活用を上手に図ることによって、上述した真空脱ガス処理と同等またはそれ以上の品質を有する清浄度の高い鋼を得ることができることを見出し、本発明を完成するに至った。
【0014】
CAS方式での処理は、一般的に高清浄度鋼溶製に使用される真空2次精錬装置に比べ以下の特徴を有する。すなわち、スラグ−メタル界面の流動は、攪拌ガスの気泡領域に浸漬された浸漬槽の浸漬深さと取鍋下方からの攪拌ガス流量によって左右される。また、スラグ−メタル界面反応は、界面流動のあるCAS処理の方がRH真空脱ガス処理より有利である。
【0015】
そこで、CAS処理の特徴であるスラグ−メタル界面流動状態を浸漬槽浸漬深さ、攪拌ガス流量により制御し、スラグ−メタル界面状態をCASの精錬状態に併せ制御することにより、理想的な精錬が行うことができる。
【0016】
従来の考え方では、取鍋内のスラグ−メタル界面を流動させずに、メタルのみについていかにして成分調整を行うかに主眼が置かれていた。すなわち、スラグ−メタル界面が流動するとスラグとメタルとの反応が起り、スラグから供給される酸素により溶鋼中の種々の元素が酸化され非金属介在物量が増大する。
【0017】
これに対し、CASを利用すると浸漬槽の浸漬深さを自由に調整できるため、浸漬深さを浅くすることで溶鋼流れの主流をスラグ−メタル界面方向へ向かわせ、逆にスラグ−メタル界面の流動を利用して脱酸および成分調整用合金、またはその成分が濃化した溶鋼をその流れに乗せることにより、少ない量の合金で短時間に効果的にスラグ−メタル界面近傍の、本来改質したい部分のスラグの酸素量を低減することができる。
【0018】
この場合、その効果をより増長させるためには、取鍋下方から溶鋼攪拌ガスの供給量を増大することにより、スラグ−メタル界面の溶鋼流動を向上させることができる。またその後、その部分に界面遮断材を供給することにより、界面遮断材を均一に分散させ、取鍋内のスラグ−メタルを遮断することができ、界面の無害化を図ることができる。
【0019】
その後は逆に浸漬槽の浸漬深さを深くすることで、溶鋼流れは浸漬槽内での攪拌が主流となりスラグ−メタル界面の流動性を低減させ、スラグの溶鋼への捲き込みを抑制する。このような操作を行うことにより、スラグ−メタル界面に影響されず、溶鋼のみに対し効率的に処理材を添加することができる。
この場合、その効果をより増長させるためには、取鍋下方から攪拌ガス量を減じることが有効である。
【0020】
本発明におけるスラグ−メタル界面の遮断材としては、MgO系フラックスまたはCaO系フラックスが用いられる。また、脱酸および成分調整合金としては通常用いられているAl,Si合金等が使用される。
【0021】
このようにCAS処理内容に応じたスラグ−メタル界面流動制御により、短時間でスラグ−メタル界面の無害化を図り、安定した高清浄度鋼の溶製が可能となった。
【0022】
溶鋼の攪拌ガスの供給方法は取鍋下方から行うものであるが、取鍋底部に設置したガス吹き込みプラグから行う方式と、取鍋内下部に浸漬したガス吹き込みランスより行う方式とが考えられ、どちらを採用しても差し支えない。
また、スラグ−メタル界面遮断材の添加であるが、これも浸漬槽の上方から添加する方式と、溶鋼攪拌ガスと同時に添加する方式があり、後者については当然界面遮断材を粉体にしてキャリアーガスを担体として用い、同一ガス吹き込みノズルから添加すれば、設備的に無駄な費用を要せず簡便に実施できる。
【0023】
これ等の例を図1〜4にて示す。
図1において溶鋼鍋1(取鍋)に収容した溶鋼2はその上面にスラグ3が浮遊している。その溶鋼鍋1へ浸漬槽(CAS)4を所定の位置まで浸漬し、浸漬槽4の上方より合金13、界面遮断材5を添加する。この時、溶鋼鍋1の底部に設けられたガス吹き込み用プラグ7より攪拌ガス6が溶鋼2に供給されスラグ−メタル界面を流動させる。なお、図中10は攪拌ガス供給管を、12は遮断弁を示している。
【0024】
図2は、界面遮断材5を攪拌ガス6の供給と共に溶鋼中に添加する場合を示したもので、界面遮断材5の添加方法以外は図1と同様である。なお、図中11はキャリアーガス供給管を示したが、キャリアーガスは攪拌ガスと同一種類のガスを用いるのが好ましい。
【0025】
図3は溶鋼攪拌ガス6の供給を溶鋼鍋1の下方から、浸漬ランス8によって行う様子を示したもので、浸漬槽4の下方まで挿入した浸漬ランス8のガス吹き込みノズル9から溶鋼攪拌ガス6を供給し、界面遮断材5は浸漬槽4の上方より添加する。他は図1と同様である。
図4は浸漬ランス8から溶鋼攪拌ガス6と共に界面遮断材5を添加する状況を示したもので、他は図3と同様である。
【0026】
本発明の処理に当っては溶鋼を溶鋼鍋に収容後、CASの浸漬深さの位置決めを行いCAS処理を開始する。処理開始と同時に浸漬槽深さスラグ−メタル界面近傍まで(浸漬槽深さは取鍋内に流出するスラグ量で異なる)浅くした後、攪拌ガス量を通常の供給量より増量する。次いで、界面遮断材を添加し1〜2分後、浸漬槽を処理開始時の浸漬位置より深く浸漬し、攪拌ガス量の供給を低減して処理開始時と略同等とする。その後、溶鋼成分調整材を浸漬槽内へ添加する。
【0027】
本発明での処理の1例を比較例と共にその概念を図5に示した。図は経過時間に応じ処理材の添加時期、浸漬槽の浸漬深さ、攪拌ガスの供給量を示したもので、本発明が従来の比較例と異なる処理を行っていることが明らかである。
【0028】
【実施例】
以下、本発明の実施例について詳細に説明する。
本発明に用いた溶鋼はアルミキルド鋼で、その主な成品組成はC:0.055%、Si:0.02%、Mn:0.40%、P:0.02%、S:0.02%、Al:0.05%である。
本発明の実施例と比較例を表1に示したが、発明によれば従来のRH真空脱ガス装置による処理(比較例9)、また従来のCAS処理(比較例10)に比し、タンディッシュ内溶鋼の全酸素量が低減されており、さらに製品品質異常指数においても格段に優れた値を示し、本発明により清浄性の良好な鋼が溶製できることが判る。
【0029】
【表1】

Figure 0003662712
【0030】
【発明の効果】
本発明によれば2次精錬工程であるCASプロセスにて、CAS方式の特徴を活かし溶鋼の清浄性向上を図るに際し、CAS処理中のスラグ−メタル界面流動を浸漬槽浸漬深さ、攪拌ガス流量により制御し、処理内容に応じ界面流動の制御と界面遮断材の添加を行うことにより、従来にない高清浄度鋼を容易に提供することができる。
【図面の簡単な説明】
【図1】取鍋スラグ−メタル遮断材の添加方法と溶鋼攪拌ガスの供給方法の1例を示す図
【図2】取鍋スラグ−メタル遮断材の添加方法と溶鋼攪拌ガスの供給方法の他の例を示す図
【図3】取鍋スラグ−メタル遮断材の添加方法と溶鋼攪拌ガスの供給方法の他の例を示す図
【図4】取鍋スラグ−メタル遮断材の添加方法と溶鋼攪拌ガスの供給方法の他の例を示す図
【図5】本発明における処理パターンの1例を比較例と共に示した概念図
【符号の説明】
1 溶鋼鍋
2 溶鋼
3 スラグ
4 浸漬槽(簡易精錬装置)
5 界面遮断材
6 攪拌ガス
7 ガス吹き込みプラグ
8 浸漬ランス
9 ガス吹き込みノズル
10 攪拌ガス供給管
11 キャリアーガス供給管
12 遮断弁
13 合金[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of melting high steel with high cleanliness by treating molten steel in a ladle with an immersion type simple refining apparatus.
[0002]
[Prior art]
In recent years, user requirements for cold-rolled steel sheets, mainly steel sheets for automobiles and tinplate, have become more severe, and accordingly, it is demanded to clean materials.
In the steelmaking process, the secondary vacuum refining process plays an important role in cleaning the molten steel. To ensure thorough cleaning of the molten steel, ladle slag that causes contamination of the molten steel before the secondary vacuum refining process. It is important to deoxidize and detoxify the slag to have a high ability to absorb alumina inclusions.
[0003]
In general, there is a method for deoxidizing and detoxifying ladle slag by introducing slag deoxidation material into the ladle and reforming floating slag when receiving molten steel in the ladle. Many proposals have been made to improve the slag in the ladle. For example, Japanese Patent Application Laid-Open No. 60-152611 discloses a method of modifying oxidizing slag by adding a gas generating substance together with a slag reducing material into slag floating in a molten steel pan.
[0004]
JP-A-4-72009 discloses a slag modification that uses Al soot as a reducing material, adds quick lime powder, and controls the CaO / Al 2 O 3 ratio in the slag to 1.6 to 1.8. In addition, JP-A-6-330138 discloses that Al ash is added as a slag modifier to the high-temperature slag on the ladle molten steel, and CaO is added immediately thereafter to obtain a CaO / Al 2 O 3 ratio. Is adjusted to 1.0 to 1.1, and Al is added immediately before the end of steel output, and Al ash is added to the ladle slag after steel output.
[0005]
[Problems to be solved by the invention]
The ladle slag reforming techniques disclosed in the above-mentioned publications all modify all the slag in the ladle from which most of the slag has flowed out. Depending on the amount of slag composition and the variation of the slag composition, the degree of slag modification itself varies greatly depending on the amount of modifier added.
In order to complete slag reforming in this way, there are many problems such as the use of a large amount of reforming material, thereby increasing the amount of reforming work, and lowering of the molten steel temperature in the ladle as the reforming work time elapses. Had.
[0006]
Further, in any slag reforming, a vacuum degassing apparatus is used as a secondary refining apparatus, and the cost increase cannot be avoided from the viewpoint of the total refining cost. In particular, for materials such as cold-rolled steel sheets, deoxidation products due to secondary oxidation of molten steel and fine inclusions due to slag penetration have a great influence on the quality of the product.
However, there is no established technology for detoxification of ladle slag in the secondary refining process, and there are still many issues to be developed for this purpose, and it has been difficult to take countermeasures.
[0007]
The present invention can modify the slag-metal interface, effectively absorbs and separates the produced Al 2 O 3 , minimizes the reaction between Al and slag in the molten steel, and greatly improves the cleanliness of the molten steel. The object is to provide a secondary refining method.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in the following means.
(1) In the state where the lower part of the immersion tank of the immersion type simple refining apparatus is immersed in the bubble region of the stirring gas supplied from below the ladle , the deoxidation and component adjustment alloy is added to the ladle, When adjusting the components of the molten steel, before adding the alloy for adjusting the components, the immersion depth of the immersion bath in the molten steel is reduced to the vicinity of the slag-metal interface , and after adding the alloy, the immersion bath A method for melting high cleanliness steel, characterized by increasing the immersion depth of the steel in molten steel.
[0009]
(2) The method for melting high cleanliness steel according to (1), wherein the stirring gas is supplied from a gas blowing plug provided at the bottom of the pan.
(3) The method for melting high cleanliness steel according to (1), wherein the stirring gas is supplied from a gas blowing port of an immersion lance immersed in the lower part of the immersion tank of the immersion type refining apparatus.
(4) Any one of (1) to (3), wherein after adding the alloy, a slag-metal interface barrier is added, and then the immersion depth of the immersion bath in the molten steel is increased. A method for melting high cleanliness steel as described in 1.
[0010]
(5) The method for melting high cleanliness steel according to (4) , wherein a slag-metal interface barrier is added into the immersion tank.
(6) The method for melting high cleanliness steel according to (4 ), wherein the slag-metal interface barrier is added together with the supply of stirring gas from a gas blowing plug provided at the bottom of the pan.
(7) The high cleanliness according to (4 ), wherein the slag-metal interface barrier is added together with the supply of the agitation gas from the gas blowing port of an immersion lance immersed in the lower part of the immersion tank of the immersion type simple refining apparatus. Steel melting method.
[0011]
(8) The method for melting high cleanliness steel according to any one of (4) to (7) , wherein MgO is used as a slag-metal interface barrier.
(9) The method for melting high cleanliness steel according to any one of (4) to (7) , wherein CaO is used as a slag-metal interface barrier.
(10) The method for melting high cleanliness steel according to any one of (1) to (9) , wherein the alloy or slag-metal interface barrier is added and the gas flow rate for stirring is increased. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention does not use a vacuum degassing apparatus, but performs secondary refining equivalent to the vacuum degassing process by a simple immersion dipping apparatus (hereinafter referred to as CAS) into molten steel, and a high cleanliness steel. It is intended to achieve melting.
[0013]
Conventionally, the treatment with CAS has been developed mainly for the purpose of adjusting the components of molten steel, and is currently widely used for that purpose.
However, the present inventors have made various studies in using CAS, and as a result, by making good use of it, the cleanliness having a quality equivalent to or higher than the vacuum degassing process described above is high. The present inventors have found that steel can be obtained and have completed the present invention.
[0014]
The process by the CAS method has the following characteristics as compared with a vacuum secondary refining apparatus generally used for high cleanliness steel melting. That is, the flow of the slag-metal interface depends on the immersion depth of the immersion tank immersed in the bubble region of the stirring gas and the stirring gas flow rate from below the ladle. In addition, in the slag-metal interface reaction, the CAS process with interfacial flow is more advantageous than the RH vacuum degassing process.
[0015]
Therefore, by controlling the slag-metal interface flow state, which is a characteristic of CAS treatment, by the immersion bath immersion depth and the stirring gas flow rate, and controlling the slag-metal interface state together with the refined state of CAS, ideal refining can be achieved. It can be carried out.
[0016]
In the conventional way of thinking, the main focus was on how to adjust the components only for metal without flowing the slag-metal interface in the ladle. That is, when the slag-metal interface flows, a reaction between the slag and the metal occurs, and various elements in the molten steel are oxidized by oxygen supplied from the slag, thereby increasing the amount of non-metallic inclusions.
[0017]
In contrast, when CAS is used, the immersion depth of the immersion bath can be freely adjusted. Therefore, by reducing the immersion depth, the main flow of the molten steel is directed toward the slag-metal interface, and conversely at the slag-metal interface. By using the flow, the alloy for deoxidation and component adjustment or molten steel enriched in its component is put on the flow, and it is effectively modified in the vicinity of the slag-metal interface effectively in a short time with a small amount of alloy. The amount of oxygen in the portion of the slag that is desired can be reduced.
[0018]
In this case, in order to further increase the effect, the flow of molten steel at the slag-metal interface can be improved by increasing the supply amount of the molten steel stirring gas from below the ladle. Further, thereafter, by supplying the interface blocking material to the portion, the interface blocking material can be uniformly dispersed, the slag-metal in the ladle can be blocked, and the interface can be rendered harmless.
[0019]
Then, conversely, by increasing the immersion depth of the immersion bath, the molten steel flow is mainly stirred in the immersion bath, reducing the fluidity of the slag-metal interface and suppressing the penetration of the slag into the molten steel. By performing such an operation, the treatment material can be efficiently added only to the molten steel without being affected by the slag-metal interface.
In this case, in order to further increase the effect, it is effective to reduce the amount of stirring gas from the bottom of the ladle.
[0020]
As the shielding material at the slag-metal interface in the present invention, MgO-based flux or CaO-based flux is used. Further, Al, Si alloys and the like that are usually used are used as deoxidation and component adjustment alloys.
[0021]
As described above, the slag-metal interface flow control according to the content of the CAS treatment makes the slag-metal interface harmless in a short time, and enables stable melting of high cleanliness steel.
[0022]
The method of supplying the stirring gas of the molten steel is from the bottom of the ladle, but there are two methods: a method using a gas blowing plug installed at the bottom of the ladle and a method using a gas blowing lance immersed in the bottom of the ladle. Either can be adopted.
In addition, the addition of a slag-metal interface blocking material is also available. There are also a method of adding from the upper part of the immersion tank and a method of adding simultaneously with the molten steel stirring gas. If gas is used as a carrier and added from the same gas blowing nozzle, it can be carried out simply without requiring unnecessary equipment costs.
[0023]
Examples of these are shown in FIGS.
In FIG. 1, the slag 3 is floating on the upper surface of the molten steel 2 accommodated in the molten steel pan 1 (ladder). A dipping bath (CAS) 4 is dipped in the molten steel pan 1 to a predetermined position, and an alloy 13 and an interface blocking material 5 are added from above the dipping bath 4. At this time, the stirring gas 6 is supplied to the molten steel 2 from the plug 7 for gas blowing provided in the bottom part of the molten steel pan 1, and the slag-metal interface is made to flow. In the figure, 10 indicates a stirring gas supply pipe, and 12 indicates a shut-off valve.
[0024]
FIG. 2 shows a case where the interface blocking material 5 is added to the molten steel together with the supply of the stirring gas 6, and is the same as FIG. 1 except for the addition method of the interface blocking material 5. In addition, although 11 showed the carrier gas supply pipe in the figure, it is preferable to use the same kind of gas as the stirring gas for the carrier gas.
[0025]
FIG. 3 shows a state in which the molten steel stirring gas 6 is supplied from the lower side of the molten steel pan 1 by the immersion lance 8. The interface blocking material 5 is added from above the immersion tank 4. The rest is the same as in FIG.
FIG. 4 shows a situation in which the interface blocking material 5 is added together with the molten steel stirring gas 6 from the immersion lance 8, and the others are the same as in FIG.
[0026]
In the process of the present invention, after the molten steel is accommodated in the molten steel pan, the CAS immersion depth is positioned and the CAS process is started. Simultaneously with the start of the treatment, the immersion bath depth is made shallower to the vicinity of the slag-metal interface (the immersion bath depth varies depending on the amount of slag flowing into the ladle), and then the amount of stirring gas is increased from the normal supply amount. Next, after adding an interface blocking material, after 1 to 2 minutes, the immersion tank is immersed deeper than the immersion position at the start of the treatment, and the supply of the amount of stirring gas is reduced to be substantially the same as at the start of the treatment. Thereafter, the molten steel component adjusting material is added into the immersion tank.
[0027]
An example of the process according to the present invention is shown in FIG. 5 along with a comparative example. The figure shows the treatment material addition time, the immersion bath immersion depth, and the supply amount of the stirring gas according to the elapsed time, and it is clear that the present invention performs a treatment different from the conventional comparative example.
[0028]
【Example】
Examples of the present invention will be described in detail below.
The molten steel used in the present invention is aluminum killed steel, and the main product composition is C: 0.055%, Si: 0.02%, Mn: 0.40%, P: 0.02%, S: 0.02. %, Al: 0.05%.
Examples of the present invention and comparative examples are shown in Table 1, but according to the invention, compared with the treatment by the conventional RH vacuum degassing apparatus (Comparative Example 9) and the conventional CAS treatment (Comparative Example 10), The total amount of oxygen in the molten steel in the dish is reduced, and the product quality abnormality index shows a significantly superior value. It can be seen that the present invention can produce steel with good cleanliness.
[0029]
[Table 1]
Figure 0003662712
[0030]
【The invention's effect】
According to the present invention, in the CAS process, which is the secondary refining process, the slag-metal interfacial flow during the CAS treatment is determined by the immersion bath immersion depth and the stirring gas flow rate when utilizing the features of the CAS method to improve the cleanliness of molten steel. Therefore, it is possible to easily provide unprecedented high cleanliness steel by controlling the interfacial flow and adding an interfacial barrier material according to the processing content.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a ladle slag-metal blocking material addition method and a molten steel stirring gas supply method. FIG. 2 shows a ladle slag-metal blocking material addition method and a molten steel stirring gas supply method. Fig. 3 shows another example of a ladle slag-metal barrier addition method and molten steel stirring gas supply method. Fig. 4 shows a ladle slag-metal barrier addition method and molten steel agitation. The figure which shows the other example of the gas supply method. [FIG. 5] The conceptual diagram which showed one example of the process pattern in this invention with the comparative example.
1 Molten pan 2 Molten steel 3 Slag 4 Immersion tank (simple refining equipment)
5 Interfacial blocking material 6 Stirring gas 7 Gas blowing plug 8 Immersion lance 9 Gas blowing nozzle 10 Stirring gas supply pipe 11 Carrier gas supply pipe 12 Shut-off valve 13 Alloy

Claims (10)

取鍋下方から供給された攪拌ガスの気泡領域に浸漬式簡易精錬装置の浸漬槽の下部を浸漬した状態で、該取鍋内に脱酸および成分調整用合金を添加して、前記溶鋼の成分調整を行うに際し、前記成分調整用合金を添加する前に、該浸漬槽の溶鋼中への浸漬深さをスラグ−メタル界面近傍まで浅くし、前記合金を添加した後、該浸漬槽の溶鋼中への浸漬深さを深くすることを特徴とすることを特徴とする高清浄度鋼の溶製方法。 In the state where the lower part of the immersion tank of the immersion type simple refining apparatus is immersed in the bubble region of the stirring gas supplied from below the ladle, an alloy for deoxidation and component adjustment is added to the ladle, and the components of the molten steel In making the adjustment, before adding the alloy for adjusting the components, the immersion depth of the immersion bath in the molten steel is reduced to near the slag-metal interface , and after adding the alloy, the molten steel in the immersion bath A method for melting high cleanliness steel, characterized by increasing the immersion depth in the steel. 攪拌ガスの供給を取鍋底部に設けたガス吹き込みプラグから行なうことを特徴とする請求項1記載の高清浄度鋼の溶製方法。The method for melting high cleanliness steel according to claim 1, wherein the stirring gas is supplied from a gas blowing plug provided at the bottom of the pan. 攪拌ガスの供給を浸漬式精錬装置の浸漬槽の下方に浸漬した浸漬ランスのガス吹き込み口から行なうことを特徴とする請求項1記載の高清浄度鋼の溶製方法。2. The method for melting high cleanliness steel according to claim 1, wherein the stirring gas is supplied from a gas blowing port of an immersion lance immersed in the lower part of the immersion tank of the immersion type refining apparatus. 前記合金を添加した後、スラグ−メタル界面遮断材を添加し、その後該浸漬槽の溶鋼中への浸漬深さを深くすることを特徴とする請求項1ないし請求項3のいずれかに記載の高清浄度鋼の溶製方法。  The slag-metal interface barrier is added after the alloy is added, and then the immersion depth of the immersion bath into the molten steel is increased. Method for melting high cleanliness steel. スラグ−メタル界面遮断材を浸漬式槽内に添加することを特徴とする請求項記載の高清浄度鋼の溶製方法。The method for melting high cleanliness steel according to claim 4 , wherein a slag-metal interface barrier is added to the immersion tank. スラグ−メタル界面遮断材を取鍋底部に設けたガス吹き込みプラグから攪拌ガスの供給と共に添加することを特徴とする請求項記載の高清浄度鋼の溶製方法。The method for melting high cleanliness steel according to claim 4, wherein the slag-metal interface barrier is added together with the supply of stirring gas from a gas blowing plug provided at the bottom of the pan. スラグ−メタル界面遮断材を浸漬式簡易精錬装置の浸漬槽の下方に浸漬した浸漬ランスのガス吹き込み口から攪拌ガスの供給と共に添加することを特徴とする請求項記載の高清浄度鋼の溶製方法。5. The high cleanliness steel solution according to claim 4, wherein the slag-metal interface barrier material is added together with the supply of the agitation gas from the gas blowing port of the immersion lance immersed below the immersion tank of the immersion type simple refining apparatus. Manufacturing method. スラグ−メタル界面遮断材としてMgOを用いることを特徴とする請求項ないし請求項のいずれかに記載の高清浄度鋼の溶製方法。The method for melting high cleanliness steel according to any one of claims 4 to 7 , wherein MgO is used as the slag-metal interface barrier. スラグ−メタル界面遮断材としてCaOを用いることを特徴とする請求項ないし請求項のいずれかに記載の高清浄度鋼の溶製方法。The method for melting high cleanliness steel according to any one of claims 4 to 7 , wherein CaO is used as the slag-metal interface barrier. 該合金またはスラグ−メタル界面遮断材を添加すると共に、攪拌用ガス流量を増加することを特徴とする請求項1ないし請求項のいずれかに記載の高清浄度鋼の溶製方法。The method for melting high-cleanliness steel according to any one of claims 1 to 9 , wherein the alloy or slag-metal interface barrier is added and the gas flow rate for stirring is increased.
JP11177097A 1997-04-15 1997-04-15 Method of melting high cleanliness steel Expired - Fee Related JP3662712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11177097A JP3662712B2 (en) 1997-04-15 1997-04-15 Method of melting high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11177097A JP3662712B2 (en) 1997-04-15 1997-04-15 Method of melting high cleanliness steel

Publications (2)

Publication Number Publication Date
JPH10287911A JPH10287911A (en) 1998-10-27
JP3662712B2 true JP3662712B2 (en) 2005-06-22

Family

ID=14569739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11177097A Expired - Fee Related JP3662712B2 (en) 1997-04-15 1997-04-15 Method of melting high cleanliness steel

Country Status (1)

Country Link
JP (1) JP3662712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786641A (en) * 2022-11-01 2023-03-14 鞍钢股份有限公司 Device and method for alloying rare earth metal in molten steel

Also Published As

Publication number Publication date
JPH10287911A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
CN1061381C (en) Method of refining of high purity steel
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP3662712B2 (en) Method of melting high cleanliness steel
JP5200380B2 (en) Desulfurization method for molten steel
JP4345769B2 (en) Melting method of ultra low sulfur high clean steel
JP5979029B2 (en) Method for producing ultra low sulfur low nitrogen steel
JP5505432B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JPH05287359A (en) Method for desulfurizing molten steel using rh vacuum degassing apparatus
JPS63262412A (en) Method for cleaning molten steel
JPH093523A (en) Method for raising heat of molten steel in ladle
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP3539740B2 (en) Molten steel desulfurization method and vacuum degassing tank in reflux vacuum degassing tank
JPH1043845A (en) Method for continuously casting molten metal
JPH08109410A (en) Finish decarburization refining of stainless steel
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP3697960B2 (en) Hot metal pretreatment method
JPH059552A (en) Top blowing lance type ladle refining apparatus
JPH0480316A (en) Method for decarburizing molten steel under reduced pressure
JPH05271747A (en) Method for refining molten steel by vacuum degassing treatment
JP3404760B2 (en) Desulfurization method of molten steel
JPH07268438A (en) Method for raising temperature of molten steel
JPH08260026A (en) Prevention of splash at the time of ladle refining

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees