JP3661922B2 - Molding method of cylindrical container with bottom - Google Patents

Molding method of cylindrical container with bottom Download PDF

Info

Publication number
JP3661922B2
JP3661922B2 JP10440399A JP10440399A JP3661922B2 JP 3661922 B2 JP3661922 B2 JP 3661922B2 JP 10440399 A JP10440399 A JP 10440399A JP 10440399 A JP10440399 A JP 10440399A JP 3661922 B2 JP3661922 B2 JP 3661922B2
Authority
JP
Japan
Prior art keywords
inclined surface
cylindrical container
narrowing
bottomed cylindrical
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10440399A
Other languages
Japanese (ja)
Other versions
JP2000288642A (en
Inventor
功一 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10440399A priority Critical patent/JP3661922B2/en
Publication of JP2000288642A publication Critical patent/JP2000288642A/en
Application granted granted Critical
Publication of JP3661922B2 publication Critical patent/JP3661922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、略円板状の板材より底付円筒容器を成形する方法に関する。
【0002】
【従来の技術】
略円板状の板材(円板ブランク)より底付円筒容器を成形する成形法として、図18に示すように、円板ブランクが絞り込まれる円柱状の絞込孔をもつ絞込孔形設部材(ブランクホルダ)と、円板ブランクを該絞込孔に絞り込む絞込手段(パンチ)と用い、円板ブランクを該絞込孔の周縁面上に該絞込孔を塞ぐようにして設置して、円板ブランクを該絞込手段により該絞込孔に絞り込むことにより底付円筒容器を成形する方法がある(絞り加工法)。この成形法では、円板ブランクの絞込孔に引き込まれる前の部分(フランジ状の部分)が、絞込孔の中心軸に向かう方向(半径方向)に引張り応力を受け、円周方向に圧縮応力を受けて、絞込孔へ絞り込まれて変形をする(半径絞り変形)。
【0003】
このような成形法では、板厚の小さい板材を用いると、周縁面上での板材部分の浮き上がりが生じたり、その板材部分の表面にしわが発生したりすることがある。そこで、こうした問題が生じないようにするため、図18にも示したように、絞込孔形設部材の周縁面上の板材部分をその周縁面に押し付けることができる押付部材により、板材を絞込孔形設部材の絞込孔の周縁面に押さえ付けながら絞り込まれている。また、この押付部材によりフランジ状の部分の板厚を制御することができるとともに、その結果、縦壁部の板厚の制御を容易に行うことができるようになる。従って、この成形法によれば、容器の開口の周縁にフランジ部を形成する場合に、そのフランジ部にしわが生じないようにその板厚を容易に制御することができる。
【0004】
ところで、図18に示した成形法では、板材のフランジ状の部分が、絞込孔の中心軸に向かう方向に引張り応力を受けるため、その部分の板厚が小さくなってしまうことがある。その結果、縦壁部やフランジ部が底部に比べて厚みが小さくなってしまうなど、底付円筒容器の各部分の厚みを正確に制御することも難しくなる。また、底付円筒容器の用途によっては、筒部(縦壁部)やフランジ部の板厚を大きくしたいこともある。さらに、炭素の含有量の高い鋼材などの脆性材料より形成された円板ブランクを用いた場合には、引張り応力によって割れが起こることがある。
【0005】
特に、押付部材で円板ブランクを絞込孔形設部材に押さえ付けながら深絞りを行う加工法では、押付部材と絞込孔形設部材との間隔への材料流動が抑制されるため、フランジ部の板厚を大きくすることが難くなってしまう。
そこで、従来より、円板ブランクの側端面に液圧を作用させてその半径方向に押圧することにより、円板ブランクの材料流動を促進して、容器の各部分の厚みを制御する方法が提案されている。その一方で、シリンダやテーパ状のカムを複数用意し、それらで円板ブランクの外縁部を半径方向に押圧することにより、容器の各部分の厚みを制御する方法が提案されている。
【0006】
しかし、液圧で押圧する方法では、加工装置において、円板ブランクの側端面に作用させる液圧の液体をシールする必要があるため、加工装置の構成が複雑になり、その装置の作製コストが大きくなってしまう。その結果、底付円筒容器の成形コストが大きくなってしまう。
一方、複数のシリンダ又はカムで押圧する方法では、各シリンダ又は各カムが板材の側端面にそれぞれ異なった押圧力を作用させると、円板ブランクに滑りの異なる部分が生じて、加工精度が低下してしまうことがある。また、各シリンダ又は各カムにより円板ブランクに作用させる押圧力が大きすぎると、その作用させた箇所が凹んで、円板ブランクの側端面に凹凸が形成されてしまう。このように円板ブランクの側端面に凹凸が形成されないように、板材の側端面にそれぞれ均等でかつ適切な大きさの押圧を作用させることができるように、各シリンダ又は各カムの押圧力を制御する手段が必要となる。しかし、その制御手段を設けることにより、底付円筒容器の成形コストが大きくなってしまう。
【0007】
ここで、板材の側端面に凹凸部が形成されることを見越して、あらかじめ半径方向に対して大きめの円板ブランクを用意し、凹凸が形成された部分を絞り加工の後で除去することにより底付円筒容器を正確な形状に仕上げる方法もある。しかし、この方法では、その除去にかかる工程が増えてしまうため、成形コストが大きくなってしまう。また、円板ブランクにおいて、除去する部分を余計に形成する必要があるため、円板ブランクの材料費が大きくなってしまう。さらに、除去された部分の廃棄又はリサイクルなどの処理にかかるコストも大きくなってしまう。これらの結果、底付円筒容器の成形コストが大きくなってしまう。
【0008】
その一方で、開口部にフランジ部を有する底付円筒容器を成形する方法として、従来より、筒部を成形した後に、その先端部を外側に折り曲げてフランジ部を形成する方法もある。しかし、この方法では、縦壁部の先端部を折り曲げる際に、その先端部に引張応力が作用するため、板厚の減少により欠陥が発生したり、割れが発生したりする。
【0009】
他方、底付円筒容器の筒部(縦壁部)の板厚を大きくする加工方法として、特開平6−218442号公報で開示されているように、縦壁部の端部に内向きのテーパ面をもつ底付円筒容器を成形した後、縦壁部の隅角の曲率半径より小さい曲率半径の隅角をもつ押さえパンチで押しながら据込みパンチで加圧することにより、縦壁部の板厚を大きくする方法が知られている。
【0010】
しかし、この加工方法では、型の構成が複雑であるため、型のコストが大きくなってしまう問題がある。また、密閉された空間内で加工がなされる上に、押さえパンチ及びダイと縦壁部との間に大きな摩擦力が働くことで、縦壁部の変形が抑制されるため、据込パンチで縦壁部に作用させる加圧力には、大きな力が必要となる。特に縦壁部の板厚を均等に大きくするためには、その加圧力には極めて大きな力が必要とされる。これら結果、大きな加圧力を作用させることのできる据込みパンチが必要になるなど、加工にかかるコストが大きくなってしまう。
【0011】
さらに、底部と縦壁部との境界部(R部)の板厚が大きくされる前に、その縦壁部の端部から底付円筒容器の深さ方向に加圧力が作用するため、図19に示すように、その境界部において折れ込みが発生する可能性もある。この折れ込みにより境界部に割れが発生する恐れが出てくる。それゆえ、据込パンチで縦壁部に作用させる加圧力の制御が難しく、その制御にかかるコストが大きくなってしまう問題もある。
【0012】
一方、上記公報の加工方法では、こうしたコスト上の問題に加えて、境界部のみの板厚を大きくすることもできない。
【0013】
【発明が解決しようとする課題】
本発明は上記実情に鑑みてなされたものであり、底付円筒容器の各部分の板厚を容易にかつ安価に制御することができる成型法を提供することを課題とする。
【0014】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に記載の底付円筒容器の成形法は、板状の板材が絞り込まれる円柱状の絞込孔をもつ絞込孔形設部材と、該板材を該絞込孔に絞り込む絞込手段とを用い、該板材を該絞込孔の周縁面上に該絞込孔を塞ぐようにして設置して、該板材を該絞込手段により該絞込孔に絞り込むことにより底付円筒容器を成形する底付円筒容器の成形法において、前記絞込孔形設部材を挿通できる挿通孔を有し、かつ該挿通孔の隣接面に円錐台側面状の傾斜面が形設されている傾斜面形設部材を、該傾斜面に該板材の側端面を全周にわたって摺接させつつ該傾斜面及び該絞込孔の各中心軸を略一致させて該傾斜面の拡径側の方向に移動させることにより、該側端面を該傾斜面の中心軸に向かう方向に押圧しながら前記絞り込むことを行うことを特徴とする。
【0015】
上記課題を解決する本発明の請求項2に記載の底付円筒容器の成形法は、請求項1に記載の底付円筒容器の成形法において、前記傾斜面に前記側端面を垂直に摺接させて前記傾斜面形設部材を移動させることを特徴とする。
上記課題を解決する本発明の請求項3に記載の底付円筒容器の成形法は、請求項1及び請求項2のいずれかに記載の底付円筒容器の成形法において、前記板材の外縁部の少なくとも一部を、前記傾斜面の拡径側の方向の側から押圧する押圧手段により、該外縁部の該移動方向への滑動を抑制することを特徴とする。
【0016】
上記課題を解決する本発明の請求項4に記載の底付円筒容器の成形法は、請求項3に記載の底付円筒容器の成形法において、前記押圧手段は、前記板材の外縁部の少なくとも一部と、前記傾斜面形設部材の傾斜面とに当接され、該傾斜面形設部材の移動に伴って該傾斜面に沿って移動する協動部材であることを特徴とする。
【0017】
上記課題を解決する本発明の請求項5に記載の底付円筒容器の成形法は、板状の板材より底付円筒容器を成形する成形方法において、成形後に前記底付円筒容器の底部となる前記板材の中心部を固定した後、前記底付円筒容器を深さ方向に挿通できる挿通孔を有し、かつ該挿通孔の隣接面に円錐台側面状の傾斜面が形設されている傾斜面形設部材を、該傾斜面に該板材の側端面を全周にわたって摺接させつつ該傾斜面の中心軸に沿って該傾斜面の拡径側の方向に移動させ、該側端面を該中心軸に向かう方向に押圧しながら該側端面を該傾斜面において該傾斜面の縮径側の方向に滑動させることにより、該中心部の周縁部を塑性変形させて前記底付円筒容器を成形することを特徴とする。
【0018】
上記課題を解決する本発明の請求項6に記載の底付円筒容器の成形法は、請求項5に記載の底付円筒容器の成形法において、前記周縁部を前記傾斜面の縮径側方向に変形させて、前記傾斜面と前記中心軸とのなす角度が該中心部と該周縁部とのなす角度より小さくなるようにした後に、該傾斜面に前記側端面を摺接させることを特徴とする。
【0019】
【発明の実施の形態】
[請求項1に記載の底付円筒容器の成形法]
本発明では、略円板状の板材(以下、単に板材と記する)の側端面を該傾斜面の中心軸に向かう方向に押圧しながら絞り込むため、その板材のフランジ状の部分の板厚を増加させることができる。それゆえ、縦壁部やフランジ部の板厚を十分に増加させることができる。特に、底付円筒容器の縦壁部やフランジ部の板厚を底部に比べて大きくすることができる。
【0020】
先述のように、従来では縦壁部の板厚を増加させる工程は、絞り加工の工程とは別に行われていたが、本発明では、絞り加工と同時に縦壁部の板厚を増加させることができる。それゆえ、工程数を減らして短時間で底付円筒容器を成形できるようになり、底付円筒容器の生産性を高めることができる。
また、板材として、炭素の含有量の高い鋼材などの脆性材料より形成されているものを用いても、割れを防止することができる。
【0021】
傾斜面形設部材により板材の側端面に押圧を作用させることは、液圧を作用させる手段に比べると、液圧を作用させる手段のように液体をシールする必要がないなど、成形装置の構成及びその作動の制御を容易にすることができる。それゆえ、液圧を作用させる手段よりも本傾斜面形設部材を用いる方が、型費を低減することができるなど低コストで板材の側端面に押圧を作用させることができる。
【0022】
また、傾斜面形設部材により板材の側端面に全周にわたって押圧を作用させるため、板材の側端面に均一な大きさの押圧力を容易に作用させることができる。それゆえ、その押圧力が大きくなりすぎても、側端面に凹凸が生じることがない。従って、本傾斜面形設部材を用いる方が、シリンダやテーパ状のカムを用いるよりも押圧力の制御が容易になる。その結果、板材の側端面に押圧を作用させることが、低コストで行えるようになる。
【0023】
以上のような理由により、本発明の底付円筒容器の成形法によれば、板材より底付円筒容器を容易にかつ安価に成形することができる。
本発明の底付円筒容器の成形法の望ましい実施の形態を以下に説明する。
略円板状の板材の材質については特に限定されるものではなく、金属材料などよりなる板材を用いることができる。また、その板材は、正確な円板状である必要はなく、楕円状などの形状を有していてもよい。それらの材質及び板厚については、所望とする底付円筒容器の性能に応じて適宜選択することができる。
【0024】
絞込孔形設部材については、板材が絞り込まれる略円柱状の絞込孔をもつものであれば特に限定されるものではなく、公知の絞込孔形設部材を用いることができる。
絞込手段についても、板材を絞込孔形設部材の絞込孔に絞り込むことができれば特に限定されるものではなく、公知の絞込手段を用いることができる。例えば、図18に示したパンチや、液圧(液圧バルジ成形)などを用いることができる。
【0025】
傾斜面形設部材については、その形状及び材質などの形態で特に限定されるものではないが、例えば図1〜図3に示す形状のものをそれぞれ挙げることができる。
図1では、傾斜面が断面テーパ状をしているものを示した。また、図2及び図3では、傾斜面が拡径側の方向に対して曲率を有するものを示した。なお、その曲率については特に限定されるものではないが、板材を摺動させることができるように適切に選択することが好ましい。傾斜面形設部材の材質については、その傾斜面の少なくとも面部が板材を容易に摺動させることができるように、滑り性に優れ、かつ板材との接触応力に耐えうる材料を選択することが好ましい。
【0026】
本発明では、傾斜面形設部材をその傾斜面の拡径側の方向の側から引張って移動させてもよいし、傾斜面の縮径側の方向から押圧して移動させてもよい。あるいは、その側面にベルトと掛合できる掛合部を設け、そのベルトで傾斜面形設部材を移動させてもよい。
また、傾斜面形設部材には、絞込孔形設部材の外周面と摺動できる摺動部を設けることが好ましい。この摺動部により、傾斜面形設部材を安定に移動させることができるようになる。
【0027】
さらに、板材の側端面には、傾斜面形設部材の傾斜面から摩擦力が作用するため、板材の外縁部が傾斜面の拡径側の方向へ滑動してしまう。その滑動長さが十分に小さければ、板材の側端面に傾斜面形設部材の傾斜面から押圧力を効果的に作用させることができる。しかし、その滑動長さが大きいと、側端面と傾斜面とのなす角度が大きく変わって、板材の側端面に傾斜面から効果的に押圧力を作用させることができなくなってしまう。そこで、その滑動長さが十分に小さくなるように、傾斜面形設部材の移動速度を適切に選択することが好ましい。
【0028】
本発明の底付円筒容器の成形法は、次の成形装置を用いて実施することができる。
その成形装置は、略円板状の板材が絞り込まれる略円柱状の絞込孔をもつ絞込孔形設部材と、該板材を該絞込孔に絞り込む絞込手段とが備えられ、該板材が該絞込孔の周縁面上に該絞込孔を塞ぐようにして設置され、該板材が該絞込手段により該絞込孔に絞り込まれることにより底付円筒容器が成形される底付円筒容器の成形装置において、前記絞込孔形設部材を挿通できる挿通孔を有し、かつ該挿通孔の隣接面に略円錐台側面状の傾斜面が形設されている傾斜面形設部材が、該傾斜面及び該絞込孔の各中心軸を略一致させて往復移動できるように設けられ、該傾斜面が該板材の側端面に全周にわたって摺接しつつ該孔部の中心軸に沿って該傾斜面の拡径側の方向に移動することにより、該側端面が該傾斜面の中心軸に向かう方向に押圧されながら前記絞り込むことが行われることを特徴とする。
(実施例1)
こうした成形装置として、例えば図4に示す成形装置を挙げることができる。
【0029】
図4に例示した成形装置では、プレスのラム(図示せず)に取り付けられて上下方向に可動な上型110と固定された下型112との間に、円板状の板材120が絞り込まれる円柱状の絞込孔132をもつ絞込孔形設部材130と、板材120を絞込孔132に絞り込む絞込手段140と、絞込孔形設部材130を挿通できる挿通孔152を有し、かつ挿通孔152の隣接面に略円錐台側面状の傾斜面154が形設されている傾斜面形設部材150とが配設されている。
【0030】
この形成装置では、絞込手段140として、円柱形状の金属より形成され、絞込孔形設部材(ブランクホルダ)130の絞込孔132に底付円筒容器の縦壁部と同じ形状の筒状の間隔を空けて挿通することができる第1パンチが用いられている。この第1パンチ140は、上型110を上下動させることによってブランクホルダ130の絞込孔132内を自在に上下動させることができ、その先端方向に任意の大きさの押圧力を作用させることができる。
【0031】
ブランクホルダ130は、円筒形状の金属製部材である。このブランクホルダ130も、ロッド134を介して連結された油圧制御シリンダー(図示せず)により、自在に上下動させることができ、その先端(周縁面130a)方向に任意の大きさの押圧力を作用させることができる。
傾斜面形設部材(テーパパンチ)150は、ブランクホルダ130の外周面130bに対して摺動する摺動部150aと、傾斜面154をもつ傾斜面部150bとから構成される略円筒状の金属製部材である。このテーパパンチ150は、下型112に取り付けられて固定されている。
【0032】
この成形装置を次のように作動させることにより、円板状の板材より底付円筒容器を成形することができる。
先ず、ブランクホルダ130及びテーパパンチ150の位置を図4(a)に示した位置にそれぞれ設定する。その一方で、板材として、金属材料よりなり、かつ外縁部120aが図4(a)に示したように塑性変形された円形ブランク120を用意する。この円形ブランク120をブランクホルダ130の周縁面130a上に絞込孔を132を塞ぐようにして設置し、その側端面120bをテーパパンチ150の傾斜面154に摺接させる。
【0033】
次いで、第1パンチ140を円形ブランク120の中心部に当接させた後、第1パンチ140及びブランクホルダ130をそれぞれ同時に下降させる。このとき、第1パンチ140をブランクホルダ130よりも高速度で下降させる。その結果、円形ブランク120の中心部が第1パンチ140により下方に押圧される。また、テーパパンチ150は、ブランクホルダ130に対して相対的に上昇することになる。
【0034】
こうして、テーパパンチ150の傾斜面154に円形ブランク120の側端面120bを全周にわたって摺接させつつ、テーパパンチ150を傾斜面154の拡径側の方向に移動させる。その結果、円形ブランク120が、その側端面120bでテーパパンチ150の傾斜面154の中心軸に向かう方向に押圧されながら、ブランクホルダ130の絞込孔132内に絞り込まれる。
(変形態様)
本発明の底付円筒容器の成形法においては、前記板材を前記絞込孔形設部材の絞込孔の周縁面に押さえ付けながら前記絞り込むことを行うことが好ましい。これにより、絞込孔の周縁面での板材の浮き上がりを防止することができる。また、しわの発生を防ぐこともできる。この押し付ける手段については、板材を絞込孔形設部材の絞込孔の周縁面に押さえ付けることができれば特に限定されるものではなく、公知の押付手段を用いることができる。
【0035】
例えば、図4に示した成形装置においては、図5に示すような略有孔円形板状の押付部材(第2パンチ)160(中心部に第1パンチ140が挿通される孔部162を有する)を設けることができる。絞込孔形設部材(ブランクホルダ)が板材120に押圧力を作用させる際、その板材120には、第2パンチ160より相対的に絞込孔形設部材130の周縁面134に押し付けられる力が作用する。
【0036】
この成形装置では、板材120が絞り込まれるときに、傾斜面形設部材150の傾斜面154からその側端面120bに押圧力を受けるため、絞込孔形設部材130と押付部材160との間隔164への材料流動が促進され、板材120の伸びを抑制することができる。それゆえ、底部122、縦壁部124やフランジ部126の厚みを均等にとることができ、底付円筒容器の各部分の厚みの正確な制御が容易となる。
【0037】
また、本発明の底付円筒容器の成形法では、前記傾斜面に前記側端面を垂直に摺接させて前記傾斜面形設部材を移動させることが好ましい。これにより板材の側端面に傾斜面から効果的に押圧力を作用させることができるようになる。
前述の成形装置において、前記傾斜面に前記側端面を垂直に摺接させる方法としては、次の2つの方法が挙げられる。
【0038】
一つは、板材の外縁部をあらかじめ図4に示した形状に塑性変形させておき、その板材を押付部材で絞込孔形設部材に押し付けて固定した後、前記傾斜面に前記側端面を垂直に摺接させる方法である。この場合、板材をブランクとして打ち抜くときに、板材の外縁部を塑性変形させてもよい。
もう一つは、扁平な板材を押付部材で絞込孔形設部材に押し付けて固定し、その外縁部を図4に示した形状に変形させた後、傾斜面に側端面を垂直に摺接させる方法である。このとき、後述する押圧部材を用いて外縁部を変形させてもよいし、その押圧部材とは別の部材を用いて変形させてもよい。いずれの変形も、塑性変形であってもよいし、弾性変形であってもよい。
【0039】
ところで、板材の外縁部が、傾斜面形設部材の傾斜面の拡径側の方向へ滑動することを抑制する方法として、傾斜面形設部材の移動速度を適切に選択する方法があることは先に述べた。しかし、この方法では、傾斜面形設部材の移動速度を適切に制御する制御手段が必要となり、成形装置が複雑化して、成形コストが大きくなる恐れがある。
【0040】
一方、こうした傾斜面の拡径側の方向への外縁部の滑動を抑制する手段として、他に傾斜面の縮径側の方向に引っ張る手段を挙げることができる。ここで、引っ張る手段については特に限定されるものではないが、例えば吸引手段や、磁石を用いて引っ張ることができる。この磁石を用いた引張手段では、傾斜面形設部材の傾斜面の縮径側の方向の面部に磁石を埋め込んでおくなどして、外縁部を縮径側の方向に引っ張ることができる。ただし、吸引手段でも、成形装置の複雑化を招き、成形コストを大きくしてしまう恐れがある。また、磁石を用いた引張手段では、板材の材質により使用できないことがある。
【0041】
そこで、前記板材の外縁部の少なくとも一部を、前記傾斜面の拡径側の方向の側から押圧する押圧手段により、傾斜面の拡径側の方向への板材の外縁部の滑動を抑制することが好ましい。この押圧手段により、成形装置を複雑化させることなく、かつ板材が如何なる材料からなるものであっても、その外縁部の該移動方向への滑動を抑制することができる。その結果、前記側端面と前記傾斜面とのなす角度を一定に保持することができる。その結果、板材の側端面に傾斜面から効果的に押圧力を作用させることができるようになる。
【0042】
こうした押圧手段の形態は特に限定されるものではなく、気体、液体及び固体のいずれの材料を用いて板材の外縁部を押圧してもよい(気体又は液体を用いるのであれば、その気圧又は液圧で外縁部を押圧するのである。)。ただし、傾斜面形設部材の移動を妨げないようにその形態を選択する必要がある。
また、押圧手段には、前記板材の外縁部の一部と、前記傾斜面形設部材の傾斜面とに当接され、該傾斜面形設部材の移動に伴って該傾斜面に沿って移動する協動部材を用いることが好ましい。例えば、図4に示した成形装置においては、図6に示されるような転がり機構を有して傾斜面154上を転動する協動部材170を用いることができる。また、図5に示した成形装置においては、図7に示されるような傾斜面154上を摺動する協動部材172などを用いることができる。
【0043】
図6に示した協動部材170は、自在に伸縮でき、かつその基端部で上型110に振り子運動できるように取り付けられた略棒状の基部170aと、傾斜面154に当接され、転がり機構を有する先端部170bとからなるものである。この協動部材170は、板材120の外縁部120aの一部と、傾斜面形設部材150の傾斜面154とに当接され、傾斜面形設部材150の移動に伴って傾斜面154上を転動することができる。
【0044】
また、図7に示した協動部材172は、絞込孔形設部材130の周縁面130aに対面する押付部材160’の面部に設けられた孔部166に取り付けられ、傾斜面154に摺接されるテーパ面172aを有し、かつ孔部166を摺動できる摺動部172bと、該摺動部172bを孔部166で摺動させるコイルバネ(図示せず)とで構成されている。この協動部材172は、摺動部172bの摺動面172aで板材120の外縁部120aの一部と当接されるとともに、摺動部172bの下側面172cで傾斜面形設部材150の傾斜面154に当接され、傾斜面形設部材150の移動に伴って傾斜面154上を摺動することができる。
【0045】
ところで、押圧手段により板材の外縁部を全周にわたって押圧すれば、その外縁部を全周にわたって偏りなく傾斜面の拡径側の方向への滑動を抑制することができる。しかし、板材の外縁部は絞り込みが進むにつれて縮径していくため、先の協動部材(固体)を用いた押圧手段ではその縮径に対応しながら外縁部を全周にわたって押圧することが難しい。すなわち、外縁部に押圧することのできない部分が生じてしまう。その結果、押圧手段で押圧されていない外縁部の部分において、傾斜面形設部材の移動方向への滑動を抑制することができなくなる。ただし、押圧手段に収縮材を用いれば、板材の外縁部の収縮に対応させることも可能になるが、逆にその外縁部を十分な押圧力で押圧することが難しくなってしまう。
【0046】
そこで、この協動部材は、板材の外縁部上を全周にわたって周回するものであることが好ましい。こうした協動部材を押圧手段に用いることにより、板材の外縁部を全周にわたって容易に偏りなく押圧することができる。こうした協動部材として、例えば図8に示すものを挙げることができる。
図8に示した協動部材174は、絞込孔形設部材130の周縁面130aに対面する押付部材160’の面部内に設けられた孔部168に取り付けられ、傾斜面154に当接されるテーパ面174aを有し、かつ孔部168を摺動できるとともに、トルクを受けて自転することができる摺動部174bと、摺動部174bを孔部168で摺動させるコイルバネ(図示せず)とで構成されている。一方、図6に示した成形装置では、下型112’を傾斜面形設部材150の傾斜面154の中心軸に対して自在に回転させることができる。また、テーパパンチ150は、ブランクホルダ130の外周面130aに対し、上下方向だけでなく円周方向にも摺動することができる。
【0047】
従って、協動部材174は、その摺動部174bの傾斜面154に当接するテーパ面174aより下型112からトルクを受けて自転することができる。この自転により、協動部材174を傾斜面154に摺接させながら板材120の外縁部120a上を全周にわたって周回させることができる。
一方、前記絞込孔形設部材と前記押付部材との各対向面部の少なくとも一方の外縁部に切り欠きを形成することが好ましい。このような切り欠きを形成することにより、前記絞込孔形設部材と前記押付部材とで形成される間隔(板材が挟み込まれる間隔)において、その外縁部に他の部分よりも大きな間隔幅を有する間隔部を形成することができる。底付円筒容器にフランジ部を形成するときに、このような間隔部を設ければ、傾斜面の押圧による板材内での材料流動がフランジ部126の外縁部126aで起こるとともに、絞込孔形設部材と押付部材とにその変形が規制されるため、その外縁部126aに厚肉な部分(厚肉部)を形成することができる。
【0048】
このような厚肉部の形状は、例えば図8に示したように、絞込孔形設部材(ブランクホルダ)130の押付部材(第2パンチ)160’と対向する面部において、その外縁部の全周にわたって適切な形状の切り欠き134を形設することにより所望の形状にすることができる。なお、厚肉部は、その外縁部126aの全周にわたって形成してもよいし、外縁部126aの一部の周部に形成してもよく、用途に応じて形成部位を適切に選択すればよい。
(実施例2)
本実施例では、図9に示す成形装置を用い、円板状の板材より底付円筒容器を成形した。
【0049】
図9に示した成形装置は、上下方向に可動な上型210と固定された下型212との間に、円板状の板材220が絞り込まれる円柱状の絞込孔232をもつ絞込孔形設部材(ブランクホルダ)230と、円形ブランク220を絞込孔に絞り込む絞込手段(第1パンチ)240と、上型210に取り付けられ、板材220をブランクホルダ230の絞込孔232の周縁面234に押さえ付ける押付部材(第2パンチ)250と、ブランクホルダ230及び第2パンチ250の下方の部分が挿通される挿通孔262をもち、かつ挿通孔262の隣接面に略円錐台側面状の傾斜面264が形成されている傾斜面形設部材(テーパパンチ)260とを配設した装置である。
【0050】
この成形装置におけるブランクホルダ230、第1パンチ240及びテーパパンチ260は、それぞれ先に図4で例示した成形装置のものと同じ部材である。なお、ブランクホルダ230の絞込孔232には、その絞込孔232内を摺動することができ、かつ先端部で板材220の中心部に下方から当接されるノックアウト270を設けた。このノックアウト270は、円柱形状の金属製部材で、ロッド272を介して連結された油圧制御シリンダー(図示せず)により、自在に上下動させることができ、その先端部に当接された板材220に任意の大きさの押圧力を作用させることができる。
【0051】
また、ブランクホルダ230の周縁面230aには、その外縁部に全周にわたって切り欠き234が形成されている。それゆえ、ブランクホルダ230と第2パンチ250との間に形成される間隔(板材220が挟持される間隔)は、その外縁部においてブランクホルダ側に他の部分よりも大きな間隔幅を有する。
さらに、上型210には、図6で示した協動部材170において、その先端部282に板材220の外縁部220a上も周回可能にする転がり機構が備えられた協動部材280を取り付けた。なお、この成形装置では、上型210を傾斜面264の中心軸に対して自在に回転させることができる。それゆえ、この協動部材280も、上型210とともに傾斜面264の中心軸に対して回転させて、傾斜面264に当接させつつ板材220の外縁部220a上を周回させることができる。
【0052】
図9に示した成形装置を次のように作動させることにより、円板状の板材より底付円筒容器を成形することができる。
先ず、ブランクホルダ230、テーパパンチ260及びノックアウト270の位置を図9(a)に示した位置にそれぞれ設定する。その一方で、円板状の板材として、金属材料よりなり、かつ外縁部220aが図9(a)に示したように塑性変形された円形ブランク220を用意する。この円形ブランク220を、ブランクホルダ230の周縁面230a上にその絞込孔232を塞ぐようにして設置した後、その側端面220bがテーパパンチ260の傾斜面264に垂直に摺接するように、第2パンチ250によりブランクホルダ230に押し付ける。
【0053】
次いで、協動部材280を、円形ブランク220の外縁部220aに当接させつつ、テーパパンチ260の傾斜面264に摺設する。続いて、上型210を傾斜面264の中心軸に対して回転させることにより、協動部材280を上型210とともに傾斜面264の中心軸に対して回転させ、傾斜面264に当接させつつ円形ブランク220の外縁部220a上を周回させる。
【0054】
第1パンチ240を円形ブランク220に当接させ、上型210により第2パンチ250及び協動部材280を下方に押圧しながら、第2パンチ250及びブランクホルダ230に対して相対的にノックアウト270とともに下降させて、ブランクホルダ230の絞込孔232内に円形ブランク220を絞り込む。こうして円形ブランク220が、その側端面220bでテーパパンチ260の傾斜面264の中心軸に向かう方向に押圧されながら絞り込まれ、底付円筒容器に成形される。
【0055】
最後に、第1パンチ240で底付円筒容器の底部222をその成形時と同じ押圧力で押圧させ、かつ協動部材280を円形ブランク220の外縁部220a上で周回させたまま、ノックアウト270の押圧力は除いて、上型210とブランクホルダ230の押圧力を増加させる。その結果、底付円筒容器のフランジ部226の外縁部226aが、ブランクホルダ230、第2パンチ250、テーパパンチ260及び協動部材280の先端部282により押圧されて増肉される。こうして開口部の周縁にフランジ部226を有し、かつそのフランジ部226の外縁部226aが増肉されている底付円筒容器を完成することができる。
【0056】
ところで、上記従来の成形法において、このように開口部の周縁にフランジ部を有し、かつその外縁部が増肉された底付円筒容器の成形する際、絞りに関して、絞り及び再絞り限界値からその絞り率を0.3とするためには、例えば図10に示すように5工程の成形工程を必要としていた。また、増肉に関しては、その増肉率を0.6以上にするためには、底付円筒容器の体程を確保するための絞り工程と、すえ込み成形を座屈が発生しないように実施するために増肉工程を2〜5工程とを必要としていた。
【0057】
本実施例の成形法によれば、絞り率を0.3とし、かつ増肉率を0.6以上にするためには、上記のようにそれぞれ1工程で行うことができ、上記従来の成形法に比べて1/3以下に減らすことができる。
(実施例3)
本実施例では、図11に示す成形装置を用い、円板状の板材より図12に示すような形状の底付円筒容器を成形した。
【0058】
図11に示した成形装置は、上下方向に可動な上型310と固定された下型312との間に、円板状の板材320が絞り込まれ、円柱状の絞込孔332が形設された絞込孔形設部材(ブランクホルダ)330と、板材320を絞込孔332に絞り込む絞込手段340(第1パンチ342及び第3パンチ344)と、上型310に一体的に取り付けられ、板材320をブランクホルダ330の絞込孔332の周縁面330aに押さえ付ける押付部材(第2パンチ)350と、ブランクホルダ330及び第2パンチ350の下方部が挿通される挿通孔362をもち、かつ挿通孔362の隣接面に略円錐台側面状の傾斜面364が形成されている傾斜面形設部材(テーパパンチ)360とを配設した装置である。
【0059】
この成形装置におけるテーパパンチ360も、先に図4で例示した成形装置のものと同じ部材である。また、ブランクホルダ330も先に図4で例示した成形装置のものとほぼ同じ部材であるが、その周縁面330aの内縁部に切り欠き330cを有する。
第1パンチ342は、先述の第1パンチ140と同様に、円柱形状の金属より形成され、ブランクホルダ330の絞込孔332の下方に底付円筒容器の底部322側の縦壁部324aと同じ形状の筒状の間隔を空けて挿通することができる部材である。この第1パンチ342も、ロッド343介して連結された油圧制御シリンダー(図示せず)により、ブランクホルダ330の絞込孔332内を自在に上下動させることができ、その先端部に当接された板材320に任意の大きさの押圧力を作用させることができる。
【0060】
また、第3パンチ344は、円筒形状の金属より形成され、ブランクホルダ330の絞込孔332の上方部に底付円筒容器の開口側の縦壁部324bと同じ形状の筒状の間隔を空けて挿通することができる部材である。この第3パンチ344も、ロッド345を介して連結された油圧制御シリンダー(図示せず)により、第1パンチ342及び第2パンチ350に対して摺動して、ブランクホルダ330の絞込孔332内の上方部を自在に上下動させることができ、その先端部に当接された板材320に任意の大きさの押圧力を作用させることができる。なお、この第3パンチ344には、第2パンチ350に対して一定の幅でしか摺動することができないように、第2パンチ350の突出部350aとかみ合ってその移動を規制する突出部(ストッパー)344aが形設されている。
【0061】
一方、ブランクホルダ330の絞込孔332には、円柱形状の本体部372と、本体部372の上面372aの外縁から円筒状に突出する突出部374とからなり、その絞込孔332内を摺動することができるノックアウト370を設けた。このノックアウト370も、ロッド376を介して連結された油圧制御シリンダー(図示せず)により、自在に上下動させることができ、その上面372a及び突出部374で当接した板材320に任意の大きさの押圧力を作用させることができる。それゆえ、ブランクホルダ330の絞込孔332において、その内面と、第1パンチ342及び第3パンチ344との間に、それぞれ径の異なる円筒状の間隔が連続的にかつ等間隔幅で形成される。
【0062】
また、第2パンチ350には、ブランクホルダ330の周縁面330aに対面する面部に設けられた孔部352において、図7に示した協動部材172と同じ協動部材380が設けられている。すなわち、この協動部材380は、傾斜面364に摺接されるテーパ面382aを有し、かつ円筒状に形成された孔部352(傾斜面の中心軸と同じ中心軸をもつ)を摺動できる摺動部382と、摺動部382を孔部352で摺動させるコイルバネ(図示せず)とで構成されるものである。この協動部材380は、板材320の外縁部320aの一部を、テーパパンチ360の傾斜面の拡径側の方向の側から押圧することにより、その拡径側の方向へ外縁部320aが滑動することを抑制することができる。
【0063】
なお、この協動部材382は、孔部352をその中心軸に対して回転することができ、板材320の外縁部320a上を全周にわたって周回することができる。
図11に示した成形装置を、図13に示すように各部材の油圧制御シリンダーの油圧を制御して、次のように作動させることにより、円板状の板材より図12に示した底付円筒容器を2工程で成形することができる。
[第1工程]
先ず、ブランクホルダ330、テーパパンチ360及びノックアウト370の位置を図11(a)に示した位置にそれぞれ設定する。その一方で、円板状の板材として、金属材料よりなり、かつ外縁部が図11(a)に示したように塑性変形された円形ブランク320を用意する。この円形ブランク320を、ブランクホルダ330の周縁面330a上にその絞込孔332を塞ぐようにして設置した後、その側端面320bが傾斜面364に垂直に摺接するように、第2パンチ350によりブランクホルダ330の周縁面330aに押し付ける。
【0064】
次いで、協動部材382を、円形ブランク320の外縁部320aに当接させつつテーパパンチ360の傾斜面364に摺設し、その外縁部320a上を全周にわたって周回させる。続いて、第1パンチ342及び第3パンチ344を円形ブランク320の中心部に当接させた後、上型310により第2パンチ350を下方に押圧しながら、第2パンチ350及びブランクホルダ330に対して相対的にノックアウト370とともに下降させて、ブランクホルダ330の絞込孔332内に円形ブランク320を絞り込む。こうして円形ブランク320が、その側端面320bで傾斜面364の中心軸に向かう方向に押圧されながら絞り込まれることにより、底付円筒容器の縦壁部及びフランジ部が形成される。
[第2工程]
第1パンチ342と第3パンチ344とで底付円筒容器の底部322及び縦壁部324をそれらの成形時と同じ押圧力で押圧させ、かつ協動部材382を外縁部320a上を全周にわたって周回させたまま、ノックアウト370の押圧力を除いて、上型310とブランクホルダ330の押圧力を増加させる。その結果、底付円筒容器のフランジ部326の外縁部326aがその押圧を受けて増肉される。こうして図12に示した底付円筒容器を完成することができる。
[請求項5に記載の底付円筒容器の成形法]
本発明の底付円筒容器の成形法では、成形後に底付円筒容器の底部となる板材の中心部を固定した後、傾斜面形設部材を、該傾斜面に該板材の側端面を全周にわたって摺接させながら該傾斜面の中心軸に沿って該拡径側の方向に移動させ、該側端面を該中心軸に向かう方向に押圧しながら該側端面を該傾斜面で滑動させるため、板材の中心部の周縁に位置する周縁部が、図14に示すように応力σAを受けて塑性変形する。このとき、板材の側端面に対して応力σBも作用し、板材の周縁部の板厚を増加させることができる。こうして、底付円筒容器の筒部(縦壁部)が、その板厚が増加されて形成される。すなわち、底付円筒容器の縦壁部を形成しながらその板厚を増加させることができる。その結果、縦壁部の板厚が底部よりも大きな底付円筒容器を得ることができる。
【0065】
本発明では、板材の側端面が傾斜面により中心軸に向かう方向に押圧される押圧力を制御することにより、縦壁部の板厚を底部の1.5倍以上に増加させることができる。
また、先述した特開平6−218442号公報で開示されている成形法に比べ、工程数を少なくすることができる上、成形装置の構成を簡易なものとすることができる。
【0066】
さらに、板材の周縁部の塑性変形を開空間で起こさせることができるため、その周縁部は変形が他の部材によって抑制されることがない。すなわち、塑性変形の自由度が大きく、容易に塑性変形させることができる。それゆえ、傾斜面形設部材により板材の側端面に作用させる押圧力には大きな力を必要としない。
一方、板材の周縁部の板厚を大きくしながら塑性変形させるため、その板厚が小さいときに中心部と周縁部との境界部において折れ込みが発生することもない。それゆえ、境界部において割れなどが発生することがない。従って、傾斜面形設部材で板材の側端面に作用させる押圧力の制御が容易となり、その制御にかかるコストを小さくすることができる。特に、円形ブランクに炭素の含有量の高い鋼材などの脆性材料より形成されているものを用いても、割れを防止することができる。また、縦壁部やフランジ部、底部の厚みをそれぞれ正確にとることができ、底付円筒容器の各部分の厚みの正確な制御が容易となる。
【0067】
なお、本発明では、板材の周縁部の板厚が十分に大きくなってから折れ込みを起こさせることも可能である。このとき、境界部は、その板厚が十分に増加されているため、割れが発生しにくいものとなっている。
一方、傾斜面形設部材により板材の側端面に押圧を作用させることは、液圧を作用させる手段に比べると、液圧を作用させる手段のように液体をシールする必要がないなど、成形装置の構成及びその作動の制御が容易である。それゆえ、液圧を作用させる手段よりも本傾斜面形設部材を用いる方が、型費を低減することができるなど低コストで板材の側端面に押圧を作用させることができる。
【0068】
以上のような理由により、本発明の底付円筒容器の成形法によれば、底付円筒容器の各部分の板厚を容易にかつ安価に制御することができる。それゆえ、各部分の板厚が異なる底付円筒容器を容易にかつ安価に成形することができる。
本発明の底付円筒容器の成形法の望ましい実施の形態を以下に説明する。
略円板状の板材の材質については特に限定されるものではなく、金属材料などよりなる板材を用いることができる。また、その板材は、正確な円板状である必要はなく、楕円状などの形状を有していてもよい。それらの材質及び板厚については、所望とする底付円筒容器の性能に応じて適宜選択することができる。
【0069】
前記板材の略中心部を固定する方法については特に限定されるものではないが、底付円筒容器内に挿通できるだけの大きさの部材と、傾斜面形設部材に挿通できるだけの大きさの部材との2つ部材で挟持して固定することが好ましい。
傾斜面形設部材については、その形状及び材質などの形態で特に限定されるものではないが、例えば図1〜図3に示した形状のものをそれぞれ挙げることができる。なお、図2及び図3に示したように傾斜面が拡径側の方向に対して曲率を有するものでは、その曲率については特に限定されるものではないが、板材を滑動させることができるように適切に選択することが好ましい。傾斜面形設部材の材質については、その傾斜面の少なくとも面部が板材を容易に滑動させることのできるように、滑り性に優れ、かつ板材との接触応力に耐えうる材料を選択することが好ましい。
【0070】
本発明では、傾斜面形設部材をその傾斜面の拡径側の方向の側から引張って移動させてもよいし、傾斜面の縮径側の方向から押圧して移動させてもよい。あるいは、その側面にベルトと掛合できる掛合部を設け、そのベルトで傾斜面形設部材を移動させてもよい。
また、傾斜面形設部材には、前記傾斜面と連続し、かつ板材の完全に変形した周縁部(縦壁部)と摺動できる摺動面をもつ摺動部が設けられていることが好ましい。この摺動部により、縦壁部に損傷等を与えないようにしつつ、底付円筒容器を安定的に得ることができるようになる。
【0071】
本発明の底付円筒容器の成形法は、次の成形装置を用いて実施することができる。
その成形装置は、略円板状の板材より底付円筒容器を成形する成形装置において、該板材の略中心部を挟持して固定する挟持部材と、前記底付円筒容器を深さ方向に挿通できる挿通孔を有し、かつ該挿通孔の隣接面に略円錐台側面状の傾斜面が形成され、該傾斜面の中心軸に沿って往復移動できる傾斜面形設部材と、から構成され、該挟持部材により該中心部を固定した後、傾斜面形設部材を、該板材の側端面を全周にわたって該傾斜面に摺接させながら該傾斜面の中心軸に沿って該傾斜面の拡径側の方向に移動させ、該側端面を該中心軸に向かう方向に押圧しながら該側端面を該傾斜面において該傾斜面の縮径側の方向に滑動させることにより、該中心部の周縁部を塑性変形させて該底付円筒容器の筒部を成形し、該底付円筒容器を成形することを特徴とする。
(実施例4)
こうした成形装置として、例えば図15に示す成形装置を挙げることができる。この図15では、板材の側端面を全周にわたって傾斜面に摺接させつつ該傾斜面形設部材をその傾斜面の拡径側の方向に移動させている様子が示されている。
【0072】
図15に例示した成形装置では、上下方向に可動な上型410と固定された下型412との間に、板材420の中心部を挟持して固定する挟持部材(パンチ430及びノックアウト440)と、底付円筒容器をその深さ方向で挿通できる挿通孔452を有し、かつ挿通孔452の隣接面に略円錐台側面状の傾斜面454が形成され、傾斜面454の中心軸に沿って往復移動できる傾斜面形設部材(テーパパンチ)450と、が配設されている。
【0073】
パンチ430は、上型410に固定され、上型410とともに上下動することができる。
ノックアウト440は、円柱形状の金属製部材で、その先端部で板材420の中心部に当接される。このノックアウト440は、クッション442を介して連結された油圧制御シリンダー(図示せず)により、自在に上下動させることができ、その先端部に当接された板材420の中心部に任意の大きさの押圧力を作用させることができる。
【0074】
この成形装置は、次のように作動して、円板状の板材より底付円筒容器を成形することができる。
先ず、ノックアウト440の位置を図15(a)に示した位置にそれぞれ設定する。その一方で、円板状の板材として金属材料よりなり、かつ外縁部420aが図15(a)に示したように塑性変形された円形ブランク420を用意する。この円形ブランク420をノックアウト440上に設置し、その側端面420bをテーパパンチ450の傾斜面454に摺接させる。パンチを円形ブランク420に当接させ、パンチ及びノックアウトを下降させる。それゆえ、テーパパンチ450は、ノックアウト440に対して相対的に上方へ移動することになる。その結果、円形ブランク420が、テーパパンチ450により側端面420bが傾斜面454の中心軸に向かう方向に押圧されながら側端面420bを傾斜面454において下方に滑動し、その中心部の周縁部420bが傾斜面454の縮径側の方向に塑性変形する。なお、ノックアウト440及びテーパパンチ450の下降の速度を適切に制御して、円形ブランク420の中心部とその周縁部との境界部を折れ曲がらせることができる。こうして、図15(b)に示したように、底付円筒容器の筒部424、底部422より大きな板厚で成形することができる。
(変形態様)
本発明では、前記周縁部を前記傾斜面の縮径側方向に変形させて、前記傾斜面と前記中心軸とのなす角度が該中心部と該周縁部とのなす角度より小さくなるようにした後に、該傾斜面に前記側端面を摺接させることが好ましい。これにより、板材の側端面に、傾斜面の縮径側の方向へ滑動させる応力を大きく作用させることができるため、その側端面を傾斜面の中心軸に向かう方向に押圧しながら該側端面を該傾斜面で容易に滑動させることができる。
【0075】
また、周縁部を小刻みで振動させながら、傾斜面形設部材の傾斜面で板材の側端面を傾斜面の中心軸に向かう方向に押圧することが好ましい。これにより、周縁部の板厚をさらに効率的に増加させることができる。すなわち、傾斜面形設部材の傾斜面で板材の側端面を押圧する力を大きくせずとも、周縁部の板厚を大きくすることができる。先述の成形装置では、板材の挟持装置を小刻みに振動させれば、その振動が板材の底部を介して周縁部に伝えられる。
【0076】
ところで、図15に示した成形装置において、傾斜面形設部材450の摺動部450bの傾斜面454と隣接する内周面部に、図16に示すようにその傾斜面の中心軸方向に突出する突出部450cを設けることが好ましい。上述のように板材420の周縁部420aを塑性変形させて筒部(縦壁部)424を形成した後、この突出部450cと挟持部材(パンチ430及びノックアウト440)とを押し合わせることにより、図16(b)に示すように底部422と縦壁部424との境界部(R部)426の肉厚を増加させることができる。
【0077】
また、図17(a)に示すように、板材420の中心部とその周縁部420aとの境界部420cを、あらかじめ増肉させておくことにより、図17(b)に示すように底付円筒容器の底部422と縦壁部424との境界部(R部)426’の板厚を底部422及び縦壁部424より大きくすることもできる。
【図面の簡単な説明】
【図1】 本発明において用いることのできる傾斜面形設部材を示す図である。(a)はその斜視図である。(b)は縦断面図である。
【図2】 本発明において用いることのできる傾斜面形設部材を示す図である。(a)はその斜視図である。(b)は縦断面図である。
【図3】 本発明において用いることのできる傾斜面形設部材を示す図である。(a)はその斜視図である。(b)は縦断面図である。
【図4】 実施例1において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図5】 実施例1の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図6】 実施例1の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図7】 実施例1の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図8】 実施例1の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図9】 実施例2において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図10】 実施例2の成形法と従来の成形法とにおいて、板材の絞り率及びフランジ部の外縁部の増肉率をそれぞれ比較したグラフである。
【図11】 実施例3において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を絞り込む前の成形装置の様子を示す図である。(b)は、板材を絞り込んだ後の成形装置の様子を示す図である。
【図12】 実施例3の成形法において、成形前の板材と、成形後の底付円筒容器をそれぞれ示す断面図である。
【図13】 実施例3の底付円筒容器の成形時において、各部材の上下動を制御する油圧制御シリンダーの油圧の変化をそれぞれ示すグラフである。
【図14】 もう一つの本発明において、傾斜面形設部材の傾斜面から板材の側端面が受ける応力を模式的に示した断面図である。
【図15】 実施例4において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を変形させる前の成形装置の様子を示す図である。(b)は、板材を変形させた後の成形装置の様子を示す図である。
【図16】 実施例4の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を変形させる前の成形装置の様子を示す図である。(b)は、板材を変形させた後の成形装置の様子を示す図である。
【図17】 実施例4の変形態様において用いた成形装置を示すとともに、その作動方法を示す断面図である。(a)は、板材を変形させる前の成形装置の様子を示す図である。(b)は、板材を変形させた後の成形装置の様子を示す図である。
【図18】 従来の底付円筒容器の成形法を示す要部断面図である。
【図19】 従来の底付円筒容器の成形法において、その底部と縦壁部との間の境界部に折れ込みが生じている様子を示す断面図である。
【符号の説明】
110:上型 112:下型
120:板材 120a:外縁部 120b:側端面
130:絞込孔形設部材 132:絞込孔 130b:周縁面
140:絞込手段
150:傾斜面形設部材 152:挿通孔 154:傾斜面 150a:傾斜面部 150b:摺動部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of forming a bottomed cylindrical container from a substantially disk-shaped plate material.
[0002]
[Prior art]
As a forming method for forming a bottomed cylindrical container from a substantially disc-shaped plate material (disc blank), as shown in FIG. 18, a constriction hole forming member having a columnar constriction hole into which the disc blank is constricted. (Blank holder) and a narrowing means (punch) for narrowing the disc blank to the narrowing hole, and setting the disc blank on the peripheral surface of the narrowing hole so as to close the narrowing hole There is a method of forming a bottomed cylindrical container by narrowing a disc blank into the narrowed hole by the narrowing means (drawing method). In this molding method, the portion (flange-shaped portion) before being pulled into the narrowing hole of the disc blank receives tensile stress in the direction (radial direction) toward the central axis of the narrowing hole and compresses in the circumferential direction. Under stress, it is squeezed into the squeezing hole and deformed (radius squeezing deformation).
[0003]
In such a molding method, when a plate material having a small plate thickness is used, the plate material portion may be lifted on the peripheral surface or the surface of the plate material portion may be wrinkled. Therefore, in order to prevent such a problem from occurring, as shown in FIG. 18, the plate material is squeezed by a pressing member that can press the plate portion on the peripheral surface of the narrow hole forming member against the peripheral surface. It is squeezed while being pressed against the peripheral surface of the squeezing hole of the squeezing hole forming member. In addition, the thickness of the flange-shaped portion can be controlled by the pressing member, and as a result, the thickness of the vertical wall portion can be easily controlled. Therefore, according to this forming method, when the flange portion is formed on the periphery of the opening of the container, the plate thickness can be easily controlled so that the flange portion does not wrinkle.
[0004]
By the way, in the forming method shown in FIG. 18, the flange-shaped portion of the plate material receives tensile stress in the direction toward the central axis of the narrowing hole, so that the plate thickness of the portion may be reduced. As a result, it becomes difficult to accurately control the thickness of each part of the bottomed cylindrical container, for example, the vertical wall part and the flange part become thinner than the bottom part. Moreover, depending on the use of the bottomed cylindrical container, it may be desired to increase the plate thickness of the cylindrical portion (vertical wall portion) or the flange portion. Furthermore, when a disc blank made of a brittle material such as a steel material having a high carbon content is used, cracking may occur due to tensile stress.
[0005]
In particular, in the processing method in which deep drawing is performed while pressing the disc blank against the narrowed hole forming member with the pressing member, the material flow to the gap between the pressing member and the narrowed hole forming member is suppressed. It becomes difficult to increase the thickness of the part.
Therefore, conventionally, there has been proposed a method of controlling the thickness of each part of the container by accelerating the material flow of the disc blank by applying a hydraulic pressure to the side end surface of the disc blank and pressing it in the radial direction. Has been. On the other hand, a method of controlling the thickness of each part of the container by preparing a plurality of cylinders and tapered cams and pressing the outer edge of the disc blank in the radial direction with them has been proposed.
[0006]
However, in the method of pressing with hydraulic pressure, since it is necessary to seal the liquid of the hydraulic pressure that acts on the side end surface of the disc blank in the processing apparatus, the configuration of the processing apparatus becomes complicated, and the manufacturing cost of the apparatus is reduced. It gets bigger. As a result, the molding cost of the bottomed cylindrical container increases.
On the other hand, in the method of pressing with a plurality of cylinders or cams, if each cylinder or each cam applies a different pressing force to the side end surface of the plate material, different slippage occurs on the disc blank, and the processing accuracy decreases. May end up. Further, if the pressing force applied to the disc blank by each cylinder or each cam is too large, the applied portion is recessed, and irregularities are formed on the side end surface of the disc blank. In this way, the pressing force of each cylinder or each cam is applied so that a pressing of equal and appropriate size can be applied to the side end surface of the plate material so that the unevenness is not formed on the side end surface of the disc blank. A means to control is required. However, providing the control means increases the molding cost of the bottomed cylindrical container.
[0007]
Here, in anticipation that uneven portions are formed on the side end surfaces of the plate material, a large disk blank is prepared in advance in the radial direction, and the portions where the uneven portions are formed are removed after drawing. There is also a method of finishing the bottomed cylindrical container into an accurate shape. However, this method increases the number of steps required for the removal, which increases the molding cost. Moreover, since it is necessary to form the part to remove in a disc blank, the material cost of a disc blank will become large. Furthermore, the cost for disposal such as removal or recycling of the removed part also increases. As a result, the molding cost of the bottomed cylindrical container is increased.
[0008]
On the other hand, as a method of forming a bottomed cylindrical container having a flange portion at the opening, there is also a conventional method of forming a flange portion by bending the tip portion outward after forming the tube portion. However, in this method, when the front end portion of the vertical wall portion is bent, a tensile stress acts on the front end portion, so that a defect occurs due to a reduction in the plate thickness or a crack occurs.
[0009]
On the other hand, as a processing method for increasing the plate thickness of the cylindrical portion (vertical wall portion) of the bottomed cylindrical container, as disclosed in JP-A-6-218442, an inward taper is provided at the end of the vertical wall portion. After forming a cylindrical container with a bottom with a surface, the thickness of the vertical wall is increased by pressing with a holding punch having a corner with a radius of curvature smaller than the radius of curvature of the corner of the vertical wall with the upsetting punch. A method for increasing the value is known.
[0010]
However, this processing method has a problem in that the cost of the mold increases because the configuration of the mold is complicated. In addition, since the processing is performed in a sealed space and a large frictional force acts between the press punch and the die and the vertical wall portion, deformation of the vertical wall portion is suppressed. A large force is required for the pressure applied to the vertical wall portion. In particular, in order to uniformly increase the thickness of the vertical wall portion, an extremely large force is required for the applied pressure. As a result, the cost for processing increases, for example, an upsetting punch capable of applying a large pressing force is required.
[0011]
Furthermore, before the plate thickness of the boundary portion (R portion) between the bottom portion and the vertical wall portion is increased, pressure is applied from the end of the vertical wall portion in the depth direction of the bottomed cylindrical container. As shown in FIG. 19, folding may occur at the boundary portion. There is a risk that cracking may occur at the boundary due to this folding. Therefore, it is difficult to control the pressure applied to the vertical wall portion by the upsetting punch, and there is a problem that the cost for the control increases.
[0012]
On the other hand, in the processing method of the above publication, in addition to such cost problems, it is not possible to increase the thickness of only the boundary portion.
[0013]
[Problems to be solved by the invention]
This invention is made | formed in view of the said situation, and makes it a subject to provide the molding method which can control the plate | board thickness of each part of a bottomed cylindrical container easily and cheaply.
[0014]
[Means for Solving the Problems]
The method for forming a bottomed cylindrical container according to claim 1 of the present invention for solving the above-described problems is as follows. Circle Plate-like plate material is narrowed down Circle A narrowing hole forming member having a columnar narrowing hole and a narrowing means for narrowing the plate material to the narrowing hole are used to block the narrowing hole on the peripheral surface of the narrowing hole. In the forming method of the bottomed cylindrical container, the insertion member can be inserted through the narrowed hole forming member in the method of forming the bottomed cylindrical container by narrowing the plate material into the narrowing hole by the narrowing means. And an adjacent surface of the insertion hole To yen An inclined surface forming member in which an inclined surface having a frustum side surface shape is formed, and the center axis of each of the inclined surface and the narrowing hole is made to contact the inclined surface with the side end surface of the plate member over the entire circumference. The narrowing is performed while pressing the side end surface in the direction toward the central axis of the inclined surface by moving the inclined surface in the direction toward the diameter-expanding side of the inclined surface.
[0015]
The method for forming a bottomed cylindrical container according to claim 2 of the present invention that solves the above-described problem is the method for forming a bottomed cylindrical container according to claim 1, wherein the side end surface is slid perpendicularly to the inclined surface. The inclined surface forming member is moved.
The molding method for a bottomed cylindrical container according to a third aspect of the present invention for solving the above-described problems is the molding method for a bottomed cylindrical container according to any one of the first and second aspects, wherein the outer edge portion of the plate member is used. The outer edge portion is prevented from sliding in the moving direction by pressing means for pressing at least a part of the outer edge portion from the side of the inclined surface on the diameter expansion side.
[0016]
The method for forming a bottomed cylindrical container according to claim 4 of the present invention for solving the above-described problem is the method for forming a bottomed cylindrical container according to claim 3, wherein the pressing means is at least an outer edge portion of the plate member. Part and the above Inclined surface The cooperating member is brought into contact with the inclined surface of the forming member and moves along the inclined surface as the inclined surface forming member moves.
[0017]
The method for forming a bottomed cylindrical container according to claim 5 of the present invention for solving the above-mentioned problem is as follows. Circle In a molding method for molding a bottomed cylindrical container from a plate-shaped plate material, After molding The bottom of the bottomed cylindrical container The central part of the plate And having an insertion hole through which the bottomed cylindrical container can be inserted in the depth direction, and an adjacent surface of the insertion hole To yen The inclined surface of the frustum side is Formation Inclined surface Formation The member is moved along the central axis of the inclined surface in the direction of increasing the diameter of the inclined surface while the side end surface of the plate member is in sliding contact with the inclined surface over the entire circumference, and the side end surface is moved to the central axis. The bottom end cylindrical container is molded by plastically deforming the peripheral edge of the central portion by sliding the side end surface in the inclined surface in the direction of the diameter reduction of the inclined surface while pressing in the direction toward. Features.
[0018]
The method for forming a bottomed cylindrical container according to claim 6 of the present invention for solving the above-described problem is the method for forming a bottomed cylindrical container according to claim 5, wherein the peripheral portion is formed in the direction of the reduced diameter side of the inclined surface. And the side end surface is brought into sliding contact with the inclined surface after the angle between the inclined surface and the central axis is made smaller than the angle formed between the central portion and the peripheral portion. And
[0019]
DETAILED DESCRIPTION OF THE INVENTION
[Forming method of cylindrical container with bottom according to claim 1]
In the present invention, in order to narrow down the side end surface of a substantially disc-shaped plate material (hereinafter simply referred to as a plate material) while pressing in a direction toward the central axis of the inclined surface, the thickness of the flange-shaped portion of the plate material is reduced. Can be increased. Therefore, the plate thickness of the vertical wall portion and the flange portion can be sufficiently increased. In particular, the plate thickness of the vertical wall portion and flange portion of the bottomed cylindrical container can be made larger than that of the bottom portion.
[0020]
As described above, the process of increasing the thickness of the vertical wall portion is conventionally performed separately from the drawing process, but in the present invention, the thickness of the vertical wall portion is increased simultaneously with the drawing process. Can do. Therefore, the bottomed cylindrical container can be formed in a short time by reducing the number of steps, and the productivity of the bottomed cylindrical container can be increased.
Moreover, even if it uses what was formed from brittle materials, such as steel materials with high carbon content, as a board | plate material, a crack can be prevented.
[0021]
The structure of the forming apparatus is such that pressing the side end surface of the plate material by the inclined surface forming member does not require sealing the liquid unlike the means for applying the hydraulic pressure as compared with the means for applying the hydraulic pressure. And control of its operation can be facilitated. Therefore, it is possible to apply pressure to the side end surfaces of the plate material at a low cost by using the inclined surface forming member rather than the means for applying the hydraulic pressure, such as reducing the mold cost.
[0022]
In addition, since the inclined surface forming member applies pressure to the side end surface of the plate material over the entire circumference, a uniform amount of pressing force can be easily applied to the side end surface of the plate material. Therefore, even if the pressing force becomes too large, the side end surface is not uneven. Therefore, it is easier to control the pressing force by using this inclined surface forming member than by using a cylinder or a tapered cam. As a result, pressing can be applied to the side end surface of the plate material at a low cost.
[0023]
For the reasons described above, according to the molding method for a bottomed cylindrical container of the present invention, the bottomed cylindrical container can be easily and inexpensively molded from a plate material.
Preferred embodiments of the method for forming a bottomed cylindrical container of the present invention will be described below.
The material of the substantially disk-shaped plate material is not particularly limited, and a plate material made of a metal material or the like can be used. Moreover, the plate material does not need to be an exact disc shape, and may have a shape such as an ellipse. About those materials and plate | board thickness, it can select suitably according to the performance of the desired cylindrical container with a bottom.
[0024]
The narrow hole forming member is not particularly limited as long as it has a substantially cylindrical narrow hole into which the plate material is narrowed, and a known narrow hole forming member can be used.
The narrowing means is not particularly limited as long as the plate material can be narrowed down to the narrowing hole of the narrowing hole forming member, and known narrowing means can be used. For example, the punch shown in FIG. 18 or hydraulic pressure (hydraulic bulge forming) can be used.
[0025]
Inclined surface Formation About a member, although it does not specifically limit with forms, such as the shape and material, For example, the thing of the shape shown in FIGS. 1-3 can be mentioned, respectively.
In FIG. 1, the inclined surface has a tapered cross section. Moreover, in FIG.2 and FIG.3, the inclined surface showed what has a curvature with respect to the direction of an enlarged diameter side. The curvature is not particularly limited, but is preferably selected appropriately so that the plate material can be slid. Inclined surface Formation As for the material of the member, it is preferable to select a material that is excellent in slipperiness and can withstand contact stress with the plate material so that at least the surface portion of the inclined surface can easily slide the plate material.
[0026]
In the present invention, the inclined surface forming member may be moved by being pulled from the side of the inclined surface on the diameter increasing side, or may be moved by pressing from the direction of the diameter decreasing side of the inclined surface. Or the engaging part which can be engaged with a belt is provided in the side surface, and an inclined surface forming member may be moved with the belt.
Moreover, it is preferable that the inclined surface forming member is provided with a sliding portion that can slide with the outer peripheral surface of the narrow hole forming member. By this sliding portion, the inclined surface forming member can be stably moved.
[0027]
Furthermore, since a frictional force acts on the side end surface of the plate material from the inclined surface of the inclined surface forming member, the outer edge portion of the plate material slides in the direction of the enlarged diameter side of the inclined surface. If the sliding length is sufficiently small, a pressing force can be effectively applied to the side end surface of the plate material from the inclined surface of the inclined surface forming member. However, if the sliding length is large, the angle formed between the side end surface and the inclined surface changes greatly, and it becomes impossible to effectively apply a pressing force to the side end surface of the plate material from the inclined surface. Therefore, it is preferable to appropriately select the moving speed of the inclined surface forming member so that the sliding length is sufficiently small.
[0028]
The molding method of the bottomed cylindrical container of the present invention can be carried out using the following molding apparatus.
The forming apparatus includes a narrowing hole forming member having a substantially cylindrical narrowing hole into which a substantially disk-shaped plate material is narrowed, and a narrowing means for narrowing the plate material into the narrowing hole, and the plate material Is installed on the peripheral surface of the narrowing hole so as to close the narrowing hole, and the bottomed cylinder is formed by the plate member being narrowed into the narrowing hole by the narrowing means. In the container forming apparatus, there is an inclined surface forming member having an insertion hole into which the narrowing hole forming member can be inserted, and a substantially frustoconical side surface inclined surface formed on an adjacent surface of the insertion hole. The inclined surface and the central axis of the narrowing hole are provided so as to be able to reciprocate with each other, and the inclined surface is in sliding contact with the side end surface of the plate member over the entire circumference, along the central axis of the hole portion. As a result, the side end surface is pressed in the direction toward the central axis of the inclined surface. To narrow reluctant said, characterized in that is carried out.
(Example 1)
An example of such a molding apparatus is the molding apparatus shown in FIG.
[0029]
In the molding apparatus illustrated in FIG. 4, the disk-shaped plate material 120 is narrowed between an upper mold 110 that is attached to a press ram (not shown) and is movable in the vertical direction and a fixed lower mold 112. A narrowing hole forming member 130 having a cylindrical narrowing hole 132, a narrowing means 140 for narrowing the plate member 120 to the narrowing hole 132, and an insertion hole 152 through which the narrowing hole forming member 130 can be inserted, In addition, an inclined surface forming member 150 in which an inclined surface 154 having a substantially frustoconical side surface shape is formed on the adjacent surface of the insertion hole 152.
[0030]
In this forming apparatus, the narrowing means 140 is formed from a columnar metal, and the narrow hole 132 of the narrow hole forming member (blank holder) 130 has the same shape as the vertical wall portion of the bottomed cylindrical container. The 1st punch which can be penetrated at intervals is used. The first punch 140 can be moved up and down freely in the narrowing hole 132 of the blank holder 130 by moving the upper mold 110 up and down, and a pressing force of an arbitrary size is applied to the tip direction thereof. Can do.
[0031]
The blank holder 130 is a cylindrical metal member. The blank holder 130 can also be moved up and down freely by a hydraulic control cylinder (not shown) connected via a rod 134, and its tip (peripheral surface) 130a ) A pressing force of an arbitrary magnitude can be applied in the direction.
The inclined surface forming member (taper punch) 150 is a substantially cylindrical metal member composed of a sliding portion 150a that slides with respect to the outer peripheral surface 130b of the blank holder 130 and an inclined surface portion 150b having an inclined surface 154. It is. The taper punch 150 is attached and fixed to the lower mold 112.
[0032]
By operating this forming apparatus as follows, a bottomed cylindrical container can be formed from a disk-shaped plate material.
First, the positions of the blank holder 130 and the taper punch 150 are set to the positions shown in FIG. On the other hand, a circular blank 120 made of a metal material and having the outer edge portion 120a plastically deformed as shown in FIG. The circular blank 120 is placed on the peripheral surface 130 a of the blank holder 130 so as to close the narrowing hole 132, and the side end surface 120 b is brought into sliding contact with the inclined surface 154 of the taper punch 150.
[0033]
Next, after the first punch 140 is brought into contact with the central portion of the circular blank 120, the first punch 140 and the blank holder 130 are simultaneously lowered. At this time, the first punch 140 is lowered at a higher speed than the blank holder 130. As a result, the center portion of the circular blank 120 is pressed downward by the first punch 140. Further, the taper punch 150 rises relative to the blank holder 130.
[0034]
In this way, the taper punch 150 is moved in the direction of the diameter expansion side of the inclined surface 154 while the side end surface 120b of the circular blank 120 is brought into sliding contact with the inclined surface 154 of the taper punch 150 over the entire circumference. As a result, the circular blank 120 is squeezed into the narrowing hole 132 of the blank holder 130 while being pressed in the direction toward the central axis of the inclined surface 154 of the taper punch 150 by the side end face 120b.
(Modification)
In the method for forming a bottomed cylindrical container according to the present invention, it is preferable to perform the narrowing while pressing the plate material against the peripheral surface of the narrowing hole of the narrowing hole forming member. Thereby, the board | plate material can be prevented from floating on the peripheral surface of the narrowing hole. In addition, the generation of wrinkles can be prevented. The pressing means is not particularly limited as long as the plate material can be pressed against the peripheral surface of the narrowing hole of the narrowing hole forming member, and a known pressing means can be used.
[0035]
For example, the molding apparatus shown in FIG. 4 has a substantially perforated circular plate-like pressing member (second punch) 160 (having a hole 162 through which the first punch 140 is inserted at the center). ) Can be provided. When the narrow hole forming member (blank holder) exerts a pressing force on the plate member 120, the force that is pressed against the peripheral surface 134 of the narrow hole forming member 130 relative to the plate member 120 by the second punch 160. Works.
[0036]
In this forming apparatus, when the plate member 120 is squeezed, a pressing force is applied to the side end face 120b from the inclined surface 154 of the inclined surface forming member 150, and therefore, the interval 164 between the narrowing hole forming member 130 and the pressing member 160. The material flow to the substrate is promoted, and the elongation of the plate member 120 can be suppressed. Therefore, the thickness of the bottom portion 122, the vertical wall portion 124, and the flange portion 126 can be made uniform, and accurate control of the thickness of each portion of the bottomed cylindrical container is facilitated.
[0037]
Moreover, in the molding method of the bottomed cylindrical container of the present invention, it is preferable that the inclined surface forming member is moved while the side end surface is slidably contacted with the inclined surface. As a result, a pressing force can be effectively applied to the side end surface of the plate material from the inclined surface.
In the molding apparatus described above, the following two methods can be cited as a method of bringing the side end surface into sliding contact with the inclined surface.
[0038]
One is that the outer edge of the plate is plastically deformed into the shape shown in FIG. 4 in advance, and the plate is pressed against the narrow hole forming member with a pressing member and fixed, and then the side end surface is attached to the inclined surface. This is a method of sliding in a vertical direction. In this case, when the plate material is punched out as a blank, the outer edge portion of the plate material may be plastically deformed.
The other is to press and fix a flat plate material to the narrow hole forming member with a pressing member, and after deforming its outer edge into the shape shown in FIG. It is a method to make it. At this time, the outer edge portion may be deformed using a pressing member described later, or may be deformed using a member different from the pressing member. Any deformation may be plastic deformation or elastic deformation.
[0039]
By the way, there is a method of appropriately selecting the moving speed of the inclined surface forming member as a method of suppressing the outer edge portion of the plate material from sliding in the direction of the diameter increasing side of the inclined surface of the inclined surface forming member. I mentioned earlier. However, this method requires a control means for appropriately controlling the moving speed of the inclined surface forming member, which may complicate the molding apparatus and increase the molding cost.
[0040]
On the other hand, as means for suppressing the sliding of the outer edge portion in the direction of the enlarged diameter of the inclined surface, other means for pulling in the direction of the reduced diameter side of the inclined surface can be given. Here, the pulling means is not particularly limited. For example, the pulling means can be pulled using a suction means or a magnet. In the tension means using the magnet, the outer edge portion can be pulled in the direction of the reduced diameter side by embedding the magnet in the surface portion of the inclined surface of the inclined surface forming member in the reduced diameter direction. However, even the suction means may increase the complexity of the molding apparatus and increase the molding cost. Moreover, the tension means using a magnet may not be used depending on the material of the plate material.
[0041]
Then, the sliding means of the outer edge part of the board | plate material to the direction of the diameter expansion side of an inclined surface is suppressed by the press means which presses at least one part of the outer edge part of the said board material from the direction of the diameter expansion side of the said inclined surface. It is preferable. By this pressing means, it is possible to suppress sliding of the outer edge portion in the moving direction without complicating the molding apparatus and whatever the plate material is made of. As a result, the angle formed by the side end surface and the inclined surface can be kept constant. As a result, a pressing force can be effectively applied to the side end surface of the plate material from the inclined surface.
[0042]
The form of such pressing means is not particularly limited, and the outer edge portion of the plate material may be pressed using any material of gas, liquid and solid (if gas or liquid is used, its pressure or liquid Press the outer edge with pressure.) However, it is necessary to select the form so as not to hinder the movement of the inclined surface forming member.
Further, the pressing means includes a part of the outer edge portion of the plate material, Inclined surface It is preferable to use a cooperating member that is in contact with the inclined surface of the forming member and moves along the inclined surface as the inclined surface forming member moves. For example, in the molding apparatus shown in FIG. 4, a cooperating member 170 that has a rolling mechanism as shown in FIG. 6 and rolls on the inclined surface 154 can be used. In addition, in the molding apparatus shown in FIG. 5, a cooperating member 172 that slides on the inclined surface 154 as shown in FIG. 7 can be used.
[0043]
The cooperating member 170 shown in FIG. 6 is brought into contact with an inclined surface 154 and a substantially rod-shaped base portion 170a that can be freely expanded and contracted and attached to the upper mold 110 so as to be able to perform a pendulum motion. It consists of the front-end | tip part 170b which has a mechanism. The cooperative member 170 includes a part of the outer edge portion 120a of the plate member 120, Inclined surface Abutting on the inclined surface 154 of the shaping member 150, it can roll on the inclined surface 154 as the inclined surface shaping member 150 moves.
[0044]
The cooperating member 172 shown in FIG. 7 is attached to the hole 166 provided in the surface portion of the pressing member 160 ′ facing the peripheral surface 130 a of the narrow hole forming member 130, and is in sliding contact with the inclined surface 154. The sliding portion 172b has a tapered surface 172a and can slide the hole 166, and a coil spring (not shown) that slides the sliding portion 172b through the hole 166. The cooperating member 172 is in contact with a part of the outer edge portion 120a of the plate member 120 at the sliding surface 172a of the sliding portion 172b, and at the lower side surface 172c of the sliding portion 172b. Inclined surface Abutting on the inclined surface 154 of the shaping member 150, it can slide on the inclined surface 154 as the inclined surface shaping member 150 moves.
[0045]
By the way, if the outer edge portion of the plate member is pressed over the entire circumference by the pressing means, the outer edge portion can be prevented from sliding over the entire circumference without being biased in the direction of the enlarged diameter side of the inclined surface. However, since the outer edge portion of the plate material is reduced in diameter as the narrowing proceeds, it is difficult to press the outer edge portion around the entire circumference while corresponding to the reduced diameter by the pressing means using the above-described cooperative member (solid). . That is, a portion that cannot be pressed to the outer edge portion is generated. As a result, it becomes impossible to suppress the sliding of the inclined surface forming member in the moving direction in the outer edge portion that is not pressed by the pressing means. However, if a contraction material is used for the pressing means, it is possible to cope with the contraction of the outer edge portion of the plate material, but conversely, it becomes difficult to press the outer edge portion with a sufficient pressing force.
[0046]
Therefore, it is preferable that the cooperating member circulates on the outer edge of the plate material over the entire circumference. By using such a cooperating member as the pressing means, the outer edge portion of the plate material can be easily pressed without any deviation over the entire circumference. An example of such a cooperative member is shown in FIG.
The cooperating member 174 shown in FIG. 8 is attached to the hole 168 provided in the surface portion of the pressing member 160 ′ facing the peripheral surface 130 a of the narrow hole forming member 130, and abuts against the inclined surface 154. A sliding portion 174b having a tapered surface 174a and capable of sliding through the hole 168 and capable of rotating by receiving torque, and a coil spring (not shown) for sliding the sliding portion 174b through the hole 168. ) And. On the other hand, in the molding apparatus shown in FIG. 6, the lower mold 112 ′ can be freely rotated with respect to the central axis of the inclined surface 154 of the inclined surface forming member 150. Further, the taper punch 150 can slide not only in the vertical direction but also in the circumferential direction with respect to the outer peripheral surface 130 a of the blank holder 130.
[0047]
Therefore, the cooperating member 174 can rotate by receiving torque from the lower mold 112 from the tapered surface 174a contacting the inclined surface 154 of the sliding portion 174b. By this rotation, the outer edge portion 120a of the plate member 120 can be circulated over the entire circumference while the cooperating member 174 is brought into sliding contact with the inclined surface 154.
On the other hand, it is preferable to form a notch in at least one outer edge portion of each facing surface portion of the narrowed hole forming member and the pressing member. By forming such a notch, in the interval formed by the narrowing hole forming member and the pressing member (interval in which the plate material is sandwiched), the outer edge portion has a larger interval width than other portions. The interval part which has can be formed. When such a gap portion is provided when forming the flange portion in the bottomed cylindrical container, the material flow in the plate material due to the pressing of the inclined surface occurs at the outer edge portion 126a of the flange portion 126, and the narrow hole shape is formed. Since the deformation is restricted by the installation member and the pressing member, a thick portion (thick portion) can be formed on the outer edge portion 126a.
[0048]
For example, as shown in FIG. 8, such a thick portion has a shape of the outer edge portion of the surface portion facing the pressing member (second punch) 160 ′ of the narrow hole forming member (blank holder) 130. A desired shape can be obtained by forming a notch 134 having an appropriate shape over the entire circumference. The thick part may be formed over the entire circumference of the outer edge part 126a, or may be formed on a part of the outer edge part 126a, and if the formation site is appropriately selected according to the application. Good.
(Example 2)
In this example, a bottomed cylindrical container was formed from a disk-shaped plate using the forming apparatus shown in FIG.
[0049]
The forming apparatus shown in FIG. 9 has a narrowing hole having a columnar narrowing hole 232 into which a disk-shaped plate member 220 is narrowed between an upper mold 210 movable in the vertical direction and a fixed lower mold 212. Forming member (blank holder) 230 and circular blank 220 A narrowing means (first punch) 240 for narrowing the hole to the narrowing hole and the upper die 210 are attached to the plate material. 220 Has a pressing member (second punch) 250 that presses against the peripheral surface 234 of the narrowing hole 232 of the blank holder 230 and an insertion hole 262 through which the lower part of the blank holder 230 and the second punch 250 is inserted. An inclined surface in which an inclined surface 264 having a substantially truncated cone side surface is formed on the adjacent surface of the hole 262 Formation This is a device provided with a member (taper punch) 260.
[0050]
The blank holder 230, the first punch 240, and the taper punch 260 in this molding apparatus are the same members as those of the molding apparatus previously illustrated in FIG. The narrowing hole 232 of the blank holder 230 is provided with a knockout 270 that can slide in the narrowing hole 232 and abuts against the center of the plate member 220 from below at the tip. The knockout 270 is a cylindrical metal member that can be freely moved up and down by a hydraulic control cylinder (not shown) connected via a rod 272, and is a plate member 220 that is in contact with the tip portion thereof. A pressing force of an arbitrary magnitude can be applied to the.
[0051]
Moreover, the notch 234 is formed in the peripheral surface 230a of the blank holder 230 in the outer edge part over the perimeter. Therefore, the gap formed between the blank holder 230 and the second punch 250 (the gap between which the plate material 220 is sandwiched) has a larger gap width on the outer edge portion than the other portions on the blank holder side.
Furthermore, the upper member 210 is provided with a cooperating member 280 provided with a rolling mechanism that allows the cooperating member 170 shown in FIG. In this molding apparatus, the upper mold 210 can be freely rotated with respect to the central axis of the inclined surface 264. Therefore, the cooperating member 280 can rotate around the central axis of the inclined surface 264 together with the upper mold 210, and can circulate on the outer edge 220a of the plate member 220 while contacting the inclined surface 264.
[0052]
By operating the forming apparatus shown in FIG. 9 as follows, a bottomed cylindrical container can be formed from a disk-shaped plate material.
First, the positions of the blank holder 230, the taper punch 260, and the knockout 270 are set to the positions shown in FIG. On the other hand, a circular blank 220 made of a metal material and plastically deformed as shown in FIG. 9A is prepared as a disk-shaped plate material. After the circular blank 220 is installed on the peripheral surface 230 a of the blank holder 230 so as to close the narrowing hole 232, the second end is formed so that the side end surface 220 b is in sliding contact with the inclined surface 264 of the taper punch 260 perpendicularly. Press against the blank holder 230 with the punch 250.
[0053]
Next, the cooperating member 280 is slid on the inclined surface 264 of the taper punch 260 while being brought into contact with the outer edge portion 220 a of the circular blank 220. Subsequently, by rotating the upper mold 210 with respect to the central axis of the inclined surface 264, the cooperating member 280 is rotated with respect to the central axis of the inclined surface 264 together with the upper mold 210 while contacting the inclined surface 264. Circulate on the outer edge 220a of the circular blank 220.
[0054]
The first punch 240 is brought into contact with the circular blank 220, and the second punch 250 and the cooperating member 280 are pressed downward by the upper mold 210, and the knockout 270 is relative to the second punch 250 and the blank holder 230. The circular blank 220 is narrowed down in the narrowing hole 232 of the blank holder 230. Thus, the circular blank 220 is squeezed while being pressed in the direction toward the central axis of the inclined surface 264 of the taper punch 260 at the side end face 220b, and formed into a bottomed cylindrical container.
[0055]
Finally, the bottom 222 of the bottomed cylindrical container is pressed by the first punch 240 with the same pressing force as at the time of molding, and the cooperating member 280 is circulated on the outer edge 220a of the circular blank 220, and the knockout 270 Except for the pressing force, the pressing force of the upper mold 210 and the blank holder 230 is increased. As a result, the outer edge portion 226 a of the flange portion 226 of the bottomed cylindrical container is pressed by the blank holder 230, the second punch 250, the taper punch 260, and the distal end portion 282 of the cooperating member 280 to increase the thickness. In this way, a bottomed cylindrical container having the flange portion 226 on the periphery of the opening and the outer edge portion 226a of the flange portion 226 being thickened can be completed.
[0056]
By the way, in the above-described conventional molding method, when molding a bottomed cylindrical container having a flange portion at the periphery of the opening portion and the outer edge portion of which is increased in thickness, with respect to the squeezing, the squeezing and redrawing limit values are set. Therefore, in order to set the drawing ratio to 0.3, for example, as shown in FIG. In addition, with regard to thickening, in order to increase the thickness increase ratio to 0.6 or more, the drawing process for securing the body of the bottomed cylindrical container and the upsetting are performed so that buckling does not occur. In order to do this, the thickening process required 2-5 processes.
[0057]
According to the molding method of this example, in order to set the drawing ratio to 0.3 and increase the wall thickness ratio to 0.6 or more, each can be performed in one step as described above. Compared to the law, it can be reduced to 1/3 or less.
(Example 3)
In this example, a bottomed cylindrical container having a shape as shown in FIG. 12 was formed from a disk-shaped plate using the forming apparatus shown in FIG.
[0058]
In the molding apparatus shown in FIG. 11, a disk-shaped plate member 320 is narrowed between an upper mold 310 movable in the vertical direction and a fixed lower mold 312, and a columnar narrowing hole 332 is formed. The narrowing hole forming member (blank holder) 330, the narrowing means 340 (the first punch 342 and the third punch 344) for narrowing the plate 320 to the narrowing hole 332, and the upper die 310 are integrally attached. A pressing member (second punch) 350 that presses the plate member 320 against the peripheral surface 330a of the narrowing hole 332 of the blank holder 330, an insertion hole 362 through which the lower portions of the blank holder 330 and the second punch 350 are inserted, and An inclined surface in which an inclined surface 364 having a substantially frustoconical side surface is formed on an adjacent surface of the insertion hole 362. Formation This is a device provided with a member (taper punch) 360.
[0059]
The taper punch 360 in this molding apparatus is also the same member as that of the molding apparatus previously illustrated in FIG. The blank holder 330 is also substantially the same member as that of the molding apparatus illustrated in FIG. 4, but has a notch 330c at the inner edge of the peripheral surface 330a.
The first punch 342 is formed of a columnar metal like the first punch 140 described above, and is the same as the vertical wall portion 324a on the bottom portion 322 side of the bottomed cylindrical container below the narrowing hole 332 of the blank holder 330. It is a member that can be inserted with a cylindrical gap in shape. This first punch 342 can also be freely moved up and down in the narrowing hole 332 of the blank holder 330 by a hydraulic control cylinder (not shown) connected via a rod 343 and is brought into contact with the tip thereof. A pressing force having an arbitrary size can be applied to the plate material 320.
[0060]
The third punch 344 is formed of a cylindrical metal, and is spaced above the narrow hole 332 of the blank holder 330 with a cylindrical space having the same shape as the vertical wall 324b on the opening side of the bottomed cylindrical container. It is a member that can be inserted. The third punch 344 is also slid with respect to the first punch 342 and the second punch 350 by a hydraulic control cylinder (not shown) connected via the rod 345, and the narrowing hole 332 of the blank holder 330. The upper part can be moved up and down freely, and a pressing force of an arbitrary magnitude can be applied to the plate member 320 abutted on the tip part. The third punch 344 engages with the protrusion 350a of the second punch 350 and restricts its movement so that the third punch 344 can slide only with a certain width with respect to the second punch 350. Stopper) 344a is formed.
[0061]
On the other hand, the narrowing hole 332 of the blank holder 330 includes a columnar main body 372 and a protrusion 374 that protrudes in a cylindrical shape from the outer edge of the upper surface 372 a of the main body 372, and slides in the narrowing hole 332. A knockout 370 is provided that can be moved. The knockout 370 can also be freely moved up and down by a hydraulic control cylinder (not shown) connected through a rod 376, and has an arbitrary size on the plate member 320 abutted on the upper surface 372a and the protruding portion 374. The pressing force can be applied. Therefore, in the narrowing hole 332 of the blank holder 330, cylindrical intervals having different diameters are formed continuously and at equal intervals between the inner surface and the first punch 342 and the third punch 344, respectively. The
[0062]
In addition, the second punch 350 is provided with a cooperative member 380 that is the same as the cooperative member 172 shown in FIG. 7 in a hole 352 provided in a surface portion facing the peripheral surface 330 a of the blank holder 330. That is, the cooperating member 380 has a tapered surface 382a that is in sliding contact with the inclined surface 364, and slides in a hole 352 that is formed in a cylindrical shape (having the same central axis as the central axis of the inclined surface). And a coil spring (not shown) that slides the sliding portion 382 through the hole 352. The cooperating member 380 presses a part of the outer edge portion 320a of the plate member 320 from the side of the inclined surface of the taper punch 360 in the direction of the enlarged diameter, so that the outer edge portion 320a slides in the direction of the enlarged diameter side. This can be suppressed.
[0063]
The cooperating member 382 can rotate the hole portion 352 with respect to the central axis thereof, and can circulate on the outer edge portion 320a of the plate member 320 over the entire circumference.
The molding apparatus shown in FIG. 11 is operated as follows by controlling the hydraulic pressure of the hydraulic control cylinder of each member as shown in FIG. 13, so that the bottoming shown in FIG. A cylindrical container can be formed in two steps.
[First step]
First, the positions of the blank holder 330, the taper punch 360, and the knockout 370 are set to the positions shown in FIG. On the other hand, a circular blank 320 made of a metal material and plastically deformed as shown in FIG. 11A is prepared as a disk-shaped plate material. The circular blank 320 is connected to the peripheral surface of the blank holder 330. 330a The peripheral surface of the blank holder 330 is set by the second punch 350 so that the side end surface 320b is slidably contacted with the inclined surface 364 vertically after being installed so as to close the narrowing hole 332 thereon. 330a Press on.
[0064]
Next, the cooperating member 382 is slid on the inclined surface 364 of the taper punch 360 while being brought into contact with the outer edge portion 320a of the circular blank 320, and is rotated around the outer edge portion 320a over the entire circumference. Subsequently, the first punch 342 and the third punch 344 are brought into contact with the center of the circular blank 320, and then the second punch 350 and the blank holder 330 are pressed against the second punch 350 by the upper die 310. On the other hand, the circular blank 320 is lowered together with the knockout 370 to narrow the circular blank 320 into the narrowing hole 332 of the blank holder 330. Thus, the circular blank 320 is squeezed while being pressed in the direction toward the central axis of the inclined surface 364 at the side end face 320b, thereby forming the vertical wall portion and the flange portion of the bottomed cylindrical container.
[Second step]
The first punch 342 and the third punch 344 cause the bottom portion 322 and the vertical wall portion 324 of the bottomed cylindrical container to be pressed with the same pressing force as those during molding, and the cooperating member 382 is formed on the outer edge portion 320a over the entire circumference. The pressing force of the upper mold 310 and the blank holder 330 is increased except for the pressing force of the knockout 370 while being rotated. As a result, the outer edge portion 326a of the flange portion 326 of the bottomed cylindrical container is increased in thickness by receiving the pressing. Thus, the bottomed cylindrical container shown in FIG. 12 can be completed.
[Forming method of bottomed cylindrical container according to claim 5]
In the molding method of the bottomed cylindrical container of the present invention, After fixing the center of the plate material that will be the bottom of the bottomed cylindrical container after molding, Inclined surface Formation The member is moved in the direction of the enlarged diameter along the central axis of the inclined surface while the side end surface of the plate material is in sliding contact with the inclined surface over the entire circumference, and the side end surface is moved in the direction toward the central axis. In order to slide the side end surface on the inclined surface while pressing, the peripheral edge located at the peripheral edge of the central portion of the plate material is stress σ as shown in FIG. A In response to plastic deformation. At this time, the stress σ on the side end face of the plate material B Can also increase the thickness of the peripheral edge of the plate. Thus, the cylindrical portion (vertical wall portion) of the bottomed cylindrical container is formed with an increased plate thickness. That is, the plate thickness can be increased while forming the vertical wall portion of the bottomed cylindrical container. As a result, it is possible to obtain a bottomed cylindrical container in which the thickness of the vertical wall portion is larger than that of the bottom portion.
[0065]
In the present invention, the plate thickness of the vertical wall portion can be increased to 1.5 times or more of the bottom portion by controlling the pressing force with which the side end surface of the plate material is pressed in the direction toward the central axis by the inclined surface.
In addition, the number of steps can be reduced and the configuration of the molding apparatus can be simplified as compared with the molding method disclosed in the above-mentioned JP-A-6-218442.
[0066]
Furthermore, since the plastic deformation of the peripheral portion of the plate material can be caused in the open space, the peripheral portion is not restrained from being deformed by other members. That is, the degree of freedom of plastic deformation is large, and plastic deformation can be easily performed. Therefore, inclined surface Formation A large force is not required for the pressing force applied to the side end surface of the plate by the member.
On the other hand, since plastic deformation is performed while increasing the thickness of the peripheral portion of the plate material, folding does not occur at the boundary between the central portion and the peripheral portion when the thickness is small. Therefore, cracks and the like do not occur at the boundary portion. Therefore, inclined surface Formation Control of the pressing force applied to the side end surface of the plate member by the member is facilitated, and the cost for the control can be reduced. In particular, even when a circular blank made of a brittle material such as a steel material having a high carbon content is used, cracking can be prevented. Moreover, the thickness of the vertical wall portion, the flange portion, and the bottom portion can each be accurately taken, and accurate control of the thickness of each portion of the bottomed cylindrical container is facilitated.
[0067]
In the present invention, it is also possible to cause folding after the plate thickness at the peripheral edge of the plate material is sufficiently large. At this time, since the thickness of the boundary portion is sufficiently increased, cracks are unlikely to occur.
On the other hand, applying pressure to the side end surface of the plate member by the inclined surface forming member eliminates the need for sealing the liquid unlike the means for applying the hydraulic pressure as compared with the means for applying the hydraulic pressure. It is easy to control the configuration and the operation thereof. Therefore, it is possible to apply pressure to the side end surfaces of the plate material at a low cost by using the inclined surface forming member rather than the means for applying the hydraulic pressure, such as reducing the mold cost.
[0068]
For the reasons described above, according to the molding method for a bottomed cylindrical container of the present invention, the plate thickness of each part of the bottomed cylindrical container can be easily and inexpensively controlled. Therefore, it is possible to easily and inexpensively form a bottomed cylindrical container in which the thickness of each part is different.
Preferred embodiments of the method for forming a bottomed cylindrical container of the present invention will be described below.
The material of the substantially disk-shaped plate material is not particularly limited, and a plate material made of a metal material or the like can be used. Moreover, the plate material does not need to be an exact disc shape, and may have a shape such as an ellipse. About those materials and plate | board thickness, it can select suitably according to the performance of the desired cylindrical container with a bottom.
[0069]
The method for fixing the substantially central portion of the plate material is not particularly limited, but a member having a size that can be inserted into the bottomed cylindrical container, and an inclined surface Formation It is preferable to sandwich and fix between two members that are large enough to be inserted into the member.
Inclined surface Formation About a member, although it does not specifically limit with forms, such as the shape and material, For example, the thing of the shape shown in FIGS. 1-3 can be mentioned, respectively. In addition, as shown in FIG.2 and FIG.3, when the inclined surface has a curvature with respect to the direction of the diameter expansion side, the curvature is not particularly limited, but the plate material can be slid. It is preferable to select appropriately. Inclined surface Formation As for the material of the member, it is preferable to select a material that is excellent in slipperiness and can withstand contact stress with the plate material so that at least the surface portion of the inclined surface can easily slide the plate material.
[0070]
In the present invention, the inclined surface forming member may be moved by being pulled from the side of the inclined surface on the diameter increasing side, or may be moved by pressing from the direction of the diameter decreasing side of the inclined surface. Or the engaging part which can be engaged with a belt is provided in the side surface, and an inclined surface forming member may be moved with the belt.
Also inclined surface Formation It is preferable that the member is provided with a sliding portion that is continuous with the inclined surface and has a sliding surface that can slide with the peripherally deformed peripheral edge portion (vertical wall portion) of the plate material. By this sliding portion, it becomes possible to stably obtain a bottomed cylindrical container while preventing damage to the vertical wall portion.
[0071]
The molding method of the bottomed cylindrical container of the present invention can be carried out using the following molding apparatus.
The molding apparatus is a molding apparatus that molds a bottomed cylindrical container from a substantially disk-shaped plate material, and a sandwiching member that clamps and fixes a substantially central portion of the plate material, and the bottomed cylindrical container is inserted in the depth direction. An inclined surface having an insertable hole and having an inclined surface substantially in the shape of a truncated cone on the adjacent surface of the insert hole, and capable of reciprocating along the central axis of the inclined surface Formation And an inclined surface after the central portion is fixed by the sandwiching member. Formation The member is moved along the central axis of the inclined surface in the direction of increasing the diameter of the inclined surface while the side end surface of the plate material is in sliding contact with the inclined surface over the entire circumference, and the side end surface is moved to the central axis. The side end face is slid in the inclined surface in the direction of the diameter reduction of the inclined surface while being pressed in the direction toward it, thereby plastically deforming the peripheral portion of the central portion to form the cylindrical portion of the bottomed cylindrical container The bottomed cylindrical container is formed.
(Example 4)
An example of such a molding apparatus is a molding apparatus shown in FIG. In FIG. 15, the side surface of the plate is slidably contacted with the inclined surface over the entire circumference. Formation A state is shown in which the member is moved in the direction of the diameter expansion side of the inclined surface.
[0072]
In the molding apparatus illustrated in FIG. 15, a clamping member (punch 430 and knockout 440) that clamps and fixes the center of the plate member 420 between an upper mold 410 that is movable in the vertical direction and a fixed lower mold 412. In addition, there is an insertion hole 452 through which the bottomed cylindrical container can be inserted in the depth direction, and an inclined surface 454 having a substantially frustoconical side surface is formed on an adjacent surface of the insertion hole 452 along the central axis of the inclined surface 454 Inclined surface that can reciprocate Formation A member (taper punch) 450 is disposed.
[0073]
The punch 430 is fixed to the upper die 410 and can move up and down together with the upper die 410.
The knockout 440 is a cylindrical metal member and abuts against the center of the plate member 420 at the tip. The knockout 440 can be freely moved up and down by a hydraulic control cylinder (not shown) connected via a cushion 442, and has an arbitrary size at the center of the plate 420 abutting on the tip. The pressing force can be applied.
[0074]
This forming apparatus operates as follows, and can form a bottomed cylindrical container from a disk-shaped plate material.
First, the position of the knockout 440 is set to the position shown in FIG. On the other hand, as a disk-shaped plate material , A circular blank 420 made of a metal material and having an outer edge 420a plastically deformed as shown in FIG. 15A is prepared. The circular blank 420 is placed on the knockout 440, and the side end surface 420b is brought into sliding contact with the inclined surface 454 of the taper punch 450. The punch is brought into contact with the circular blank 420 and the punch and knockout are lowered. Therefore, the taper punch 450 is knock out It moves relative to 440 upward. As a result, the circular blank 420 slides downward on the inclined surface 454 while the side end surface 420b is pressed by the taper punch 450 in the direction toward the central axis of the inclined surface 454, and the peripheral edge 420b of the central portion is inclined. Plastic deformation occurs in the direction of the reduced diameter side of the surface 454. Note that the boundary between the central portion of the circular blank 420 and the peripheral portion thereof can be bent by appropriately controlling the descending speed of the knockout 440 and the taper punch 450. Thus, as shown in FIG. 15B, the cylindrical portion 424 of the bottomed cylindrical container. The With a thickness greater than the bottom 422 Shape Can be.
(Modification)
In the present invention, the peripheral edge portion is deformed in the direction of the diameter reduction of the inclined surface so that the angle formed between the inclined surface and the central axis is smaller than the angle formed between the central portion and the peripheral edge portion. It is preferable that the side end surface is brought into sliding contact with the inclined surface later. As a result, a large stress can be applied to the side end surface of the plate material in the direction of the diameter reduction of the inclined surface, so that the side end surface is pressed while pressing the side end surface in the direction toward the central axis of the inclined surface. It can be easily slid on the inclined surface.
[0075]
In addition, while vibrating the peripheral edge in small increments, Formation It is preferable to press the side end surface of the plate member in the direction toward the central axis of the inclined surface with the inclined surface of the member. Thereby, the plate | board thickness of a peripheral part can be increased more efficiently. That is, the inclined surface Formation The plate thickness of the peripheral portion can be increased without increasing the force for pressing the side end surface of the plate member with the inclined surface of the member. In the above-described molding apparatus, if the plate material clamping device is vibrated in small increments, the vibration is transmitted to the peripheral portion via the bottom portion of the plate material.
[0076]
Incidentally, in the molding apparatus shown in FIG. Formation As shown in FIG. 16, it is preferable to provide a protruding portion 450c protruding in the central axis direction of the inclined surface on the inner peripheral surface portion adjacent to the inclined surface 454 of the sliding portion 450b of the member 450. As described above, the peripheral portion 420a of the plate member 420 is plastically deformed to form the cylindrical portion (vertical wall portion) 424, and then the projecting portion 450c and the clamping member (punch 430 and knockout 440) are pressed together to form a figure. As shown in 16 (b), the thickness of the boundary portion (R portion) 426 between the bottom portion 422 and the vertical wall portion 424 can be increased.
[0077]
Also, as shown in FIG. 17 (a), a bottomed cylinder as shown in FIG. 17 (b) is obtained by increasing the thickness of the boundary 420c between the central portion of the plate member 420 and its peripheral portion 420a in advance. The plate thickness of the boundary portion (R portion) 426 ′ between the bottom portion 422 and the vertical wall portion 424 of the container can be made larger than that of the bottom portion 422 and the vertical wall portion 424.
[Brief description of the drawings]
FIG. 1 is a view showing an inclined surface forming member that can be used in the present invention. (A) is the perspective view. (B) is a longitudinal cross-sectional view.
FIG. 2 is a view showing an inclined surface forming member that can be used in the present invention. (A) is the perspective view. (B) is a longitudinal cross-sectional view.
FIG. 3 is a view showing an inclined surface forming member that can be used in the present invention. (A) is the perspective view. (B) is a longitudinal cross-sectional view.
FIG. 4 is a cross-sectional view showing a molding apparatus used in Example 1 and an operation method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
FIG. 5 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 1 and an operating method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
6 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 1 and an operation method thereof. FIG. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
FIG. 7 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 1 and an operating method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
FIG. 8 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 1 and an operating method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
FIG. 9 is a cross-sectional view showing a molding apparatus used in Example 2 and an operation method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
FIG. 10 is a graph comparing the drawing rate of the plate material and the thickness increase rate of the outer edge portion of the flange portion in the molding method of Example 2 and the conventional molding method.
FIG. 11 is a sectional view showing a molding apparatus used in Example 3 and an operation method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before narrowing down a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after narrowing down a board | plate material.
12 is a cross-sectional view showing a plate material before molding and a cylindrical container with a bottom after molding in the molding method of Example 3. FIG.
13 is a graph showing changes in hydraulic pressure of a hydraulic control cylinder that controls vertical movement of each member during molding of a bottomed cylindrical container of Example 3. FIG.
FIG. 14 is a cross-sectional view schematically showing stress applied to the side end face of the plate material from the inclined surface of the inclined surface forming member in another embodiment of the present invention.
FIG. 15 is a sectional view showing a molding apparatus used in Example 4 and an operation method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before changing a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after deform | transforming a board | plate material.
FIG. 16 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 4 and an operating method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before changing a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after deform | transforming a board | plate material.
FIG. 17 is a cross-sectional view showing a molding apparatus used in a modified embodiment of Example 4 and an operation method thereof. (A) is a figure which shows the mode of the shaping | molding apparatus before changing a board | plate material. (B) is a figure which shows the mode of the shaping | molding apparatus after deform | transforming a board | plate material.
FIG. 18 is a cross-sectional view of a main part showing a conventional method for forming a bottomed cylindrical container.
FIG. 19 is a cross-sectional view showing a state in which folding occurs at a boundary portion between a bottom portion and a vertical wall portion in a conventional method of forming a bottomed cylindrical container.
[Explanation of symbols]
110: Upper mold 112: Lower mold
120: Plate material 120a: Outer edge portion 120b: Side end surface
130: Restriction hole forming member 132: Restriction hole 130b: Peripheral surface
140: Narrowing means
150: inclined surface forming member 152: insertion hole 154: inclined surface 150a: inclined surface portion 150b: sliding portion

Claims (6)

板状の板材が絞り込まれる円柱状の絞込孔をもつ絞込孔形設部材と、該板材を該絞込孔に絞り込む絞込手段とを用い、該板材を該絞込孔の周縁面上に該絞込孔を塞ぐようにして設置して、該板材を該絞込手段により該絞込孔に絞り込むことにより底付円筒容器を成形する底付円筒容器の成形法において、
前記絞込孔形設部材を挿通できる挿通孔を有し、かつ該挿通孔の隣接面に円錐台側面状の傾斜面が形設されている傾斜面形設部材を、該傾斜面に該板材の側端面を全周にわたって摺接させつつ該傾斜面及び該絞込孔の各中心軸を略一致させて該傾斜面の拡径側の方向に移動させることにより、該側端面を該傾斜面の中心軸に向かう方向に押圧しながら前記絞り込むことを行うことを特徴とする底付円筒容器の成形法。
Using the narrowing hole shaped portion material having a circular columnar narrowing hole disc-shaped plate member is Ru narrowed, and a narrowing section Filter the plate material to the narrowed Komiana, the peripheral edge of the narrowed Komiana the leaf material In the molding method of the bottomed cylindrical container, the bottomed cylindrical container is formed by closing the narrowing hole on the surface and narrowing the plate material to the narrowing hole by the narrowing means.
Said has an insertion hole capable of inserting the narrowing hole-shaped portion material, and the inclined surfaces form portion material circular truncated cone side surface shape of the inclined surface on the adjacent surface of the insertion hole is Katachi設, said the inclined surface The side end surface of the plate material is moved in the direction of the diameter expansion side of the inclined surface by causing the inclined surface and the central axes of the narrowing holes to substantially coincide with each other while sliding the side end surface over the entire circumference. A method for forming a bottomed cylindrical container, wherein the narrowing is performed while pressing in a direction toward the central axis of the surface.
前記傾斜面に前記側端面を垂直に摺接させて前記傾斜面形設部材を移動させる請求項1に記載の底付円筒容器の成形法。  The method for forming a bottomed cylindrical container according to claim 1, wherein the inclined surface forming member is moved by causing the side end surface to slide vertically on the inclined surface. 前記板材の外縁部の少なくとも一部を、前記傾斜面の拡径側の方向の側から押圧する押圧手段により、該外縁部の該移動方向への滑動を抑制する請求項1及び請求項2のいずれかに記載の底付円筒容器の成形法。  3. The sliding device according to claim 1, wherein sliding of the outer edge portion in the moving direction is suppressed by a pressing unit that presses at least a part of the outer edge portion of the plate material from the side of the inclined surface on the diameter increasing side. The molding method of the cylindrical container with a bottom in any one. 前記押圧手段は、前記板材の外縁部の少なくとも一部と、前記傾斜面形設部材の傾斜面とに当接され、該傾斜面形設部材の移動に伴って該傾斜面に沿って移動する協動部材である請求項3に記載の底付円筒容器の成形法。Said pressing means, at least a portion of the outer edge portion of the plate, in contact to the inclined surface of the inclined surface shape portion material, moving along the inclined surface with the movement of the inclined surface shaped portion material 4. The method for forming a bottomed cylindrical container according to claim 3, which is a cooperating member. 板状の板材より底付円筒容器を成形する成形方法において、
成形後に前記底付円筒容器の底部となる前記板材の中心部を固定した後、前記底付円筒容器を深さ方向に挿通できる挿通孔を有し、かつ該挿通孔の隣接面に円錐台側面状の傾斜面が形設されている傾斜面形設部材を、該傾斜面に該板材の側端面を全周にわたって摺接させつつ該傾斜面の中心軸に沿って該傾斜面の拡径側の方向に移動させ、該側端面を該中心軸に向かう方向に押圧しながら該側端面を該傾斜面において該傾斜面の縮径側の方向に滑動させることにより、該中心部の周縁部を塑性変形させて前記底付円筒容器を成形することを特徴とする底付円筒容器の成形法。
In a molding method of molding a bottomed cylindrical container from a disk-shaped plate material,
After the central portion of the plate as the bottom of the bottomed cylindrical container after molding is fixed, it has an insertion hole capable of inserting the bottomed cylindrical container in the depth direction, and a circular frustum to the adjacent surface of the insertion hole an inclined surface Katachi設 member side like inclined surface is Katachi設, diameter of the inclined surface along the central axis of the inclined surface while sliding over the entire periphery of the side end face of the plate material to the inclined surface A peripheral portion of the central portion by sliding the side end surface in the direction of the reduced diameter of the inclined surface on the inclined surface while moving the side end surface in a direction toward the central axis. Forming the bottomed cylindrical container by plastic deformation of the bottomed cylindrical container.
前記周縁部を前記傾斜面の縮径側の方向に変形させて、前記傾斜面と前記中心軸とのなす角度が該中心部と該周縁部とのなす角度より小さくなるようにした後に、該傾斜面に前記側端面を摺接させる請求項5に記載の底付円筒容器の成形法。  The peripheral edge is deformed in the direction of the reduced diameter side of the inclined surface so that an angle formed between the inclined surface and the central axis is smaller than an angle formed between the central portion and the peripheral edge. The method for forming a bottomed cylindrical container according to claim 5, wherein the side end surface is brought into sliding contact with the inclined surface.
JP10440399A 1999-04-12 1999-04-12 Molding method of cylindrical container with bottom Expired - Fee Related JP3661922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10440399A JP3661922B2 (en) 1999-04-12 1999-04-12 Molding method of cylindrical container with bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10440399A JP3661922B2 (en) 1999-04-12 1999-04-12 Molding method of cylindrical container with bottom

Publications (2)

Publication Number Publication Date
JP2000288642A JP2000288642A (en) 2000-10-17
JP3661922B2 true JP3661922B2 (en) 2005-06-22

Family

ID=14379765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10440399A Expired - Fee Related JP3661922B2 (en) 1999-04-12 1999-04-12 Molding method of cylindrical container with bottom

Country Status (1)

Country Link
JP (1) JP3661922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186069A (en) * 2017-05-31 2017-09-22 张家港幸运金属工艺品有限公司 Perigone is swollen type film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655732B2 (en) * 2005-04-07 2011-03-23 トヨタ自動車株式会社 Molded part manufacturing method, molded part manufacturing apparatus, and molded part
JP5608537B2 (en) * 2010-12-15 2014-10-15 アイダエンジニアリング株式会社 Manufacturing method of pipe with flange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186069A (en) * 2017-05-31 2017-09-22 张家港幸运金属工艺品有限公司 Perigone is swollen type film

Also Published As

Publication number Publication date
JP2000288642A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
US20090116932A1 (en) Process for Producing Molded Article with Undercut, Forging Apparatus Therefor, and Intermediate Molded Object
JP2001314921A (en) Pressing method for expanding local area thickness
WO2017006830A1 (en) Protrusion molding device, protrusion molding method, and molded article
US7165310B2 (en) Method for connecting two members
JP2977071B2 (en) Drawing method and drawing mold
JPH02148641A (en) Method and device for manufacturing sheet-shaped metallic blank
JP5833261B1 (en) Method of processing outer periphery of metal end section and method of joining metal component obtained by the processing method and other member
JP3419195B2 (en) Bulge processing method and apparatus
WO2006015784A1 (en) Forming tool and method
JP3661922B2 (en) Molding method of cylindrical container with bottom
US6907764B2 (en) Methods and apparatus for manufacturing flanged articles
US7296456B2 (en) Methods and apparatus for manufacturing flanged articles
US10265751B2 (en) Method and device for achieving long collar lengths
JPH0228749B2 (en)
US10118211B2 (en) Method and device for forming a collar on a workpiece
US9266160B2 (en) Method for forming an undercut and method for manufacturing a formed article having an undercut
JP2002172451A (en) Method for producing tooth profile product having inversely tapered tooth profile
DE10102712B4 (en) Method for connecting at least partially overlapping components and device therefor
JP2011036912A (en) Spinning method
JPH0732052A (en) Method for working corrugated pipe and apparatus therefor
US20220203422A1 (en) Multi-axis roll-forming of stepped-diameter cylinder
JP2640638B2 (en) Ring gear manufacturing method by precision die forging
JPH04118122A (en) Method and device for drawing truncated-cone-shaped container and drawn container obtained thereby
JPH082466B2 (en) Method and apparatus for bending thin plate member
RU2116853C1 (en) Method for making beads of wide-flange parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees