JP3661211B2 - Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface - Google Patents

Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface Download PDF

Info

Publication number
JP3661211B2
JP3661211B2 JP01217595A JP1217595A JP3661211B2 JP 3661211 B2 JP3661211 B2 JP 3661211B2 JP 01217595 A JP01217595 A JP 01217595A JP 1217595 A JP1217595 A JP 1217595A JP 3661211 B2 JP3661211 B2 JP 3661211B2
Authority
JP
Japan
Prior art keywords
film
tube
plasma
electrodes
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01217595A
Other languages
Japanese (ja)
Other versions
JPH07252663A (en
Inventor
孝浩 中東
創 桑原
寛 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP01217595A priority Critical patent/JP3661211B2/en
Publication of JPH07252663A publication Critical patent/JPH07252663A/en
Application granted granted Critical
Publication of JP3661211B2 publication Critical patent/JP3661211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、各種ガラス配管、原子力装置の冷却水の細管、医療用カテーテル等の管体の内面に、該管体内周面の保護等の目的で所定の膜を形成する方法及び装置に関する。
【0002】
【従来の技術】
一般に管体内周面への膜形成は、真空蒸着により行われている。
このような真空蒸着を行う装置の一例として図2に示す装置について説明すると、この装置は真空容器10を有し、その中に図示しないホルダに支持されて被成膜管体S2が設置され、管体S2内には管体S2とほぼ同じだけの長さを有する線状又は棒状等の蒸着物質9が配置され、蒸着物質9両端には直流電源60が接続されている。また、容器10には排気装置80が配管接続されている。
【0003】
この装置によると、管体S2が容器10内に搬入されて図示しないホルダに支持され、管体S2内に蒸着物質9が配置された後、排気装置80の運転にて容器10内が所定の真空度とされるとともに直流電源60により蒸着物質9両端に直流電力が印加され、これにより蒸着物質9が加熱されて管体S2内周面に真空蒸着され、管体S2内周面に所望の膜が形成される。
【0004】
【発明が解決しようとする課題】
しかしながら、前記の真空蒸着装置を用いた成膜では、管体S2の内径が小さいときには、それに合わせて蒸着物質9の直径も小さくなければならず、電力印加による蒸着物質の蒸発に伴い蒸着物質が途中で切れ易い。この場合、管体内面への成膜が行えなくなるため、新たな蒸着物質と交換しなければならないが、この交換に際して容器10内を一旦大気圧に戻して新しい蒸着物質を設置した後、再び容器10内を所定の真空度にしなければならず、手間がかかり、生産性が悪い。
【0005】
また、真空を破らずに成膜原料を供給できる方法としてプラズマCVD法が考えられるが、この場合管体の内径が小さいとプラズマを発生させるための電力印加電極を管体内に配置できないため、プラズマを管体内に発生させることができず、該管体内周面に成膜を行うことができない。また、管体外でプラズマを発生させてもこれを管体内へ送り込めない。
【0006】
そこで本発明は、内径の小さい管体でもその内周面に均一に、又は均一状に成膜を行うことができ、しかも、成膜を行う容器内の真空を破ることなく必要に応じて成膜原料の追加を行うことができ、それによって生産性よく内周面に膜形成した管体を得ることができる方法及び装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決する本発明の内周面に膜形成した管体を得る方法は、真空容器内に棒状電極を設置するとともに該棒状電極の周囲に該電極から所定間隔をおいてリング状電極を設置し、該リング状電極に被成膜管体を連ねて配置し、該真空容器内を所定の成膜真空度とし、前記両電極間に成膜原料ガスを導入し、該両電極間に該ガスをプラズマ化する電力を印加するとともに磁場を印加し、該磁場は該電力印加により該両電極間に発生する電界とともに作用して該プラズマを前記管体内へ向かわせる電磁力を発生させる方向性を有する磁場とし、該電界と磁場によって、発生したプラズマを前記管体内に送り込んで該プラズマのもとで管体内面に膜形成を行うことを特徴とする。
【0008】
また、前記課題を解決する本発明の内周面に膜形成した管体の製造装置は、真空容器と、前記容器内に設置した棒状電極及び該電極から所定間隔をおいて該電極周りを囲むリング状電極並びに該リング状電極に連ねて被成膜管体を支持するホルダと、前記両電極間に成膜用ガスを導入する手段と、前記両電極間に前記ガスをプラズマ化するための電力を印加する手段と、前記両電極間に発生するプラズマに磁場を印加する手段とを備えており、該磁場印加手段は、前記電力印加手段による電力印加により発生する該両電極間の電界とともに作用して、前記両電極間に発生するプラズマを前記ホルダに支持される管体内へ送り込む電磁力を発生させる方向性を有する磁場を該プラズマに印加するものであることを特徴とする。
【0010】
【作用】
本発明方法及び装置によると、真空容器内に被成膜管体が搬入され、リング状電極に連ねて配置される。その後、該容器内が所定の成膜真空度にされるとともに棒状電極と該電極を囲むように所定間隔をおいて設置された前記リング状電極との間に成膜原料ガスが導入され、両電極間にプラズマ生成用の電力が印加され、該ガスがプラズマ化される。また、該リング状電極内部には磁場が印加される。該磁場は、前記印加された電力による電界とともに作用して、電力印加により発生したプラズマを、前記リング状電極に連ねて配置された被成膜管体の方向に移行させ、該被成膜管体内部に進入、拡散させる。このようにして該プラズマのもとで該管体内周面に連続的に均一に、又は均一状に成膜が行われる。しかも、成膜を行う真空容器内の真空を破ることなく、必要に応じて成膜原料ガスを供給することができる。
【0011】
【実施例】
以下本発明の実施例を図面を参照して説明する。
図1は本発明の管体の製造装置の一実施例を示す図である。この装置は真空容器1を有し、容器1内には中空の棒状の中心電極2と、該電極2から所定距離をおいてそれを取り囲むように、被処理管体内径とほぼ同じ外径を有するリング状電極3が設置されている。電極2及び3の間にはリング状の絶縁体4aが嵌装されている。これらは図示しない支持部により容器1に支持されている。中心電極2には成膜原料ガスのガス供給部5が配管接続され、電極2周囲に等間隔で所定個数設けられたガス吹き出し孔2aから成膜原料ガスを吹き出すことができるようになっている。ガス供給部5には1又は2以上のマスフローコントローラ511、512・・・及び開閉弁521、522・・・を介して接続された、成膜原料ガスのガス源531、532・・・が含まれる。また、電極2及び3には電源部6が接続されている。電源部6は一方で電極2に接続されるとともに他方で充電用スイッチ6h、開閉スイッチ6gを介して電極3に接続された直流電源6aと、この回路中に互いに並列に接続された放電開始用コンデンサ6b、成膜速度制御用コンデンサ6c及びクローバー回路用スイッチ6dと、コンデンサ6bに直列の放電開始用スイッチ6eと、コンデンサ6cに直列の成膜速度制御用スイッチ6fとからなっている。なお、電源部6に代えてインバータ等の半導体スイッチを含む電源回路を用いてもよい。また真空容器1外周には、図示しない直流電源に接続された磁場印加用のソレノイド7が配置され、図中Bで示す方向に磁場を印加できるようになっている。なお、ここではソレノイド7を用いているが、これに代えて永久磁石を用いてもよい。さらに容器1には排気装置11が配管接続されている。また、電極3の前方には被成膜管体S1の支持ホルダ12を設けてある。支持ホルダ12は図示しない部材により容器1に保持されている。
【0012】
この装置によると、容器1内部にはソレノイド7により図中Bで示す方向に縦磁場が印加される。当初は電源部6の全てのスイッチは開けられて真空容器1内に被処理管体S1が搬入されて、ホルダ12に支持されてリング状電極3に連ねて配置された後、容器1内が排気装置8の運転にて所定の真空度とされる。次いで、ガス供給部5から成膜原料ガスが導入されて中心電極2のガス吹き出し孔2aから電極2及び3の間に吹き出されるとともに放電開始用スイッチ6e、成膜速度制御用スイッチ6f及びスイッチ6hが閉じられて直流電源6aから電力が印加されて放電開始用コンデンサ6b及び成膜速度制御用コンデンサ6cに充電される。充電の終了はスイッチ6e、6f、6hを開けることで行われる。次いでスイッチ6g及び放電開始用スイッチ6eが閉じられて、放電開始用コンデンサ6bにより中心電極2からリング状電極3の方向に直流電力が印加され、前記導入された成膜原料ガスのプラズマ化が始まる。その後のプラズマ保持は、スイッチ6gを閉じたままとしておいてスイッチ6eを開けるとともに成膜速度制御用スイッチ6fを閉じ、成膜速度制御用コンデンサ6cによる電力印加で行う。またプラズマ放電が安定すると、スイッチ6gを開けるとともにクローバー回路用スイッチ6dを閉じた状態とする。その後はスイッチ6g、6fの閉成によるコンデンサ6cの接続と、クローバースイッチ6dの閉成を交互に繰り返すことで前記原料ガスのプラズマ化を継続させる。一方、図中Jで示すように、中心電極2からリング状電極3に向けて印加される電界と、図中Bで示すように、リング状電極内の上半分と下半分とで逆方向に印加される磁界の作用で、被処理管体S1の方へ向けて電磁力が生じる。この電磁力により、発生したプラズマが図中に示すように螺旋状に管体S1内部に進入、拡散し、該プラズマのもとで管体S1内周面に均一に所望の膜が形成される。
【0013】
次に、本発明方法及び装置による、内周面にチタン(Ti)膜を形成したガラス管体の製造の具体例を示す。
例1
被処理ガラス管体サイズ
・直径10mm(内径9mm)×長さ1m
装置サイズ
・中心電極2 直径2mm×放電担当長さ10mm
・リング状電極3 直径8mm×放電担当長さ8mm
・ガス吹き出し孔 直径0.5mm、4個
成膜条件
・成膜真空度 50mTorr
・放電開始電力 1kV、180mA
・成膜速度制御電力 1kV、 10mA
・磁場強度 100Gauss
・成膜原料ガス 四塩化チタン(TiCl4 )、20sccm
成膜結果
・成膜時間 2sec
・膜厚(成膜速度) 2μm(1μm/sec)
・膜厚均一性 ±10%
例2
被処理ガラス管体サイズ
・直径5mm(内径4mm)×長さ50cm
装置サイズ
・中心電極2 直径1mm×放電担当長さ10mm
・リング状電極3 直径3mm×放電担当長さ8mm
・ガス吹き出し孔 直径0.2mm、4個
成膜条件
・成膜真空度 50mTorr
・放電開始電力 1kV、150mA
・成膜速度制御電力 1kV、 10mA
・磁場強度 100Gauss
・成膜原料ガス 四塩化チタン(TiCl4 )、10sccm
成膜結果
・成膜時間 2sec
・膜厚(成膜速度) 1.5μm(0.75μm/sec)
・膜厚均一性 ±10%
例3
被処理ガラス管体サイズ
・直径2mm(内径1.4mm)×長さ10cm
装置サイズ
・中心電極2 直径0.5mm×放電担当長さ10mm
・リング状電極3 直径1.0mm×放電担当長さ8mm
・ガス吹き出し孔 直径0.2mm、2個
成膜条件
・成膜真空度 50mTorr
・放電開始電力 1kV、120mA
・成膜速度制御電力 1kV、 10mA
・磁場強度 100Gauss
・成膜原料ガス 四塩化チタン(TiCl4 )、5sccm
成膜結果
・成膜時間 2sec
・膜厚(成膜速度) 1μm(0.5μm/sec)
・膜厚均一性 ±20%
このことから、直径10mm(内径9mm)で長さ1m、直径5mm(内径4mm)で長さ50cm、直径2mm(内径1.4mm)で長さ10cm程度の内径の小さい、また内径に比べて十分長い管体でもその内周面に、均一に、又は均一状にしかも短時間で成膜が行えたことが分かる。
【0014】
【発明の効果】
本発明によると、内径の小さい管体でもその内周面に均一に、又は均一状に成膜を行うことができ、しかも、成膜を行う容器内の真空を破ることなく必要に応じて成膜原料の追加を行うことができ、それによって生産性よく内周面に膜形成した管体を得ることができる方法及び装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である、内周面に膜形成された管体の製造装置の概略構成を示す図である。
【図2】従来の、内周面に膜形成された管体の製造装置例の概略構成を示す図である。
【符号の説明】
1、10 真空容器
2 中心電極
2a ガス吹き出し孔
3 リング状電極
4a 絶縁体
5 成膜原料ガス供給部
6 電源部
6a、60 直流電源
6b 放電開始用コンデンサ
6c 成膜速度制御用コンデンサ
6d クローバー回路用スイッチ
6e 放電開始用スイッチ
6f 成膜速度制御用スイッチ
6h 充電用スイッチ
6g 開閉スイッチ
7 ソレノイド
11、80 排気装置
9 蒸着物質
S1、S2 被成膜管体
12 管体S1の支持ホルダ
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for forming a predetermined film on the inner surface of a tube body such as various glass pipes, a cooling water thin tube of a nuclear power device, and a medical catheter for the purpose of protecting the peripheral surface of the tube body.
[0002]
[Prior art]
In general, film formation on the peripheral surface of a pipe body is performed by vacuum deposition.
The apparatus shown in FIG. 2 will be described as an example of such an apparatus for performing vacuum vapor deposition. This apparatus has a vacuum vessel 10 in which a film-forming tube body S2 is installed supported by a holder (not shown), A linear or rod-like vapor deposition material 9 having a length substantially the same as that of the tube S2 is disposed in the tube S2, and a DC power source 60 is connected to both ends of the vapor deposition material 9. Further, an exhaust device 80 is connected to the container 10 by piping.
[0003]
According to this apparatus, the tube body S2 is carried into the container 10 and supported by a holder (not shown), and after the vapor deposition material 9 is disposed in the tube body S2, the inside of the container 10 is kept in a predetermined state by the operation of the exhaust device 80. While the degree of vacuum is established, DC power is applied to both ends of the vapor deposition material 9 by the DC power source 60, whereby the vapor deposition material 9 is heated and vacuum-deposited on the inner peripheral surface of the tube S 2, and a desired value is applied to the inner peripheral surface of the tube S 2. A film is formed.
[0004]
[Problems to be solved by the invention]
However, in the film formation using the vacuum evaporation apparatus, when the inner diameter of the tube body S2 is small, the diameter of the vapor deposition material 9 must be small accordingly. Easy to cut along the way. In this case, since the film cannot be formed on the inner surface of the tube body, it must be replaced with a new vapor deposition material. At the time of this replacement, after the inside of the container 10 is temporarily returned to atmospheric pressure and a new vapor deposition material is installed, the container is again formed. The inside of 10 must be set to a predetermined degree of vacuum, which is troublesome and productivity is poor.
[0005]
In addition, a plasma CVD method is conceivable as a method for supplying a film forming raw material without breaking a vacuum. In this case, if the inner diameter of the tube is small, a power application electrode for generating plasma cannot be disposed in the tube. Cannot be generated in the tube, and no film can be formed on the peripheral surface of the tube. Further, even if plasma is generated outside the tube, it cannot be sent into the tube.
[0006]
Therefore, the present invention can form a film evenly or uniformly on the inner peripheral surface of a tubular body having a small inner diameter, and can be formed as needed without breaking the vacuum in the container for film formation. It is an object of the present invention to provide a method and an apparatus capable of adding a membrane raw material and thereby obtaining a tube having a film formed on the inner peripheral surface with high productivity.
[0007]
[Means for Solving the Problems]
The method for obtaining a tube formed with a film on the inner peripheral surface of the present invention that solves the above-mentioned problem is that a rod-shaped electrode is placed in a vacuum vessel and a ring-shaped electrode is disposed around the rod-shaped electrode at a predetermined interval from the electrode. The film-forming tube is connected to the ring-shaped electrode, the inside of the vacuum vessel is set to a predetermined film-forming vacuum degree, a film-forming raw material gas is introduced between the electrodes, Applying electric power for converting the gas into plasma and applying a magnetic field, the magnetic field acting together with an electric field generated between the two electrodes by applying the electric power, and generating an electromagnetic force for directing the plasma into the tube It is characterized in that a generated magnetic field is sent into the tubular body by the electric field and the magnetic field, and a film is formed on the inner surface of the tubular body under the plasma.
[0008]
Further, the manufacturing apparatus for a tubular body having a film formed on the inner peripheral surface of the present invention that solves the above problems surrounds the periphery of the vacuum container, a rod-shaped electrode installed in the container, and a predetermined distance from the electrode. A ring-shaped electrode, a holder that is connected to the ring-shaped electrode and supports the film-forming tube, a means for introducing a film-forming gas between the electrodes, and a plasma for converting the gas between the electrodes. Means for applying electric power, and means for applying a magnetic field to the plasma generated between the two electrodes, the magnetic field applying means together with the electric field between the electrodes generated by the application of electric power by the electric power applying means. A magnetic field having a direction to generate an electromagnetic force that acts to generate a plasma generated between the two electrodes into a tube supported by the holder is applied to the plasma .
[0010]
[Action]
According to the method and apparatus of the present invention, the film-forming tube is carried into the vacuum vessel and is arranged continuously with the ring electrode. Thereafter, the inside of the container is brought to a predetermined film-forming vacuum, and a film-forming source gas is introduced between the rod-shaped electrode and the ring-shaped electrode installed at a predetermined interval so as to surround the electrode. Electric power for plasma generation is applied between the electrodes, and the gas is turned into plasma. A magnetic field is applied inside the ring electrode. The magnetic field acts together with the electric field generated by the applied electric power to move the plasma generated by the application of electric power in the direction of the film-forming tube arranged continuously to the ring-shaped electrode. Enter and diffuse inside the body. In this way, film formation is performed continuously or uniformly on the peripheral surface of the tubular body under the plasma. In addition, the film forming material gas can be supplied as needed without breaking the vacuum inside the vacuum container for film formation.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing an embodiment of a tubular body manufacturing apparatus according to the present invention. This apparatus has a vacuum vessel 1 and has a hollow rod-shaped center electrode 2 in the vessel 1 and an outer diameter substantially the same as the inner diameter of the tube to be processed so as to surround it at a predetermined distance from the electrode 2. A ring-shaped electrode 3 is provided. A ring-shaped insulator 4a is fitted between the electrodes 2 and 3. These are supported by the container 1 by a support portion (not shown). The central electrode 2 is connected to a gas supply portion 5 for the film forming raw material gas through a pipe, so that the film forming raw material gas can be blown out from the gas blowing holes 2a provided around the electrode 2 at equal intervals. . The gas supply unit 5 includes one or two or more mass flow controllers 511, 512,... And film sources gas gas sources 531, 532,. It is. A power supply unit 6 is connected to the electrodes 2 and 3. The power source unit 6 is connected to the electrode 2 on the one hand and the DC power source 6a connected to the electrode 3 via the charging switch 6h and the open / close switch 6g on the other hand, and the discharge start connected in parallel to each other in this circuit. A capacitor 6b, a film formation speed control capacitor 6c and a crowbar circuit switch 6d, a discharge start switch 6e in series with the capacitor 6b, and a film formation speed control switch 6f in series with the capacitor 6c. Instead of the power supply unit 6, a power supply circuit including a semiconductor switch such as an inverter may be used. A magnetic field applying solenoid 7 connected to a DC power source (not shown) is arranged on the outer periphery of the vacuum vessel 1 so that a magnetic field can be applied in the direction indicated by B in the figure. Although the solenoid 7 is used here, a permanent magnet may be used instead. Further, an exhaust device 11 is connected to the container 1 by piping. Further, a support holder 12 for the film forming tube body S1 is provided in front of the electrode 3. The support holder 12 is held in the container 1 by a member (not shown).
[0012]
According to this apparatus, a longitudinal magnetic field is applied to the inside of the container 1 by a solenoid 7 in the direction indicated by B in the figure. Initially, all the switches of the power supply unit 6 are opened, and the tube S1 to be processed is loaded into the vacuum vessel 1 and supported by the holder 12 and arranged continuously with the ring-shaped electrode 3. A predetermined degree of vacuum is obtained by operating the exhaust device 8. Next, a film forming source gas is introduced from the gas supply unit 5 and blown between the electrodes 2 and 3 from the gas blowing hole 2a of the center electrode 2, and a discharge start switch 6e, a film forming speed control switch 6f, and a switch 6h is closed and electric power is applied from the DC power source 6a to charge the discharge start capacitor 6b and the film formation speed control capacitor 6c. Charging is completed by opening the switches 6e, 6f and 6h. Next, the switch 6g and the discharge start switch 6e are closed, and direct current power is applied from the center electrode 2 to the ring electrode 3 by the discharge start capacitor 6b, and the introduction of the introduced film forming material gas into plasma starts. . The subsequent plasma holding is performed by applying power with the film formation speed control capacitor 6c while keeping the switch 6g closed and opening the switch 6e and closing the film formation speed control switch 6f. When the plasma discharge is stabilized, the switch 6g is opened and the crowbar circuit switch 6d is closed. After that, the connection of the capacitor 6c by closing the switches 6g and 6f and the closing of the crowbar switch 6d are alternately repeated, so that the raw material gas is continuously turned into plasma. On the other hand, as indicated by J in the figure, the electric field applied from the center electrode 2 toward the ring electrode 3 and the upper half and the lower half of the ring electrode in opposite directions as indicated by B in the figure. Due to the action of the applied magnetic field, an electromagnetic force is generated toward the processed tube body S1. Due to this electromagnetic force, the generated plasma enters and diffuses into the tubular body S1 spirally as shown in the figure, and a desired film is uniformly formed on the inner peripheral surface of the tubular body S1 under the plasma. .
[0013]
Next, a specific example of manufacturing a glass tube having a titanium (Ti) film formed on the inner peripheral surface by the method and apparatus of the present invention will be shown.
Example 1
Glass tube size to be processed, diameter 10mm (inner diameter 9mm) x length 1m
Device size and center electrode 2 Diameter 2mm x Discharge charge length 10mm
・ Ring electrode 3 diameter 8mm x discharge charge length 8mm
・ Gas blowout hole diameter 0.5mm, 4 piece film formation condition ・ Deposition vacuum degree 50mTorr
Discharge starting power 1 kV, 180 mA
・ Deposition rate control power 1 kV, 10 mA
・ Magnetic field strength: 100 Gauss
-Deposition source gas Titanium tetrachloride (TiCl 4 ), 20 sccm
Deposition result / deposition time 2 sec
・ Film thickness (deposition rate) 2μm (1μm / sec)
・ Thickness uniformity ± 10%
Example 2
Glass tube size, diameter 5mm (inner diameter 4mm) x length 50cm
Device size / Center electrode 2 Diameter 1mm x Discharge charge length 10mm
・ Ring-shaped electrode 3 3mm diameter x discharge length 8mm
・ Gas blowout hole diameter 0.2mm, 4 piece film formation condition ・ Deposition vacuum degree 50mTorr
Discharge starting power 1 kV, 150 mA
・ Deposition rate control power 1 kV, 10 mA
・ Magnetic field strength: 100 Gauss
・ Deposition source gas Titanium tetrachloride (TiCl 4 ), 10 sccm
Deposition result / deposition time 2 sec
・ Film thickness (deposition rate) 1.5μm (0.75μm / sec)
・ Thickness uniformity ± 10%
Example 3
Glass tube size, diameter 2mm (inner diameter 1.4mm) x length 10cm
Device size / Center electrode 2 Diameter 0.5mm x Discharge charge length 10mm
・ Ring electrode 3 diameter 1.0mm x discharge charge length 8mm
・ Gas blowout hole diameter 0.2mm, 2 pieces film formation condition ・ Deposition vacuum degree 50mTorr
Discharge starting power 1 kV, 120 mA
・ Deposition rate control power 1 kV, 10 mA
・ Magnetic field strength: 100 Gauss
・ Film source gas Titanium tetrachloride (TiCl 4 ), 5 sccm
Deposition result / deposition time 2 sec
・ Film thickness (deposition rate) 1μm (0.5μm / sec)
・ Thickness uniformity ± 20%
Therefore, the diameter is 10 mm (inner diameter 9 mm) and the length is 1 m, the diameter is 5 mm (inner diameter 4 mm), the length is 50 cm, the diameter is 2 mm (inner diameter 1.4 mm), the length is about 10 cm, and the inner diameter is small. It can be seen that even a long tube can be formed uniformly or uniformly on the inner peripheral surface in a short time.
[0014]
【The invention's effect】
According to the present invention, even a tube having a small inner diameter can be formed uniformly or uniformly on the inner peripheral surface thereof, and the tube can be formed as needed without breaking the vacuum in the film forming container. It is possible to provide a method and an apparatus capable of adding a membrane raw material and thereby obtaining a tubular body having a film formed on the inner peripheral surface with high productivity.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an apparatus for manufacturing a tubular body having a film formed on an inner peripheral surface, which is an embodiment of the present invention.
FIG. 2 is a diagram showing a schematic configuration of an example of a conventional manufacturing apparatus for a tubular body having a film formed on an inner peripheral surface thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 10 Vacuum container 2 Center electrode 2a Gas blowing hole 3 Ring-shaped electrode 4a Insulator 5 Film-forming raw material gas supply part 6 Power supply part 6a, 60 DC power supply 6b Discharge start capacitor 6c Film-forming speed control capacitor 6d For clover circuit Switch 6e Discharge start switch 6f Film formation speed control switch 6h Charge switch 6g Open / close switch 7 Solenoid 11, 80 Exhaust device 9 Vapor deposition material S1, S2 Film formation tube 12 Support holder for tube S1

Claims (2)

真空容器内に棒状電極を設置するとともに該棒状電極の周囲に該電極から所定間隔をおいてリング状電極を設置し、該リング状電極に被成膜管体を連ねて配置し、該真空容器内を所定の成膜真空度とし、前記両電極間に成膜原料ガスを導入し、該両電極間に該ガスをプラズマ化する電力を印加するとともに磁場を印加し、該磁場は該電力印加により該両電極間に発生する電界とともに作用して該プラズマを前記管体内へ向かわせる電磁力を発生させる方向性を有する磁場とし、該電界と磁場によって、発生したプラズマを前記管体内に送り込んで該プラズマのもとで管体内面に膜形成を行うことを特徴とする内周面に膜形成した管体の製法。A rod-shaped electrode is installed in the vacuum container, and a ring-shaped electrode is disposed around the rod-shaped electrode at a predetermined interval from the electrode, and a film-forming tube is arranged on the ring-shaped electrode. The inside is set to a predetermined film-forming vacuum degree, a film-forming raw material gas is introduced between the two electrodes, and a power and a magnetic field are applied between the two electrodes, and the magnetic field is applied with the power. A magnetic field having a directivity for generating an electromagnetic force that works with the electric field generated between the electrodes and directing the plasma into the tube , and the generated plasma is sent into the tube by the electric field and the magnetic field. A method for producing a tube having a film formed on an inner peripheral surface, wherein a film is formed on the inner surface of the tube under the plasma. 真空容器と、前記容器内に設置した棒状電極及び該電極から所定間隔をおいて該電極周りを囲むリング状電極並びに該リング状電極に連ねて被成膜管体を支持するホルダと、前記両電極間に成膜用ガスを導入する手段と、前記両電極間に前記ガスをプラズマ化するための電力を印加する手段と、前記両電極間に発生するプラズマに磁場を印加する手段とを備えており、該磁場印加手段は、前記電力印加手段による電力印加により発生する該両電極間の電界とともに作用して、前記両電極間に発生するプラズマを前記ホルダに支持される管体内へ送り込む電磁力を発生させる方向性を有する磁場を該プラズマに印加するものであることを特徴とする内周面に膜形成した管体の製造装置。A vacuum vessel, a rod-shaped electrode installed in the vessel, a ring-shaped electrode surrounding the electrode at a predetermined interval from the electrode, a holder that supports the film-forming tube connected to the ring-shaped electrode, Means for introducing a film-forming gas between the electrodes, means for applying electric power for converting the gas into plasma between the electrodes, and means for applying a magnetic field to the plasma generated between the electrodes. The magnetic field applying means acts together with the electric field between the electrodes generated by the application of electric power by the electric power applying means, and sends the plasma generated between the electrodes into the tube supported by the holder. An apparatus for manufacturing a tubular body having a film formed on an inner peripheral surface, wherein a magnetic field having a direction for generating a force is applied to the plasma .
JP01217595A 1994-01-31 1995-01-30 Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface Expired - Fee Related JP3661211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01217595A JP3661211B2 (en) 1994-01-31 1995-01-30 Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-9736 1994-01-31
JP973694 1994-01-31
JP01217595A JP3661211B2 (en) 1994-01-31 1995-01-30 Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface

Publications (2)

Publication Number Publication Date
JPH07252663A JPH07252663A (en) 1995-10-03
JP3661211B2 true JP3661211B2 (en) 2005-06-15

Family

ID=26344515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01217595A Expired - Fee Related JP3661211B2 (en) 1994-01-31 1995-01-30 Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface

Country Status (1)

Country Link
JP (1) JP3661211B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007895A1 (en) * 1996-08-19 1998-02-26 Citizen Watch Co., Ltd. Method of forming hard carbon film on inner circumferential surface of guide bush
DE102005040266A1 (en) * 2005-08-24 2007-03-01 Schott Ag Method and device for inside plasma treatment of hollow bodies
JP2010536172A (en) * 2007-08-10 2010-11-25 アプライド マテリアルズ インコーポレイテッド Method and apparatus for off-site seasoning of electronic device manufacturing process parts
CN111962038B (en) * 2020-09-23 2023-05-12 兰州天亿石化设备维修技术有限公司 Device and method for coating inner wall of large-caliber high-pressure metal hose

Also Published As

Publication number Publication date
JPH07252663A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
EP0665304B1 (en) Method of manufacturing a tube having a film on its inner peripheral surface and apparatus for manufacturing the same
US5369336A (en) Plasma generating device
CA2144834C (en) Method and apparatus for generating induced plasma
KR0145302B1 (en) Plasma processing method
JP2004533316A (en) Sequential plasma processing method and apparatus
WO2006014455A2 (en) Microwave plasma nozzle with enhanced plume stability and heating efficiency
JPH08296038A (en) Method and device for forming film on inner peripheral surface of tubular body
JP2000064040A (en) Surface treatment at the inside of tube and device therefor
JPS5915982B2 (en) Electric discharge chemical reaction device
WO2021243966A1 (en) Atmospheric pressure radio frequency thermal plasma generator based on pre-ionization ignition device
JP2003210556A (en) Pipe sterilizer with plasma
JP3661211B2 (en) Manufacturing method and manufacturing apparatus for tubular body with film formed on inner peripheral surface
KR880700099A (en) Apparatus and process for arc depositing coatings in a vacuum chamber
JP3454384B2 (en) Ion beam generator and method
JP3443994B2 (en) Method for producing tubular body with film formed on inner peripheral surface and apparatus for producing the same
JP2003264098A (en) Sheet plasma treatment apparatus
JPH08165563A (en) Electron-beam annealing device
JPH0614456B2 (en) Ultra-fine shape soft X-ray generator and method
JPH04228566A (en) Conductive fiber coating method and apparatus by sputter ion plating
JPS62216638A (en) Device for treating surface
JPH0367496A (en) Induction plasma generation device
JPH04142734A (en) Fine processing device and method
JPS61284579A (en) Plasma concentration type cvd device
JPH0367497A (en) Induction plasma generation device
JPS59133364A (en) Electric discharge chemical reaction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees