JP3660795B2 - Terminal structure - Google Patents

Terminal structure Download PDF

Info

Publication number
JP3660795B2
JP3660795B2 JP32748797A JP32748797A JP3660795B2 JP 3660795 B2 JP3660795 B2 JP 3660795B2 JP 32748797 A JP32748797 A JP 32748797A JP 32748797 A JP32748797 A JP 32748797A JP 3660795 B2 JP3660795 B2 JP 3660795B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
terminal electrode
terminal
internal electrode
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32748797A
Other languages
Japanese (ja)
Other versions
JPH11163108A (en
Inventor
成智 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32748797A priority Critical patent/JP3660795B2/en
Publication of JPH11163108A publication Critical patent/JPH11163108A/en
Application granted granted Critical
Publication of JP3660795B2 publication Critical patent/JP3660795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基体に設けられた凹部内に棒状の金属製端子部材の一端部を嵌入するとともにこの一端部を凹部内壁にろう付け固定して成る金属製端子部材の取付構造に関するものである。
【0002】
【従来の技術】
セラミック基体の内部に内部電極を埋設し、その内部電極に端子電極部材を接合して外部から給電する端子構造を採用するものとして、従来より、例えば内部電極として発熱抵抗体を用いたセラミックヒータや、LSI等の半導体集積回路素子の製作工程においてシリコンウエハ等にCVD法や真空蒸着法・フォトリソグラフィ法等の種々の加工を施す際にウエハを保持固定するために用いられる、内部電極として静電吸着用電極を用いた静電チャック等がある。
【0003】
この静電チャックは、図4に断面図で示すように、例えば窒化アルミニウム質焼結体から成る円板状のセラミック基体11の内部にタングステンやモリブデン等の高融点金属材料のメタライズ層から成る静電気発生用の略平板形状のメタライズパターン等から成る第1の内部電極12aを埋設して成り、この静電気発生用の内部電極12aに外部から電圧を印加することによりセラミック基体11表面に静電気を発生させ、この静電気によりシリコンウエハ等(図示せず)をセラミック基体11表面に吸着保持するようになしたものである。
【0004】
さらに、この静電チャックには、セラミック基体11の内部に例えばタングステンやマンガン等の高融点金属材料のメタライズ層から成る発熱抵抗体用のメタライズパターン等から成る第2の内部電極12bが蛇行形状に埋設されており、この発熱抵抗体用の内部電極12bに外部から電力を供給してジュール発熱させることによって、セラミック基体11の表面に吸着されたウエハをセラミック基体11を介して加熱し得るようになっている。
【0005】
なお、セラミック基体11の内部に埋設された静電気発生用の内部電極12aに外部から電圧を印加したり、発熱抵抗体用の内部電極12bに外部から電力を供給するには、その端子構造として、セラミック基体11に静電気発生用の内部電極12aに到達して内部電極12aの一部を露出させる凹部11aおよび発熱抵抗体用の内部電極12bに到達して内部電極12bの一部を露出させる凹部11bを形成しておき、これらの凹部11a・11b内に鉄−ニッケル−コバルト合金等の金属から成る棒状の端子電極部材13a・13bの一端部を嵌入させるとともに、この一端部を凹部11a・11bの内壁および静電気発生用の内部電極12a・発熱抵抗体用の内部電極12bにろう付けすることにより、凹部11a・11b内に端子電極部材13a・13bを取付け、これら端子電極部材13a・13bを介して静電気発生用の内部電極12aに外部から電圧を印加したり、発熱抵抗体用の内部電極12bに外部から電力を供給するようになしている。
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の端子構造によれば、セラミック基体11を構成する窒化アルミニウム質焼結体の熱膨張係数および端子電極部材13a・13bを構成する鉄−ニッケル−コバルト合金の熱膨張係数がそれぞれ室温〜800 ℃において5.4 ×10-6/℃および10×10-6/℃と大きく相違することから、端子電極部材13a・13bをセラミック基体11に設けた凹部11a・11b内にろう付けする際に両者の熱膨張係数の相違に起因する熱応力がセラミック基体11と端子電極部材13a・13bとの間に発生し、この応力がセラミック基体11の凹部11a・11b近傍に大きく内在してしまい、これにウエハを加熱する際などの熱による熱応力が繰り返し印加されると、その熱応力とセラミック基体11に内在する熱応力とがあいまってセラミック基体11にクラックを発生させてしまうこととなり、その結果、端子電極部材13a・13bと内部電極12a・12bとの電気的接続が損なわれたり、端子電極部材13a・13bが絶縁基体11から外れてしまうことがあるという欠点を有していた。
【0007】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、加熱による熱応力が繰り返し印加されてもセラミック基体にクラックを発生させることはなく、端子電極部材とセラミック基体内部に埋設された内部電極とを長期間にわたり確実に電気的に接続できる、信頼性が高い端子構造を提供することにある。
【0008】
【課題を解決するための手段】
本発明の端子構造は、内部電極が埋設されたセラミック基体に前記内部電極の一部を露出させる凹部を形成するとともに、端面に開口中空部を有する端子電極部材を前記凹部に嵌入し、前記内部電極の露出部に当接させてこの露出部および前記凹部の内壁とろう材を介して接合した端子構造であって、前記端子電極部材は、前記開口中空部の開口から内方にかけて前記ろう材に対するレジスト膜が被着されていることを特徴とするものである。
【0009】
本発明の端子構造によれば、セラミック基体の凹部内に嵌入され、内部電極の露出部および凹部の内壁にろう付けされた端子電極部材の端面が開口中空部を有していることから、端子電極部材の端面をセラミック基体の凹部内にろう付けする際に両者間に発生する熱応力は、端子電極部材の開口中空部を有する端部が変形することによって良好に吸収緩和され、凹部近傍のセラミック基体の内部に熱応力が大きく内在してしまうようなことはない。
【0010】
また、内部電極の露出部および凹部の内壁にろう付けされた端子電極部材の開口中空部の開口から内方にかけてろう材に対するレジスト膜が被着されていることから、端子電極部材をセラミック基体の凹部内に嵌入してろう付けする際に、ろう材の一部が端子電極部材の開口中空部の内壁を濡らし、表面張力によりその内壁を這い上がって開口中空部の内部を埋めてしまうようなことがないため、端子電極部材の開口中空部を有する端部が変形することによる、ろう付けによって熱膨張係数の差に起因して発生する熱応力の吸収が妨げられることがない。
【0011】
【発明の実施の形態】
以下、本発明の端子構造を添付の図面に基づいて詳細に説明する。
図1は本発明の端子構造の実施の形態の一例を静電チャックに適用した場合を示す断面図であり、図2は図1に示す端子構造の要部拡大断面図である。
【0012】
これらの図において、1はセラミック基体、2a・2bは内部電極、3a・3bは端子電極部材であり、主にこれらで静電チャックを構成している。
【0013】
セラミック基体1は、例えば窒化アルミニウム質焼結体等の良熱伝導性のセラミック材料から成る略円板状体であり、その上面にシリコンウエハ等(図示せず)を支持するための支持体として機能する。
【0014】
セラミック基体1は、例えば窒化アルミニウム質焼結体から成る場合であれば、窒化アルミニウム・酸化イットリウム・酸化カルシウム等の原料粉末に適当な有機バインダや溶剤を添加混合して泥漿状となし、これを従来周知のドクターブレード法を採用してシート状となすことにより複数枚のセラミックグリーンシートを得、これらに適当な打ち抜き加工を施すとともに上下に積層してセラミックグリーンシート積層体となし、最後にこのセラミックグリーンシート積層体を還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0015】
セラミック基体1は、その内部にシリコンウエハ等を吸着するための静電気発生用の内部電極2aおよび吸着したシリコンウエハ等を加熱するための発熱抵抗体用の内部電極2bが埋設されている。
【0016】
セラミック基体1に埋設された静電気発生用の内部電極2aは、セラミック基体1の上面近傍に配置された例えば略平板状のメタライズパターンや金属板・金属メッシュ等であり、これに外部から所定の電圧を印加することによりセラミック基体1の上面に静電気を発生させる作用をなし、これによりセラミック基体1の上面に図示しないシリコンウエハ等が静電気により吸着保持される。
【0017】
また、セラミック基体1に埋設された発熱抵抗体用の内部電極2bは、セラミック基体1の厚み方向の略中央部に例えば蛇行するパターンの抵抗体電極として配置され、これに外部から所定の電力を供給することによりジュール発熱してセラミック基体1を加熱する作用をなし、これによりセラミック基体1の上面に吸着保持されるシリコンウエハ等をセラミック基体1を介して加熱する。
【0018】
セラミック基体1に埋設された静電気発生用の内部電極2aおよび発熱抵抗体用の内部電極2bは、例えばタングステン・モリブデン等の高融点金属のメタライズパターン等から成り、タングステンメタライズから成る場合であれば、タングステン粉末に適当な有機バインダや溶剤を添加混合して得た金属ペーストをセラミック基体1となるセラミックグリーンシートに所定のパターンに印刷塗布しておくことによってセラミック基体1の所定位置に所定形状に形成される。
【0019】
セラミック基体1は、またその下面側に、内部電極2a・2bに到達してそれらの一部を露出させる凹部1a・1bが形成されており、この凹部1a・1b内には鉄−ニッケル−コバルト合金等の金属から成り、端面に開口中空部を有する略円柱状の端子電極部材3a・3bが嵌入され、その端面を内部電極2a・2bの露出部に当接させて、その露出部および凹部1a・1bの内壁にろう付けされている。
【0020】
セラミック基体1の凹部1a・1bに嵌入ろう付けされた端子電極部材3a・3bは、内部電極2a・2bに外部から電圧や電力を印加するための端子として機能し、その開口中空部を有する側の端部がセラミック基体1の凹部1a・1b内に嵌入されるとともに、内部電極2a・2bの露出部およびセラミック基体1の凹部1a・1bの内壁に例えば銀−銅−チタン等の活性ろう材4a・4bを介して接合されている。
【0021】
このような静電チャックによれば、端子電極部材3aを介して内部電極2aに所定の電圧を印加することによってセラミック基体1の上面にシリコンウエハ等を吸着するための静電気が発生し、また端子電極部材3bを介して内部電極2bに電力を供給することによって、内部電極2bがジュール発熱してセラミック基体1が加熱される。
【0022】
なお、端子電極部材3a・3bを銀−銅−チタン等の活性ろう材4a・4bを介してセラミック基体1の凹部1a・1b内に嵌入ろう付けするには、例えば活性ろう材4a・4bが銀−銅−チタンから成る場合であれば、銀−銅−チタンのろう材粉末に有機バインダや溶剤を添加混合して得たろう材ペーストをセラミック基体1の凹部1a・1bの内壁に塗布するとともに、このろう材ペーストが塗布された凹部1a・1b内に端子電極部材3a・3bの開口中空部を有する側の端部を嵌入させ、これを真空雰囲気中、約800 ℃の温度で焼成する方法が採用され得る。
【0023】
また、端子電極部材3a・3bは、セラミック基体1の凹部1a・1b内に嵌入ろう付けされた端部がその内部がくり貫かれる等して開口を有する中空状態となっており、これによりこの端部が応力の印加に対して変形し易いものとなっている。
【0024】
端子電極部材3a・3bは、セラミック基体1の凹部1a・1b内に嵌入ろう付けされた端面に開口中空部を有していることから、端子電極部材3a・3bをセラミック基体1の凹部1a・1bに嵌入ろう付けする際に端子電極部材3a・3bとセラミック基体1との熱膨張係数の相違に起因して発生する熱応力は、端子電極材3a・3bの中空状態の端部が変形することによって良好に吸収緩和され、セラミック基体1の凹部1a・1b近傍に大きく内在することはない。このため、これにシリコンウエハ等を加熱する際などの熱による熱応力が繰り返し印加されても、この応力がセラミック基体1に内在する応力とあいまってセラミック基体1にクラックを発生させることはなく、端子電極部材3a・3bと内部電極2a・2bとの電気的接続を長期間にわたり確実なものとすることが可能となる。
【0025】
なお、端子電極部材3a・3bは、その直径をD、中空部分の直径をdとしたとき、d/D>0.9 となると、中空部の開口付近の機械的強度が不足して、端子電極部材3a・3bに外力が印加された場合にこの外力によって端子電極部材3a・3bが容易に破断する恐れが大きくなる傾向がある。また、d/D<0.2 となると、中空部の開口付近が変形しにくいものとなり、端子電極部材3a・3bをセラミック基体1の凹部1a・1b内に嵌入ろう付けする際に端子電極部材3a・3bとセラミック基体1との熱膨張係数の相違に起因して発生する熱応力を効果的に吸収できにくくなり、セラミック基体1の凹部1a・1b近傍に熱応力が大きく内在してしまいやすい傾向にある。従って、端子電極部材3a・3bは、その直径をD、中空部分の直径をdとしたとき、0.2 ≦d/D≦0.9 としておくことが好ましく、特に0.5 ≦d/D≦0.7 としておくことがより好ましい。
【0026】
さらに端子電極部材3a・3bは、開口中空部の開口から内方にかけて内部表面にろう材と濡れない材料から成るレジスト膜5a・5bが被着されている。
【0027】
ろう材に対するレジスト膜5a・5bは、例えば窒化硼素や窒化アルミニウム・窒化珪素・酸化アルミニウム・酸化珪素等のろう材と濡れない材料から成り、端子電極部材3a・3bの開口中空部を有する側の端部をセラミック基体1の凹部1a・1bに嵌入ろう付けする際に、ろう材の一部が端子電極部材3a・3bの開口中空部の内部に濡れ、表面張力により這い上がってこの内部を埋めてしまうことにより端子電極部材3a・3bの開口中空部が変形する能力を損なうことを防止する作用をなす。例えば窒化硼素から成る場合であれば、粒径が0.1 〜10μm程度の窒化硼素粉末に適当な有機バインダや溶剤を添加混合して得た窒化硼素ペーストを端子電極部材3a・3bの開口中空部の開口から内方にかけて内部表面に塗布しておき、これをろう付けの際に同時に焼成することによって端子電極部材3a・3bの開口中空部の開口から内方にかけて被着される。
【0028】
端子電極部材3a・3bは、開口中空部の開口から内方にかけてろう材に対するレジスト膜5a・5bが被着されていることから、端子電極部材3a・3bの開口中空部側の端部をセラミック基体1の凹部1a・1bに嵌入ろう付けする際に、ろう材の一部が端子電極部材3a・3bの開口中空部の内部表面に濡れ、表面張力によりこの内部を埋めてしまうことを有効に防止することができ、それにより、端子電極部材3a・3bの端部をセラミック基体1の凹部1a・1bに嵌入ろう付けする際に、端子電極部材3a・3bとセラミック基体1との熱膨張係数の相違に起因して発生する熱応力を開口中空部側の端部が変形して良好に吸収緩和することができる。
【0029】
かくして本発明の端子構造によれば、セラミック基体1の凹部1a・1b内に端子電極部材3a・3bをセラミック基体1に大きな熱応力を内在させることなく取り付けることができ、セラミック基体1内部に埋設された内部電極2a・2bと端子電極部材3a・3bとを長期間にわたり確実に電気的に接続することができる、信頼性の高い端子構造となる。
【0030】
なお、本発明の端子構造は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。
【0031】
例えば、上述の実施の形態の例ではセラミック基体1の凹部1a・1b内に端子電極部材3a・3bを銀−銅−チタン等の活性ろう材4a・4bを介してろう付けしたが、端子電極部材3a・3bは、セラミック基体1の凹部1a・1b内に銀−銅ろう等の活性を有しないろう材4a・4bを介してろう付けしてもよく、この場合には、図3に図2と同様の要部拡大断面図で示すように、凹部1a・1bの内壁にタングステンやモリブデン・マンガン等の高融点金属粉末から成るメタライズ金属層6を従来周知のメタライズ法により被着させておくとともにこのメタライズ金属層6の表面にニッケルめっき(図示せず)を施し、このニッケルめっき上に銀−銅ろう等の活性を有しないろう材4a・4bを介して端子電極部材3a・3bをろう付けする方法が採用される。
【0032】
【発明の効果】
本発明の端子構造によれば、セラミック基体の凹部内に嵌入され、内部電極の露出部および凹部の内壁にろう付けされた端子電極部材の端面が開口中空部を有していることから、端子電極部材の端面をセラミック基体の凹部内にろう材を介して接合する際に両者間に発生する熱応力は、端子電極部材の開口中空部を有する端部が変形することによって良好に吸収緩和され、凹部近傍のセラミック基体の内部に熱応力が大きく内在してしまうようなことはなく、従って、これに加熱による熱応力が繰り返し印加されてもこの応力がセラミック基体に内在する熱応力とあいまってセラミック基体にクラックを発生させたりすることがなく、端子電極部材とセラミック基体の内部に埋設された内部電極とを長期間にわたり確実に電気的に接続できる。
【0033】
また、本発明の端子構造によれば、内部電極の露出部および凹部の内壁にろう付けされた端子電極部材の開口中空部の開口から内方にかけてろう材に対するレジスト膜が被着されていることから、端子電極部材をセラミック基体の凹部内に嵌入してろう付けする際に、ろう材の一部が端子電極部材の開口中空部の内壁を濡らして表面張力により開口中空部の内部を埋めてしまうようなことがないため、端子電極部材の開口中空部を有する端部が変形することによる、ろう付けによって発生する熱応力の吸収が妨げられることがない。
【0034】
以上のように、本発明により、加熱による熱応力が繰り返し印加されてもセラミック基体にクラックを発生させることはなく、端子電極部材とセラミック基体内部に埋設された内部電極とを長期間にわたり確実に電気的に接続できる、信頼性が高い端子構造を提供することができた。
【図面の簡単な説明】
【図1】本発明の端子構造を静電チャックに適用した場合の実施の形態の一例を示す断面図である。
【図2】図1に示す端子構造の要部拡大断面図である。
【図3】本発明の端子構造の実施の形態の他の他の例を示す要部拡大断面図である。
【図4】静電チャックの例を示す断面図である。
【符号の説明】
1・・・・・・・セラミック基体
1a、1b・・・凹部
2a、2b・・・内部電極
3a、3b・・・端子電極部材
4a、4b・・・ろう材
5a、5b・・・レジスト膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal terminal member mounting structure in which one end of a rod-shaped metal terminal member is fitted into a recess provided in a ceramic base and the one end is brazed and fixed to an inner wall of the recess. .
[0002]
[Prior art]
As an example of adopting a terminal structure in which an internal electrode is embedded in a ceramic base, a terminal electrode member is joined to the internal electrode, and power is supplied from the outside, a ceramic heater using a heating resistor as an internal electrode, for example, In the manufacturing process of semiconductor integrated circuit elements such as LSI, electrostatic processing is performed as an internal electrode used for holding and fixing a wafer when various processes such as CVD, vacuum deposition, and photolithography are performed on a silicon wafer. There is an electrostatic chuck using an adsorption electrode.
[0003]
As shown in a cross-sectional view in FIG. 4, this electrostatic chuck has an electrostatic structure comprising a metallized layer of a refractory metal material such as tungsten or molybdenum inside a disk-shaped ceramic substrate 11 made of, for example, an aluminum nitride sintered body. A first internal electrode 12a made of a substantially flat metallized pattern for generation is embedded, and static electricity is generated on the surface of the ceramic substrate 11 by applying a voltage from the outside to the internal electrode 12a for generating static electricity. The silicon wafer or the like (not shown) is attracted and held on the surface of the ceramic substrate 11 by this static electricity.
[0004]
Further, in this electrostatic chuck, a second internal electrode 12b made of a metallized pattern for a heating resistor made of a metallized layer of a refractory metal material such as tungsten or manganese is formed in a serpentine shape inside the ceramic substrate 11. It is embedded, and the wafer adsorbed on the surface of the ceramic substrate 11 can be heated via the ceramic substrate 11 by supplying electric power to the internal electrode 12b for the heating resistor from outside to generate Joule heat. It has become.
[0005]
In order to apply a voltage from the outside to the internal electrode 12a for static electricity generation embedded in the ceramic substrate 11 or to supply power from the outside to the internal electrode 12b for the heating resistor, as a terminal structure thereof, A recess 11a that reaches the internal electrode 12a for static electricity generation on the ceramic substrate 11 and exposes a part of the internal electrode 12a and a recess 11b that reaches the internal electrode 12b for the heating resistor and exposes a part of the internal electrode 12b In the recesses 11a and 11b, one end portions of rod-like terminal electrode members 13a and 13b made of metal such as iron-nickel-cobalt alloy are fitted, and the one end portions are inserted into the recesses 11a and 11b. The terminal electrode members 13a and 13b are mounted in the recesses 11a and 11b by brazing the inner wall and the internal electrode 12a for generating static electricity and the internal electrode 12b for the heating resistor. Or applying an external voltage to the internal electrode 12a for static electricity to have no to supply power from outside to the internal electrode 12b of the heating resistor.
[0006]
[Problems to be solved by the invention]
However, according to such a conventional terminal structure, the thermal expansion coefficient of the aluminum nitride sintered body constituting the ceramic substrate 11 and the thermal expansion coefficient of the iron-nickel-cobalt alloy constituting the terminal electrode members 13a and 13b are increased. The terminal electrode members 13a and 13b are brazed into the recesses 11a and 11b provided in the ceramic substrate 11 because they are greatly different from 5.4 × 10 −6 / ° C. and 10 × 10 −6 / ° C. at room temperature to 800 ° C., respectively. At this time, a thermal stress due to the difference in thermal expansion coefficient between the two is generated between the ceramic base 11 and the terminal electrode members 13a and 13b, and this stress is largely present in the vicinity of the recesses 11a and 11b of the ceramic base 11. If thermal stress due to heat, such as when heating a wafer, is repeatedly applied to this, the thermal stress and the thermal stress inherent in the ceramic substrate 11 combine to generate cracks in the ceramic substrate 11. As a result, the electrical connection between the terminal electrode members 13a and 13b and the internal electrodes 12a and 12b may be impaired, and the terminal electrode members 13a and 13b may be detached from the insulating substrate 11. Had.
[0007]
The present invention has been devised in view of the above problems, and its purpose is not to cause cracks in the ceramic substrate even when thermal stress due to heating is repeatedly applied, and to the inside of the terminal electrode member and the ceramic substrate. An object of the present invention is to provide a highly reliable terminal structure capable of reliably connecting an embedded internal electrode over a long period of time.
[0008]
[Means for Solving the Problems]
In the terminal structure of the present invention, a concave portion that exposes a part of the internal electrode is formed in a ceramic base in which the internal electrode is embedded, and a terminal electrode member having an open hollow portion on the end surface is fitted into the concave portion. A terminal structure that is brought into contact with an exposed portion of an electrode and joined to the exposed portion and the inner wall of the concave portion via a brazing material, wherein the terminal electrode member extends inwardly from the opening of the opening hollow portion. A resist film is deposited.
[0009]
According to the terminal structure of the present invention, since the end surface of the terminal electrode member fitted into the recess of the ceramic base and brazed to the exposed portion of the internal electrode and the inner wall of the recess has the open hollow portion, the terminal When the end surface of the electrode member is brazed into the concave portion of the ceramic base, the thermal stress generated between the two is favorably absorbed and relaxed by the deformation of the end portion having the open hollow portion of the terminal electrode member, and in the vicinity of the concave portion. There is no possibility that thermal stress is inherently large in the ceramic substrate.
[0010]
In addition, since the resist film for the brazing material is deposited from the opening of the hollow portion of the terminal electrode member brazed to the exposed portion of the internal electrode and the inner wall of the recess to the inside, the terminal electrode member is attached to the ceramic substrate. When fitting into the recess and brazing, a part of the brazing material wets the inner wall of the opening hollow part of the terminal electrode member, and the inner wall of the opening hollow part is filled up by surface tension. Therefore, the absorption of the thermal stress generated due to the difference in the thermal expansion coefficient due to the brazing due to the deformation of the end portion having the open hollow portion of the terminal electrode member is not hindered.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the terminal structure of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing a case where an example of an embodiment of a terminal structure of the present invention is applied to an electrostatic chuck, and FIG. 2 is an enlarged sectional view of a main part of the terminal structure shown in FIG.
[0012]
In these drawings, reference numeral 1 denotes a ceramic substrate, 2a and 2b denote internal electrodes, and 3a and 3b denote terminal electrode members, which mainly constitute an electrostatic chuck.
[0013]
The ceramic substrate 1 is a substantially disk-shaped body made of a ceramic material having a good thermal conductivity such as an aluminum nitride sintered body, and serves as a support for supporting a silicon wafer or the like (not shown) on its upper surface. Function.
[0014]
If the ceramic substrate 1 is made of, for example, an aluminum nitride sintered body, an appropriate organic binder or solvent is added to and mixed with raw material powders such as aluminum nitride, yttrium oxide, and calcium oxide to form a slurry. A plurality of ceramic green sheets are obtained by adopting a conventionally well-known doctor blade method to form a sheet, which is appropriately punched and laminated vertically to form a ceramic green sheet laminate, and finally this The ceramic green sheet laminate is produced by firing at a temperature of about 1600 ° C. in a reducing atmosphere.
[0015]
The ceramic substrate 1 has an internal electrode 2a for generating static electricity for adsorbing a silicon wafer and the like, and an internal electrode 2b for a heating resistor for heating the adsorbed silicon wafer and the like embedded therein.
[0016]
The internal electrode 2a for generating static electricity embedded in the ceramic substrate 1 is, for example, a substantially flat metallized pattern, a metal plate, a metal mesh, or the like disposed in the vicinity of the upper surface of the ceramic substrate 1, and a predetermined voltage is externally applied thereto. Is applied to generate static electricity on the upper surface of the ceramic substrate 1, whereby a silicon wafer (not shown) is adsorbed and held on the upper surface of the ceramic substrate 1 by static electricity.
[0017]
Further, the internal electrode 2b for the heating resistor embedded in the ceramic substrate 1 is arranged as a resistor electrode having a meandering pattern, for example, at a substantially central portion in the thickness direction of the ceramic substrate 1, and a predetermined electric power is supplied to the internal electrode 2b from the outside. By supplying the heat, Joule heat is generated to heat the ceramic substrate 1, thereby heating the silicon wafer or the like adsorbed and held on the upper surface of the ceramic substrate 1 through the ceramic substrate 1.
[0018]
The internal electrode 2a for generating static electricity and the internal electrode 2b for the heating resistor embedded in the ceramic substrate 1 are made of, for example, a metallized pattern of a refractory metal such as tungsten / molybdenum, etc. A metal paste obtained by adding and mixing an appropriate organic binder and solvent to tungsten powder is printed and applied in a predetermined pattern on a ceramic green sheet serving as the ceramic substrate 1, thereby forming a predetermined shape at a predetermined position on the ceramic substrate 1. Is done.
[0019]
The ceramic substrate 1 has recesses 1a and 1b that reach the internal electrodes 2a and 2b and expose a part of the internal electrodes 2a and 2b on the lower surface side, and iron-nickel-cobalt is formed in the recesses 1a and 1b. A substantially cylindrical terminal electrode member 3a, 3b made of a metal such as an alloy and having an open hollow portion on the end face is fitted, the end face is brought into contact with the exposed portion of the internal electrodes 2a, 2b, and the exposed portion and the concave portion It is brazed to the inner walls of 1a and 1b.
[0020]
The terminal electrode members 3a and 3b that are brazed into the recesses 1a and 1b of the ceramic base 1 function as terminals for applying voltage and power from the outside to the internal electrodes 2a and 2b, and have a hollow portion on the side. Are inserted into the recesses 1a and 1b of the ceramic base 1, and the exposed portions of the internal electrodes 2a and 2b and the inner walls of the recesses 1a and 1b of the ceramic base 1 are active brazing materials such as silver-copper-titanium. It is joined via 4a and 4b.
[0021]
According to such an electrostatic chuck, static electricity for attracting a silicon wafer or the like to the upper surface of the ceramic substrate 1 is generated by applying a predetermined voltage to the internal electrode 2a via the terminal electrode member 3a, and the terminal By supplying electric power to the internal electrode 2b through the electrode member 3b, the internal electrode 2b generates Joule heat and the ceramic substrate 1 is heated.
[0022]
In order to insert and braze the terminal electrode members 3a and 3b into the recesses 1a and 1b of the ceramic substrate 1 through the active brazing materials 4a and 4b such as silver-copper-titanium, for example, the active brazing materials 4a and 4b are used. In the case of silver-copper-titanium, a brazing material paste obtained by adding and mixing an organic binder and a solvent to the silver-copper-titanium brazing material powder is applied to the inner walls of the recesses 1a and 1b of the ceramic substrate 1. The end of the terminal electrode members 3a and 3b having the open hollow portions is inserted into the recesses 1a and 1b coated with the brazing material paste, and this is fired at a temperature of about 800 ° C. in a vacuum atmosphere. Can be employed.
[0023]
Further, the terminal electrode members 3a and 3b are in a hollow state in which the end portions fitted and brazed into the recesses 1a and 1b of the ceramic base body 1 are opened so that the inside is hollowed out. The end portion is easily deformed by the application of stress.
[0024]
Since the terminal electrode members 3a and 3b have open hollow portions on the end surfaces of the ceramic base body 1 fitted and brazed into the concave portions 1a and 1b, the terminal electrode members 3a and 3b are connected to the concave portions 1a and 3b of the ceramic base body 1, respectively. The thermal stress generated due to the difference in thermal expansion coefficient between the terminal electrode members 3a and 3b and the ceramic base body 1 when fitting and brazing into 1b deforms the hollow ends of the terminal electrode materials 3a and 3b. As a result, the absorption is relaxed well, and the ceramic base 1 is not largely in the vicinity of the recesses 1a and 1b. For this reason, even when a thermal stress due to heat such as when heating a silicon wafer or the like is repeatedly applied thereto, the stress does not cause cracks in the ceramic substrate 1 together with the stress inherent in the ceramic substrate 1, It becomes possible to ensure the electrical connection between the terminal electrode members 3a and 3b and the internal electrodes 2a and 2b for a long period of time.
[0025]
The terminal electrode members 3a and 3b have a diameter of D and a diameter of the hollow portion d. When d / D> 0.9, the mechanical strength in the vicinity of the opening of the hollow portion is insufficient, and the terminal electrode member When an external force is applied to 3a and 3b, there is a tendency that the terminal electrode members 3a and 3b are easily broken by the external force. Further, when d / D <0.2, the vicinity of the opening of the hollow portion is not easily deformed, and the terminal electrode members 3a and 3b are inserted into the recesses 1a and 1b of the ceramic substrate 1 when the terminal electrode members 3a and 3b are brazed. It becomes difficult to effectively absorb the thermal stress generated due to the difference in the thermal expansion coefficient between 3b and the ceramic substrate 1, and the thermal stress tends to be largely present in the vicinity of the recesses 1a and 1b of the ceramic substrate 1. is there. Accordingly, the terminal electrode members 3a and 3b are preferably set to 0.2 ≦ d / D ≦ 0.9, particularly 0.5 ≦ d / D ≦ 0.7, where D is the diameter and d is the diameter of the hollow portion. More preferred.
[0026]
Further, the terminal electrode members 3a and 3b are coated with resist films 5a and 5b made of a material that does not wet with the brazing material on the inner surface from the opening of the opening hollow portion to the inside.
[0027]
The resist films 5a and 5b for the brazing material are made of, for example, a material that does not get wet with the brazing material such as boron nitride, aluminum nitride, silicon nitride, aluminum oxide, or silicon oxide, and the terminal electrode members 3a and 3b on the side having the open hollow portions. When the end portions are inserted into the recesses 1a and 1b of the ceramic substrate 1 and brazed, a part of the brazing material gets wet inside the open hollow portions of the terminal electrode members 3a and 3b and crawls up due to surface tension to fill the interior. As a result, the opening of the terminal electrode members 3a and 3b is prevented from being damaged. For example, in the case of boron nitride, boron nitride paste obtained by adding and mixing an appropriate organic binder or solvent to boron nitride powder having a particle size of about 0.1 to 10 μm is used for the open hollow portions of the terminal electrode members 3a and 3b. It is applied to the inner surface from the opening to the inside, and is simultaneously fired at the time of brazing, so that it is deposited from the opening of the opening hollow portion of the terminal electrode members 3a and 3b to the inside.
[0028]
Since the terminal electrode members 3a and 3b are coated with resist films 5a and 5b on the brazing material from the opening of the opening hollow portion to the inside, the end portions of the terminal electrode members 3a and 3b on the opening hollow portion side are ceramic. When fitting and brazing into the recesses 1a and 1b of the base body 1, it is effective that a part of the brazing material gets wet with the inner surface of the open hollow part of the terminal electrode members 3a and 3b and fills the inside by surface tension. The thermal expansion coefficient between the terminal electrode members 3a and 3b and the ceramic substrate 1 when the end portions of the terminal electrode members 3a and 3b are fitted and brazed into the recesses 1a and 1b of the ceramic substrate 1 can be prevented. The thermal stress generated due to the difference can be satisfactorily absorbed and relaxed by the deformation of the end portion on the opening hollow portion side.
[0029]
Thus, according to the terminal structure of the present invention, the terminal electrode members 3a and 3b can be mounted in the recesses 1a and 1b of the ceramic base 1 without causing large thermal stress to be embedded in the ceramic base 1 and embedded in the ceramic base 1. Thus, a highly reliable terminal structure capable of reliably connecting the internal electrodes 2a, 2b and the terminal electrode members 3a, 3b over a long period of time is obtained.
[0030]
The terminal structure of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
[0031]
For example, in the example of the above-described embodiment, the terminal electrode members 3a and 3b are brazed into the recesses 1a and 1b of the ceramic base 1 via the active brazing materials 4a and 4b such as silver-copper-titanium. The members 3a and 3b may be brazed into the recesses 1a and 1b of the ceramic substrate 1 via brazing materials 4a and 4b having no activity such as silver-copper brazing. In this case, FIG. 2, a metallized metal layer 6 made of a refractory metal powder such as tungsten, molybdenum, or manganese is deposited on the inner walls of the recesses 1a and 1b by a conventionally known metallization method. At the same time, the surface of the metallized metal layer 6 is subjected to nickel plating (not shown), and the terminal electrode members 3a and 3b are brazed on the nickel plating via brazing materials 4a and 4b having no activity such as silver-copper brazing. Kesuru method is adopted.
[0032]
【The invention's effect】
According to the terminal structure of the present invention, since the end surface of the terminal electrode member inserted into the recess of the ceramic base and brazed to the exposed portion of the internal electrode and the inner wall of the recess has the open hollow portion, the terminal When the end face of the electrode member is joined to the concave portion of the ceramic base via the brazing material, the thermal stress generated between the two is satisfactorily absorbed and relaxed by the deformation of the end portion having the open hollow portion of the terminal electrode member. Therefore, there is no large thermal stress inside the ceramic substrate in the vicinity of the recess. Therefore, even if a thermal stress due to heating is repeatedly applied to the ceramic substrate, this stress is combined with the thermal stress existing in the ceramic substrate. Without causing cracks in the ceramic substrate, the terminal electrode member and the internal electrode embedded in the ceramic substrate can be reliably electrically connected over a long period of time.
[0033]
Further, according to the terminal structure of the present invention, the resist film for the brazing material is applied from the opening of the hollow portion of the terminal electrode member brazed to the exposed portion of the internal electrode and the inner wall of the recess to the inside. Then, when the terminal electrode member is inserted into the concave portion of the ceramic base and brazed, a part of the brazing material wets the inner wall of the open hollow portion of the terminal electrode member and fills the inside of the open hollow portion by surface tension. Therefore, absorption of thermal stress generated by brazing due to deformation of the end portion of the terminal electrode member having the open hollow portion is not hindered.
[0034]
As described above, according to the present invention, cracks are not generated in the ceramic substrate even when thermal stress due to heating is repeatedly applied, and the terminal electrode member and the internal electrode embedded in the ceramic substrate are reliably provided over a long period of time. It was possible to provide a highly reliable terminal structure that can be electrically connected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment in which a terminal structure of the present invention is applied to an electrostatic chuck.
FIG. 2 is an enlarged cross-sectional view of a main part of the terminal structure shown in FIG.
FIG. 3 is an enlarged sectional view of a main part showing another example of the embodiment of the terminal structure of the present invention.
FIG. 4 is a cross-sectional view showing an example of an electrostatic chuck.
[Explanation of symbols]
1 ... Ceramic substrate 1a, 1b ... Recess 2a, 2b ... Internal electrode 3a, 3b ... Terminal electrode member 4a, 4b ... Brazing material 5a, 5b ... Resist film

Claims (1)

内部電極が埋設されたセラミック基体に前記内部電極の一部を露出させる凹部を形成するとともに、端面に開口中空部を有する端子電極部材を前記凹部に嵌入し、前記内部電極の露出部に当接させて該露出部および前記凹部の内壁とろう材を介して接合した端子構造であって、前記端子電極部材は、前記開口中空部の開口から内方にかけて前記ろう材に対するレジスト膜が被着されていることを特徴とする端子構造。A concave portion for exposing a part of the internal electrode is formed in the ceramic base in which the internal electrode is embedded, and a terminal electrode member having an open hollow portion on the end face is fitted into the concave portion, and is in contact with the exposed portion of the internal electrode. A terminal structure in which the exposed portion and the inner wall of the recess are joined via a brazing material, and the terminal electrode member is coated with a resist film for the brazing material from the opening of the opening hollow portion to the inside. Terminal structure characterized by
JP32748797A 1997-11-28 1997-11-28 Terminal structure Expired - Fee Related JP3660795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32748797A JP3660795B2 (en) 1997-11-28 1997-11-28 Terminal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32748797A JP3660795B2 (en) 1997-11-28 1997-11-28 Terminal structure

Publications (2)

Publication Number Publication Date
JPH11163108A JPH11163108A (en) 1999-06-18
JP3660795B2 true JP3660795B2 (en) 2005-06-15

Family

ID=18199712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32748797A Expired - Fee Related JP3660795B2 (en) 1997-11-28 1997-11-28 Terminal structure

Country Status (1)

Country Link
JP (1) JP3660795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019480A (en) * 2003-06-24 2005-01-20 Taiheiyo Cement Corp Joining structure for feeding terminal
JP5671351B2 (en) * 2011-01-12 2015-02-18 昭和電工株式会社 Manufacturing method of electronic device mounting substrate
JP7339753B2 (en) * 2019-03-22 2023-09-06 京セラ株式会社 Wafer mounting structure, wafer mounting apparatus and base structure using wafer mounting structure

Also Published As

Publication number Publication date
JPH11163108A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
KR100333785B1 (en) Joint structure of metal member and ceramic member and method of producing the same
JP4850992B2 (en) Apparatus for supporting wafer and method for manufacturing apparatus for supporting wafer
JPH10209255A (en) Junction structure between ceramics member and power supplying connector
KR100615443B1 (en) Ceramic heater
KR20090033394A (en) Semiconductor package
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP3660795B2 (en) Terminal structure
JP4436575B2 (en) Wafer support member and manufacturing method thereof
JP3752376B2 (en) Terminal structure
JP4189177B2 (en) Terminal electrode member
JP2001287982A (en) Susceptor and method for producing the same
JP2004055608A (en) Susceptor with built-in electrode
JP4122723B2 (en) Object holder
JP4502462B2 (en) Wafer support member and manufacturing method thereof
JP3808234B2 (en) Wafer support member
JP3854145B2 (en) Wafer support member
JP2001237301A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JPH0652975A (en) Ceramic heater and petroleum vaporizer utilizing the same
JP2020126913A (en) Ceramic member
JP3659306B2 (en) Package for storing semiconductor elements
JP2001237304A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP7242885B2 (en) Structure and heating device
JP3396468B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP2004356638A (en) Ceramic substrate for semiconductor manufacture / inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees