JP3658365B2 - Immersion nozzle - Google Patents

Immersion nozzle Download PDF

Info

Publication number
JP3658365B2
JP3658365B2 JP2001370813A JP2001370813A JP3658365B2 JP 3658365 B2 JP3658365 B2 JP 3658365B2 JP 2001370813 A JP2001370813 A JP 2001370813A JP 2001370813 A JP2001370813 A JP 2001370813A JP 3658365 B2 JP3658365 B2 JP 3658365B2
Authority
JP
Japan
Prior art keywords
swirl
swirl vane
immersion nozzle
flow
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001370813A
Other languages
Japanese (ja)
Other versions
JP2003170251A (en
Inventor
和男 野々部
峯夫 内田
耕太郎 武田
貴文 原田
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001370813A priority Critical patent/JP3658365B2/en
Publication of JP2003170251A publication Critical patent/JP2003170251A/en
Application granted granted Critical
Publication of JP3658365B2 publication Critical patent/JP3658365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶鋼の連続鋳造に使用する、鋳造鋳片の高品質化に有効な浸漬ノズルに関するものである。
【0002】
【従来の技術】
溶鋼の連続鋳造において、鋳造鋳片の高品質化の要求が強まるに伴い、鋳片中の欠陥発生防止は一層重要な課題となってきている。鋳片中の欠陥はアルミナやモールドパウダーに起因する介在物性欠陥とArガスや侵入空気に起因する気泡性欠陥に大別されるが、それらの欠陥の発生には浸漬ノズルからモールド内に吐出された溶鋼の流動が深く関与している。
【0003】
即ち、吐出された溶鋼の下方への流動が強すぎると、介在物や気泡が深く侵入し、鋳片中に取り込まれやすくなる。また、メニスカスへ向かう流動や表面付近の流動が強すぎると湯面変動が大きくなりモールドパウダーの巻き込みが生じる。
【0004】
また、2孔型浸漬ノズルの場合、ノズル内を下降する溶鋼流の流れ具合により、2つの吐出口からの吐出が均一でない状況が生じる場合がある。これは偏流と呼ばれる現象であり、モールド内での溶鋼の凝固状態の均一性が損なわれる原因となり、鋳片の品質低下の要因にあげられるものである。
【0005】
上記のような問題の対策として、浸漬ノズル内にねじりテープ状の旋回羽根を設置し、ノズル内の溶鋼流を旋回流とする技術が提案されている。(特開2000−237852号公報など)
【0006】
ねじりテープ状の旋回羽根は、製造方法の例が特開平11−41479号公報に記載されており、旋回付与手段として、実機に適用可能な技術である。
【0007】
【本発明が解決しようとする課題】
ねじりテープ状旋回羽根を設置すると、ノズル内の溶鋼流を旋回流とすることができ、種々の効果が得られる。しかし、ノズル内に溶鋼が充満している状態ではその効果が十分に得られるが、ノズル内に溶鋼が充満していない場合には、溶鋼流が旋回羽根上端に衝突した際に、溶鋼流同士で干渉しあい、スムーズに旋回流とならなかったり、旋回羽根により均一に二分されるべき流れが偏って旋回羽根部を通過するという問題があった。
【0008】
また、繰り返し使用しているうちに、旋回羽根上端部に介在物が堆積し、溶鋼流が均一に二分されなくなったり、介在物に起因する鋳片の品質低下という問題があった。
【0009】
【課題を解決するための手段】
本発明者等は旋回羽根の形状について種々検討し、旋回羽根上端部を厚さ方向から見て平面でなく、上に凸の形状とすることにより上記課題を解決することに成功し、本発明を完成させたものである。
【0010】
即ち、本発明はノズル内の溶鋼流を旋回流とするためのねじりテープ状の旋回羽根を装着した浸漬ノズルであって、該旋回羽根の上端部が厚さ方向から見て上に凸の形状であることを特徴とする浸漬ノズルである。
【0011】
さらに、本発明は旋回羽根の上端部が厚さ方向から見て上に凸の円弧状、部分楕円状、三角形状から選ばれる1種であることを特徴とする請求項1記載の浸漬ノズルである。
【0012】
本発明において、旋回羽根上端部が厚さ方向から見て上に凸の形状であるため、溶鋼をほぼ均一に二分し、良好な旋回流となすことができる。また溶鋼流が旋回羽根に達した際に、旋回羽根付近の溶鋼流も流れを妨げられることなくスムーズに流下するために、旋回羽根に付着物が堆積することが防止される。
【0013】
【発明の実施の形態】
本発明の浸漬ノズルに装着するねじりテープ状旋回羽根を図で説明する。図3は従来使用されてきた旋回羽根の斜視図である。この旋回羽根の上端部は厚さ方向から見て平面状である。
【0014】
本発明においては旋回羽根の厚さ方向から見た上端部が上に凸の形状であることが特徴である。上に凸の形状では図1に例示するような形状が好ましい。図1においては厚さ方向からみた上端部の形状を示すが(a)は円弧状、(b)は部分楕円状、(c)は三角形状の例である。(c)において、辺が曲線状となっているものも好ましい形状である。上に凸の形状において、溶鋼を均一に二分するために、厚さ方向から見て左右対称の形状であることが望ましい。図2に本発明に使用する旋回羽根の例を斜視図で示す。
【0015】
本発明においては旋回羽根の下端部の形状は特に限定するものではなく、従来のように平面上でもよいが、下端部が厚さ方向から見て円弧状、部分楕円上、三角形状等の下に凸の形状であることが望ましい。これは旋回羽根の部分を通過した溶鋼流がよりスムーズに合流し、付与された旋回力を低下させることなくノズル下部に流下していくことが可能となるためである。
【0016】
本発明の浸漬ノズルにおいて、旋回羽根の装着方法は特に限定されない。旋回羽根が使用中に反転したり下部に落下しないように装着できればよい。旋回羽根の径(幅)をほぼノズル内径と同じにして、段差あるいは内径を絞った構造にすれば旋回羽根は落下することなく良好に固定、装着される。図4に旋回羽根を装着した浸漬ノズルの一例を示す。
【0017】
本発明において、旋回羽根の上端部以外の形状は特に限定されるものではない。旋回羽根の幅は装着する浸漬ノズルの内径に依存するものであり、必然的にノズル内径よりやや小さい幅となる。旋回羽根の厚さは、溶鋼流による物理的衝撃、熱的衝撃に耐えられる範囲であれば、できるだけ薄い方が溶鋼流の妨げることがないので好ましい。
【0018】
旋回羽根のねじり角度は旋回流を発生させるための重要な要素であり、少なくとも50°以上であることが望ましく、100°以上であることがさらに望ましい。ねじり角度が50°未満の場合は満足しうる旋回流が得られない。ねじり角度に上限はないが、羽根の製造上、180°以下が望ましい。180°を超えると、製造が煩雑となるだけで、旋回流発生効果はさほど向上しない。180°を超えるねじり角度が必要な場合は2個以上の旋回羽根を組み合わせて固定、装着すれば任意の角度が得られる。
【0019】
旋回羽根の長さは、溶鋼に付与する旋回流の角速度を所望の範囲とできるように設定すればよい。羽根のねじり角度にもよるが、幅の1〜2倍の範囲が好ましい。
【0020】
旋回羽根の材質も特に限定されるものではない。溶鋼流による物理的衝撃、熱的衝撃に耐えられるものであれば、ノズルと同一材質でもよいし、異なる材質でも良い。本発明の旋回羽根は上端部が上に凸の形状となっているため、介在物の付着しにくい特徴があるが、旋回羽根の少なくとも表面をCaOを含有する材質とするのは介在物付着防止の面ではさらに好適である。また、旋回羽根は焼成品、不焼成品のいずれにも限定されない。
【0021】
【実施例】
本発明を実施例により説明する。表1に示す形状のねじりテープ状の旋回羽根を装着した内径80mm、旋回羽根装着部の下部は内径75mmとした浸漬ノズルを作製し、厚さ250mm、幅950mmのモールドサイズで1.5〜1.8m/分の速度でブリキ用アルミキルド鋼を鋳造し、1500トン鋳造後浸漬ノズル内壁面及び旋回羽根へのアルミナの付着状況を観察した。また、それぞれ製造した鋳片を圧延し、ブリキ板を製造し、ブリキ成品を磁粉探傷法により検査した。なお、浸漬ノズルの材質は実施例、比較例ともに同一で、パウダーライン部はジルコニア−カーボン質、他の部位はアルミナ−カーボン質とした。旋回羽根の材質はいずれもアルミナ−カーボン質とした。
【0022】
【表1】

Figure 0003658365
【0023】
これら実施例を以下に詳述する。
実施例1; 材質はアルミナ−カーボン質で、長さ80mm、幅78mm、ねじり角度100度の旋回羽根を作製した。旋回羽根の上端部を図1(a)に示したような上に凸の円弧状に加工したものを浸漬ノズルに装着した。1500トン鋳造後の観察結果では、まだ使用上の問題はなく、旋回羽根への介在物付着は上端部ではほとんど認められず、下端部にわずかに付着しているのが見られた。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.022%と極めて低く良好な歩留まりであった。
【0024】
実施例2; 材質はアルミナ−カーボン質で、長さ80mm、幅78mm、ねじり角度100度の旋回羽根を作製した。旋回羽根の上端部を図1(b)に示したような上に凸の部分楕円状に加工したものを浸漬ノズルに装着した。1500トン鋳造後の観察結果では、まだ使用上の問題はなく、旋回羽根への介在物付着は上端部ではほとんど認められず、下端部にわずかに付着しているのが見られた。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.02%と極めて低く良好な歩留まりであった。
【0025】
実施例3; 材質はアルミナ−カーボン質で、長さ80mm、幅78mm、ねじり角度100度の旋回羽根を作製した。旋回羽根の上端部を図1(c)に示したような上に凸の三角形状に加工したものを浸漬ノズルに装着した。1500トン鋳造後の観察結果では、まだ使用上の問題はなく、旋回羽根への介在物付着は上端部ではほとんど認められず、下端部にわずかに付着しているのが見られた。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.02%と極めて低く良好な歩留まりであった。
【0026】
実施例4; 材質はアルミナ−カーボン質で、長さ80mm、幅78mm、ねじり角度100度の旋回羽根を作製した。旋回羽根の上端部を実施例1と同じ上に凸の円弧状に、また下端形状を下に凸の円弧状に加工したものを浸漬ノズルに装着した。1500トン鋳造後の観察結果では、まだ使用上の問題はなく、旋回羽根への介在物付着は上端部、下端部ともにほとんど認められなかった。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.015%と極めて低く良好な歩留まりであった。
【0027】
比較例1; 材質はアルミナ−カーボン質で、長さ80mm、幅78mm、ねじり角度100度の旋回羽根を作製した。旋回羽根の上端部、下端部ともに平面形状のものを浸漬ノズルに装着した。1500トン鋳造後の観察結果では、まだ使用上の問題はなく、旋回羽根への介在物付着は上端部にはかなり付着しており、下端部にも僅かに付着していた。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.09%とであった。
【0028】
比較例2; 旋回羽根を装着しない浸漬ノズルを用い、1500トン鋳造後の観察結果では、ノズル内壁に介在物がかなり付着しており、吐出孔周辺部は特に著しくノズル閉塞寸前の状態であった。製造した鋳片を圧延しブリキ板を製造した。そのブリキ成品板を磁粉探傷法で検査したところ、欠陥発生率は0.45%と極めて高く、歩留まりも悪い結果であった。
【0029】
【発明の効果】
本発明の浸漬ノズルによれば、旋回羽根へのアルミナ介在物付着が抑制されるため、旋回羽根によるノズル内の溶鋼流を旋回流とする効果が長期にわたり維持され、浸漬ノズルの耐用向上のみならず鋳片の高品質化の効果が得られる。
【図面の簡単な説明】
【図1】 本発明に使用する旋回羽根の上端部の形状例を示す図である。
【図2】 本発明に使用する旋回羽根の一例を示す図である。
【図3】 従来の旋回羽根を示す図である。
【図4】 本発明による浸漬ノズルの一例を示す図である。
【符号の説明】
1 浸漬ノズル
2 ねじりテープ状の旋回羽根[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immersion nozzle used for continuous casting of molten steel and effective for improving the quality of cast slabs.
[0002]
[Prior art]
In continuous casting of molten steel, as the demand for higher quality cast slabs becomes stronger, prevention of defects in the slabs has become an even more important issue. Defects in the slab are broadly divided into inclusion physical defects caused by alumina and mold powder and bubble defects caused by Ar gas and intrusion air. These defects are discharged from the immersion nozzle into the mold. The flow of molten steel is deeply involved.
[0003]
That is, if the flow of the discharged molten steel is too strong, the inclusions and bubbles penetrate deeply and are easily taken into the slab. In addition, when the flow toward the meniscus or the flow near the surface is too strong, the molten metal surface fluctuation increases and the mold powder is involved.
[0004]
In the case of a two-hole immersion nozzle, there may be a case where the discharge from the two discharge ports is not uniform due to the flow of the molten steel flow descending in the nozzle. This is a phenomenon called uneven flow, which causes a deterioration in the uniformity of the solidified state of the molten steel in the mold, and is a cause of quality deterioration of the slab.
[0005]
As a countermeasure against the above problems, a technique has been proposed in which twisted tape-shaped swirl vanes are installed in the immersion nozzle and the molten steel flow in the nozzle is swirled. (Japanese Unexamined Patent Application Publication No. 2000-237852)
[0006]
An example of a method for producing a twisted tape-shaped swirl vane is described in Japanese Patent Application Laid-Open No. 11-41479, and is a technique applicable to an actual machine as a swivel imparting means.
[0007]
[Problems to be solved by the present invention]
When the twisted tape-like swirl vane is installed, the molten steel flow in the nozzle can be turned into a swirl flow, and various effects can be obtained. However, the effect is sufficiently obtained when the molten steel is filled in the nozzle, but when the molten steel is not filled in the nozzle, when the molten steel collides with the upper end of the swirl blade, the molten steel flows In other words, the swirl flow does not smoothly occur, or the flow to be evenly divided by the swirl vanes is biased and passes through the swirl blades.
[0008]
In addition, during repeated use, inclusions accumulated on the upper end of the swirl vane, and the molten steel flow was not evenly divided into two parts, and there was a problem that the quality of the slab was deteriorated due to the inclusions.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have variously studied the shape of the swirl vane and succeeded in solving the above-mentioned problem by making the swirl vane upper end portion not a flat surface as viewed from the thickness direction but a convex shape upward. Was completed.
[0010]
That is, the present invention is an immersion nozzle equipped with a twisted tape-like swirl vane for turning the molten steel flow in the nozzle into a swirl flow, and the upper end of the swirl vane has an upwardly convex shape when viewed from the thickness direction. It is an immersion nozzle characterized by being.
[0011]
Furthermore, the present invention is the submerged nozzle according to claim 1, wherein the upper end of the swirl vane is one selected from a circular arc shape, a partial ellipse shape, and a triangular shape as viewed from the thickness direction. is there.
[0012]
In the present invention, since the upper end portion of the swirl vane has an upwardly convex shape when viewed from the thickness direction, the molten steel can be divided almost evenly into a good swirl flow. Further, when the molten steel flow reaches the swirl vane, the molten steel flow in the vicinity of the swirl vane flows smoothly without being interrupted, so that deposits are prevented from accumulating on the swirl vane.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The torsion tape-like swirl blade attached to the immersion nozzle of the present invention will be described with reference to the drawings. FIG. 3 is a perspective view of a swirl blade that has been conventionally used. The upper end portion of the swirl vane is planar when viewed from the thickness direction.
[0014]
In this invention, it is the characteristics that the upper end part seen from the thickness direction of the swirl | wing blade is an upward convex shape. In the upward convex shape, the shape illustrated in FIG. 1 is preferable. FIG. 1 shows the shape of the upper end as viewed from the thickness direction, where (a) is an arc, (b) is a partial ellipse, and (c) is a triangle. In (c), a shape having a curved side is also a preferable shape. In an upwardly convex shape, in order to bisect the molten steel evenly, it is desirable that the shape is symmetric when viewed from the thickness direction. FIG. 2 is a perspective view showing an example of swirl vanes used in the present invention.
[0015]
In the present invention, the shape of the lower end portion of the swirl vane is not particularly limited, and may be a flat surface as in the past, but the lower end portion is an arc shape, a partial ellipse shape, a triangular shape, etc. as viewed from the thickness direction. A convex shape is desirable. This is because the molten steel flow that has passed through the swirl vanes merges more smoothly and can flow down to the lower part of the nozzle without reducing the applied swirl force.
[0016]
In the immersion nozzle of the present invention, the method for attaching the swirl blade is not particularly limited. It is only necessary that the swirl vane can be mounted so that it does not reverse during use or fall to the bottom. If the diameter (width) of the swirl vane is substantially the same as the inner diameter of the nozzle and the step or inner diameter is reduced, the swirl vane can be fixed and mounted without dropping. FIG. 4 shows an example of an immersion nozzle equipped with swirl vanes.
[0017]
In the present invention, the shape other than the upper end portion of the swirl blade is not particularly limited. The width of the swirl vane depends on the inner diameter of the immersion nozzle to be mounted, and inevitably becomes a width slightly smaller than the inner diameter of the nozzle. As long as the thickness of the swirl vane is within a range that can withstand physical shock and thermal shock caused by the molten steel flow, it is preferable that the thickness of the swirl vane is as thin as possible because the molten steel flow is not disturbed.
[0018]
The twist angle of the swirl vane is an important factor for generating a swirl flow, and is desirably at least 50 ° or more, and more desirably 100 ° or more. When the twist angle is less than 50 °, a satisfactory swirl flow cannot be obtained. There is no upper limit to the twist angle, but it is preferably 180 ° or less in terms of blade manufacturing. If it exceeds 180 °, the production becomes complicated, and the effect of generating the swirling flow is not so improved. If a twist angle exceeding 180 ° is required, an arbitrary angle can be obtained by combining and fixing two or more swirl vanes.
[0019]
What is necessary is just to set the length of a turning blade so that the angular velocity of the turning flow provided to molten steel can be made into a desired range. Although depending on the twist angle of the blade, a range of 1 to 2 times the width is preferable.
[0020]
The material of the swirl vane is not particularly limited. The same material as the nozzle or a different material may be used as long as it can withstand physical impact and thermal impact caused by the molten steel flow. The swirl vane of the present invention has a feature that the upper end portion is convex upward, so that inclusions are difficult to adhere, but at least the surface of the swirl vane is made of a material containing CaO to prevent inclusion adhesion This is further preferable. Further, the swirl blade is not limited to either a fired product or a non-fired product.
[0021]
【Example】
The present invention is illustrated by examples. An immersion nozzle having an inner diameter of 80 mm and a lower part of the swirl blade mounting part with an inner diameter of 75 mm mounted with a twisted tape-shaped swirling blade of the shape shown in Table 1 is produced with a mold size of 250 mm and a width of 950 mm. The aluminum killed steel for tinplate was cast at a speed of 8 m / min, and after the casting of 1500 tons, the state of adhesion of alumina to the inner wall of the immersion nozzle and the swirling blade was observed. In addition, each slab produced was rolled to produce a tin plate, and the tin plate product was inspected by a magnetic particle inspection method. The material of the immersion nozzle was the same in both the examples and the comparative examples, the powder line part was made of zirconia-carbon, and the other parts were made of alumina-carbon. All the swirl vanes were made of alumina-carbon.
[0022]
[Table 1]
Figure 0003658365
[0023]
These examples are described in detail below.
Example 1 The material was alumina-carbon, and a swirl vane having a length of 80 mm, a width of 78 mm, and a twist angle of 100 degrees was produced. The upper end of the swirl vane was processed into an upwardly convex arc shape as shown in FIG. According to the observation results after the 1500-ton casting, there was no problem in use yet, and inclusions adhering to the swirl vanes were hardly observed at the upper end portion, but were slightly attached to the lower end portion. The produced slab was rolled to produce a tin plate. When the tin plate was inspected by the magnetic particle inspection method, the defect occurrence rate was as extremely low as 0.022%, which was a good yield.
[0024]
Example 2 A swirling blade having a length of 80 mm, a width of 78 mm, and a twist angle of 100 degrees was made of an alumina-carbon material. The upper end of the swirl vane was processed into an upwardly convex partial ellipse as shown in FIG. According to the observation results after the 1500-ton casting, there was no problem in use yet, and inclusions adhering to the swirl vanes were hardly observed at the upper end portion, but were slightly attached to the lower end portion. The produced slab was rolled to produce a tin plate. When the tin plate was inspected by the magnetic particle inspection method, the defect occurrence rate was as extremely low as 0.02%, which was a good yield.
[0025]
Example 3 A swirling blade having a length of 80 mm, a width of 78 mm, and a twist angle of 100 degrees was manufactured using alumina-carbon. The upper end of the swirl vane was processed into an upwardly convex triangular shape as shown in FIG. According to the observation results after the 1500-ton casting, there was no problem in use yet, and inclusions adhering to the swirl vanes were hardly observed at the upper end portion, but were slightly attached to the lower end portion. The produced slab was rolled to produce a tin plate. When the tin plate was inspected by the magnetic particle inspection method, the defect occurrence rate was as extremely low as 0.02%, which was a good yield.
[0026]
Example 4 A swirling vane having a length of 80 mm, a width of 78 mm, and a twist angle of 100 degrees was made of an alumina-carbon material. The upper end of the swirl blade was processed into the same upward convex arc as in Example 1, and the lower end was processed into a downward convex arc. According to the observation results after the 1500-ton casting, there was no problem in use yet, and inclusions on the swirl vanes were hardly recognized at the upper end and the lower end. The produced slab was rolled to produce a tin plate. When the tin plate was inspected by a magnetic particle inspection method, the defect occurrence rate was as extremely low as 0.015%, which was a good yield.
[0027]
Comparative Example 1 The material was alumina-carbon, and a swirling blade having a length of 80 mm, a width of 78 mm, and a twist angle of 100 degrees was produced. Both the upper end portion and the lower end portion of the swirl vane were mounted on the immersion nozzle. According to the observation results after the 1500-ton casting, there was no problem in use yet, and the inclusions adhered to the swirl blades were considerably adhered to the upper end portion and slightly adhered to the lower end portion. The produced slab was rolled to produce a tin plate. When the tin plate was inspected by the magnetic particle inspection method, the defect occurrence rate was 0.09%.
[0028]
Comparative Example 2 Using an immersion nozzle not equipped with swirling blades, the observation results after 1500 tons casting showed that inclusions were considerably attached to the inner wall of the nozzle, and the periphery of the discharge hole was in a state almost immediately before the nozzle blockage. . The produced slab was rolled to produce a tin plate. When the tin plate was inspected by the magnetic particle inspection method, the defect occurrence rate was extremely high at 0.45%, and the yield was also poor.
[0029]
【The invention's effect】
According to the immersion nozzle of the present invention, since the alumina inclusions are prevented from adhering to the swirl vane, the effect of making the molten steel flow in the nozzle by the swirl vane a swirl flow is maintained for a long period of time. The effect of improving the quality of the slab can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a shape example of an upper end portion of a swirl blade used in the present invention.
FIG. 2 is a diagram showing an example of swirl vanes used in the present invention.
FIG. 3 is a view showing a conventional swirl vane.
FIG. 4 is a diagram showing an example of an immersion nozzle according to the present invention.
[Explanation of symbols]
1 Immersion nozzle 2 Twisted tape-shaped swirl vane

Claims (2)

ノズル内の溶鋼流を旋回流とするためのねじりテープ状の旋回羽根を装着した浸漬ノズルであって、該旋回羽根の上端部が厚さ方向から見て上に凸の形状であることを特徴とする浸漬ノズル。  An immersion nozzle equipped with a twisted tape-shaped swirl vane for turning the molten steel flow in the nozzle into a swirl flow, wherein the upper end of the swirl vane has an upwardly convex shape when viewed from the thickness direction. Immersion nozzle. 旋回羽根の上端部が厚さ方向から見て上に凸の円弧状、部分楕円状、三角形状から選ばれる1種であることを特徴とする請求項1記載の浸漬ノズル。2. The immersion nozzle according to claim 1, wherein the upper end portion of the swirl vane is one selected from an arc shape, a partial ellipse shape, and a triangular shape that are upwardly convex when viewed from the thickness direction .
JP2001370813A 2001-12-05 2001-12-05 Immersion nozzle Expired - Fee Related JP3658365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370813A JP3658365B2 (en) 2001-12-05 2001-12-05 Immersion nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370813A JP3658365B2 (en) 2001-12-05 2001-12-05 Immersion nozzle

Publications (2)

Publication Number Publication Date
JP2003170251A JP2003170251A (en) 2003-06-17
JP3658365B2 true JP3658365B2 (en) 2005-06-08

Family

ID=19179976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370813A Expired - Fee Related JP3658365B2 (en) 2001-12-05 2001-12-05 Immersion nozzle

Country Status (1)

Country Link
JP (1) JP3658365B2 (en)

Also Published As

Publication number Publication date
JP2003170251A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP4419934B2 (en) Method for continuous casting of molten metal
WO1999015291A1 (en) Immersion nozzle
JP3658365B2 (en) Immersion nozzle
JP3765535B2 (en) Continuous casting method of aluminum ingot
JP3673372B2 (en) Immersion nozzle for continuous casting
JP7121299B2 (en) immersion nozzle
JPH0114386Y2 (en)
JP4673719B2 (en) Dipping nozzle for continuous casting and method for continuous casting of steel
JP3277858B2 (en) Continuous casting method of beam blank
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JP2000237852A (en) Immersion nozzle
JPH10128506A (en) Immersion nozzle for continuous casting
JPH02187240A (en) Submerged nozzle for high speed continuous casting
JP2005021950A (en) Method for manufacturing amorphous alloy thin strip
JPH04220148A (en) Molten steel supplying nozzle
JP6792179B2 (en) Immersion nozzle for continuous casting
JP2004283848A (en) Immersion nozzle for continuous casting of steel
JP2002248551A (en) Continuous casting method for steel
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2002219561A (en) Immersion nozzle
JP3505053B2 (en) Immersion nozzle for thin-wall wide cast slab continuous casting
JPH0259155A (en) Method for continuously casting steel and submerged nozzle
JPH05185192A (en) Immersed nozzle for continuous casting
JPS6353901B2 (en)
JP2001087843A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees