JP3656387B2 - Fluorescent substance forming method and apparatus for color display PDP - Google Patents

Fluorescent substance forming method and apparatus for color display PDP Download PDF

Info

Publication number
JP3656387B2
JP3656387B2 JP566398A JP566398A JP3656387B2 JP 3656387 B2 JP3656387 B2 JP 3656387B2 JP 566398 A JP566398 A JP 566398A JP 566398 A JP566398 A JP 566398A JP 3656387 B2 JP3656387 B2 JP 3656387B2
Authority
JP
Japan
Prior art keywords
phosphor
dispenser
substrate
liquid
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP566398A
Other languages
Japanese (ja)
Other versions
JPH11204032A (en
Inventor
大道 光明寺
直子 松田
裕之 中
茂夫 鈴木
浩幸 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP566398A priority Critical patent/JP3656387B2/en
Publication of JPH11204032A publication Critical patent/JPH11204032A/en
Application granted granted Critical
Publication of JP3656387B2 publication Critical patent/JP3656387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は壁掛けテレビや情報表示用のディスプレイとして用いられるカラープラズマディスプレイパネルの製造方法およびその製造装置に関するものである。
【0002】
【従来の技術】
プラズマディスプレイ(PDP)の背面板には、細長いストライプ状の凹部が多数併設
ている。この凹部ごとに、赤、青、緑色の3色の蛍光体膜を作製することが必要である。そして蛍光体を形成する方法としては、簡単に低コストでできる等の理由によりスクリーン印刷法が多く用いられている。
【0003】
この方法は、凹部を有する背面パネル全体に、蛍光体粒子が溶剤に分散されてなる蛍光体液を塗布し乾燥硬化させて蛍光体膜を形成する方法で、各色ごとに、所望の凹部にマスキングのパターンをあわせて同様の作業を繰り返す方法である。
【0004】
しかしながら、スクリーン印刷方法ではスキージおよび蛍光体液の重みによりマスクが機械的変形を起こしその結果精度の高いパターンを形成するのが非常に困難である。
【0005】
また、高精度で作製できる方法として、フォトグラフィーを用いた方法もあるが、この場合、塗布、露光、現像、乾燥等の多くの工程が必要であり高コストになる。
【0006】
また、高精度で作製できる方法として、蛍光体と高粘度溶剤からなる蛍光体フィルムを基板の上に、貼り付け、凹部内部に押しつけ、不必要な部分を露光等の方法で取り除く方法もあるが、蛍光体量が必要量の3倍以上必要であり、高コストになる。
【0007】
【発明が解決しようとする課題】
PDPにおいて、各凹部の発光を良好に行わせるには、凹部で発生した放電を蛍光体に効率よく作用させ、蛍光体で発生した光を効率よく外部に取り出す必要がある。そのため、蛍光体膜の配置形状として、凹部内部にある程度以上の膜厚(20μm±5μm)で、均質で、全体に作製されていることが必要である。ドーム状、パラボラ状の形状が好ましい。また、膜厚は、基板すべてに対して同じように作製されていないと、むら等が発生する。また、当然、混色等が存在することは好ましくない。また、各凹部間に蛍光体が付着しているとコントラストが落ちるため良好な画面品質が期待できない。
【0008】
ところが、前記した基板の全体に、印刷方法で蛍光体液を塗布し乾燥硬化させる方法では、上記のような要求を十分に満足させることができなかった。凹部の内面全体に確実に蛍光体膜を形成させるほど大量の蛍光体液を凹部の内部に充填すると形成させる膜厚が厚くなりすぎるとともに、蛍光体膜が凹部からはみでて形成される可能性も高い。蛍光体液の量を少なくすると、凹部の底部近くにしか蛍光体液が供給させず、その部分にのみ蛍光体膜が形成させる。
【0009】
さらに、蛍光体液を塗布乾燥する前に、液中の蛍光体が沈降し、凹部底部にしか付着しないとい問題もある。
【0010】
このような問題を解決するため、凹部を完全に埋めるほど蛍光体を供給して分厚い蛍光体膜を形成後、蛍光体膜の一部を研磨除去し、所望の膜厚にする方法も考えだされたが、研磨のコストおよび、蛍光体費用、研磨の制御が困難である等の問題がある。
【0011】
前記に示した蛍光体フィルムを基板の上に、貼り付け、凹部内部に押しつけ、不必要な部分を露光等の方法で取り除く方法もあるが、蛍光体量が必要量の3倍以上必要であり、高コストになる。
【0012】
基板自身の課題として、特に、印刷工法で作製された基板の場合、印刷で使用した溶剤を飛ばすため、500度付近で焼成を行う。そのため、基板ガラスがゆがみ、凹凸部分において、規則性(凸部間隔、凹部間隔)が欠如する部分ができる場合が多い。この場合、ノズルの吐出間隔がリブ間隔と一致しないため、単純には塗布できない。また、他の工法で作製した基板にも、熱処理にともなうゆがみ、ひずみが存在する。
【0013】
【課題を解決するための手段】
基板の表面に複数形成された直線状凹部に、蛍光体液をディスペンサーから吐出し、熱処理で蛍光体膜を形成する方法であって、前記ディスペンサーからの吐出量を前記直線状凹部の体積に対する充填率が65%から105%になる量にし、前記基板と前記ディスペンサーの間に、選択的に開口部が形成されたマスクを前記基板と略平行に位置させ、前記マスクを介して前記ディスペンサーから蛍光体液を吐出させながら前記基板と前記マスクとを前記ディスペンサーに対して前記直線状凹部の直線方向に相対的に移動させる方法を用いる
【0014】
板の表面に複数形成された直線状凹部に、蛍光体液をディスペンサーから吐出し、処理で蛍光体膜を形成する方法であって、前記ディスペンサーからの吐出量を前記直線状凹部の体積に対する充填率が65%から105%になる量にし、前記ディスペンサーで蛍光体液を吐出させながら前記直線状凹部の直線方向にそって前記基板と前記ディスペンサーを相対的に移動させ、前記直線方向の移動中に吐出を一時的に止める方法を用いる。
【0015】
ディスペンサーが、吐出口が略直線状に配置された複数のディスペンサーからなり、前記複数のディスペンサーそれぞれから異なった色を同時に吐出する方法を用いる
【0016】
線状凹部の直線方向と基板面内で直交する方向の間隔を検出し、ディスペンサーが、吐出口が略直線状に配置された複数のディスペンサーからなり、前記複数のディスペンサーを回転させ、検出した間隔に前記ディスペンサーの吐出口のピッチをあわせる方法を用いる
【0017】
ィスペンサーの吐出口を含む面を除いて、蛍光体液が接するすべての面において、液と接する側の面の法線方向ベクトルと重力方向ベクトルのなす角度において、小さい方の角度が0度〜135度までである方法を用いる。
【0018】
【発明の実施の形態】
(実施の形態1)
図1に本発明の実施形態1を示す。20はディスペンサー、22は蛍光体液供給系、30は蛍光体液、40はマスク、10は基板である。
【0019】
基板10は、ガラス材料からなり、基板上には異種の物質からなる凹部がライン状に作製されている。ディスペンサー20は、液を吐出させながら、約0.5〜2m/秒で、開口部に沿って高速に移動することで、基板10の開口部に相当する部分に蛍光体液を満たす。ディスペンサー20の吐出口の大きさは、0.15mmの溝に蛍光体を挿入するため、これより小さい直径の円状の口径が必要である。なお、ディスペンサー20を固定し、基板10をセットしている台をマスクと一体でモーターで往復移動させる構成をとってもよい。凹部の体積の90%が蛍光体液で満たされるように、吐出量を制御する。ディスペンサー20から吐出する液は、常時連続吐出することが望ましい。
【0020】
マスク材として、アルミとSUS316の厚み0.5mmの金属板を用いた。マスクの厚みが厚く、マスクと基板間の距離が近い場合には、厚みの部分で蛍光体液の跳ね返りがたまり、再落下することで、別の部分に蛍光体液が入ったり、色らがおこる。蛍光体液は、粘度30〜100cpsと粘度が低いのものを用いる。
【0021】
基板の凹凸パターンに応じて、マスクの開口部および非開口部の構成を自由に選択することができる。
【0022】
ディスペンサー20の吐出口と基板との距離は、ディスペンサー20からの蛍光体液の広がりの状態と曲がりの状態で決まる。まず、広がり状態について考える。この発明の場合、通常の場合と違い、吐出口が約0.1mm直径と小さく、吐出の断面積あたり表面積が大きく、吐出速度も大きい。また、高濃度のスラリ−液を使用しているため、通常の水の場合とかなり違う挙動を示す。つまり、図2のような吐出状態になる。図2に示すように、地点A、初速度V1断面積S1、吐出量Q1(Q1=V1×S1)で吐出させた液が、地点B、速度V2、断面積S2、吐出量Q2(Q2=V2×S2)になるとする。V2は、自由落下によりV1より大きくなり、吐出量は一定(Q1=Q2)であるため、必然的にS2はしだいに小さくなる。さらに、自由落下距離が進むと速度が大きくなり、ついには、地点Cで、外側の部分が微細粒子化し散乱する。凹部に蛍光体液を塗布するには、吐出断面積が、凹部の溝幅より小さくないといけないし、直線状につながっている必要がある。上記の広がり状態は、液の表面張力と粘度、初速度に大きく影響される。初速度は、ディスペンサーの安定性(目づまり)等から範囲が限定され、表面張力も、溶剤で限定される。また、液の粘度も約0.1mmの吐出口から吐出させるため限定される。そのため、この工法で用いることのできる蛍光体液は、特性的に限定されている。図3に、今回用いた液の吐出断面積とディスペンサーからの距離の関係を実験で求めた値を示す。50mmを越えたところから、粒状になり散乱が始まる。従って直線状に安定な塗布を行うには、ディスペンサー吐出口と基板間距離hを50mm以下にしないと塗布できない。
【0023】
つぎに、まがり状態について考える。図4(a)に示すように、ディスペンサーからの液の吐出30は垂線31に対して微小角度曲がる。曲がる原因は、吐出口の加工直進精度や対象性の欠如、傷などや吐出口の表面状態の不均一性による。とくに、この場合、液の粘性が高く、高濃度スラリー液のため、吐出口近傍で液が微小量でも不均一にぬれ広がり、表面張力バランスがくずれて吐出が曲がりやすい。吐出口の加工精度や対象性の欠如、傷などの場合、いつも同じ方向に曲がる。一方、吐出口の表面状態の不均一性による場合は、吐出とともに変化する。前者の加工精度等が完全に保証された場合のディスペンサーにて、曲がり状態を調べた。その結果を図5に示す。図5で、99%の再現性確率が保証できる曲がりの範囲は、±0.05度となり、常にこの程度の直進度の角度ずれを見込んでおく必要がある。
【0024】
上記の2つの制約条件から凹部とディスペンサー間距離hを求める。吐出断面積の状態からは、50mm以下で用いることが必須となる。一方、吐出の曲がりからは、凹部とディスペンサー間距離hを60mmとした場合、吐出にて曲がる距離は、L1=0.052mmずれる。図4(b)で示すように、凹部の溝の半分の幅はL2=0.075mmであり、その中央から0.052mmずれ、その差0.023mmが吐出液の許される最大の半径となる。この直径として、0.046mmまで許される。現在の吐出口約1mmから吐出され場合、60mmの距離で、その吐出の直径は、0.045mmであり、凹部内に完全に吐出できる。さらに、ディスペンサーと凹部間距離が60mm以下に縮まれば、吐出曲がりから許される吐出の直径が大きくなり、吐出すべてを凹部に挿入することができる。以上の2つの共通範囲から、ディスペンサー吐出口と基板間距離は、50mm以下であることが必須となる。
【0025】
また、マスクの応用として、図6(a)とその断面図6(b)に示すように、基板全体と同じ大きさのマスク40を作製し、マスク40に凹部部分に対応する開口部分を開け、その上から蛍光体液を吐出することも考えられる。このようにすれば、凸部分に蛍光体を付着させずに、凹部にのみ選択的に蛍光体塗布ができる。マスク40の厚みは、1〜0.5mm程度がよい。厚みが厚いと、吐出が曲がってマスク40の内側部分に蛍光体液がふれて、マスク40の裏面(基板側)に伝わり、凸部上についてしまう。
【0026】
(実施の形態2)
図7と図8で本発明を説明する。図7は従来のディスペンサー20の断面と基板10の断面をしめしている。その他、液等は、実施形態1と同じである。図7からわかるように、蛍光体液は、水やアルコールとちがい、粘性がたかく、表面張力が低いため、吐出口の近傍にぬれ広がり50を生成しやすく、その結果、吐出が曲がりやすい。れ広がり50が生成すると、吐出はその方向に曲がる。吐出口を布等で拭き取れば、まっすぐ吐出するが、時間変化および、長期の安定性から吐出は曲がる傾向にある。この発明では、図8に示すように、液のガイド90を設けることで吐出をまっすぐにしている。ガイド90は、ディスペンサー29の吐出口の略中央付近にあって、吐出面よりも突出して線状に位置する。このガイド90に引き寄せられ、まっすぐに下に落ちる。ガイド90は、ピアノ線や、馬、ブタ、やぎの毛、ナイロン等の細い線で作製できる。柔なんな馬、ブタ、やぎの毛、ナイロンの場合、凹部の底部に直接接触させながら、蛍光体液を吐出させると、確実に凹部へ蛍光体液を吐出できる。さらに液の吐出ON/OFF動作を繰り返しても、液によるディスペンサー20の吐出口のよごれが生じないため安定である。また、この実施例では、吐出口の中央から液ガイドを吐出させているが、吐出口の一部を吐出面より突出させた突出部91を設けることで、上と同様の効果を得ることができる(図8(c))。
【0027】
(実施の形態3)
図9と10と11で実施形態3を説明する。ディスペンサー20は例えば、3本吐出口をもつディスペンサーである。その他、液等は、実施形態1と同じである。図9は従来のディスペンサーの蛍光体吐出後の断面であり、時間がたつにつれて、蛍光体110が吐出口の周辺に沈澱し、吐出口が詰まったり、吐出ラインがまがる。特に、吐出口とディスペンサー側面の間は、流速が遅く、蛍光体が沈澱しやすい。それに比較すると吐出口と吐出口の間は、流速が速く沈澱もすくない。これらの沈殿を無くす方法として、この発明のヘッドの断面図10、11を示す。図10では、ヘッド内にセラミック圧電素子120が1組埋め込まれていて、超音波を発生できる。蛍光体液を基板に塗布する時は、吐出の安定性を保つため、超音波を発生させないのが望ましい。または、低出力の超音波を連続的に発生させてもよい。この超音波によって、蛍光体の沈殿110は生成されず、長期に渡って、吐出ラインが安定する。また、吐出のON/OFFと組み合わせることもできる。つまり、OFFの場合、超音波を発生させ、蛍光体沈殿するのを防ぎ、ONの場合、超音波を発生させない。図11(a)では、蛍光体が沈澱しないような急斜面をディスペンサー内の全面に設けている。面の傾斜の角度の定義は、液と接する面の法線と重力方向のなす角度の小さい方の角度で定義した(図11(b))。沈殿を抑える限界の斜面の角度は次のような実験で求めた。つまり傾斜角度を任意に変えた金属板の上に、蛍光体液を滴下し、金属板上の蛍光体液の挙動を観察した。その結果、θ=0〜135度までの場合、蛍光体液が残らず、沈殿もなく金属板上を下方に流れることを確認した。
【0028】
(実施の形態4)
図12(a)と(b)で実施形態4を説明する。図12(a)でディスペンサー20は3本吐出口をもつディスペンサーである。その他、液等は、実施形態1と同じである。140は蛍光体液をおくりだすポンプ、142は蛍光体液タンク、143はポンプの制御ユニット、144は基板の移動モーター制御ユニット、145は熱電対、146はベルト、147はモーター、148はベルト146と基板とを機械的に締結する締結金具である。蛍光体液の温度を145の熱電対で測定し、予め計測しておいた図12(b)のグラフから吐出量を見積もり、凹部の中に蛍光体液を一定量充填する基板速度を求める。144のモーター制御ユニットにて、基板移動速度を変化させることで、液の温度による吐出量変化を補正し、均一に蛍光体液を凹部に吐出させる。蛍光体液は温度により、粘度が大きく変わり、吐出変化の主な原因である。そのため、液温の変化によって、吐出が大きく変化する。また、基板速度は、基板下部につけてあるモーター147の回転をベルト146をとおして、基板に伝えることで変化させていて、モーター147の回転数はコントローラー144で自由に制御できる。この発明では、液温の変化による吐出量変化を、精度よく
制御しやすい基板速度で補って、凹部への充填率を一定にして、均質な蛍光体膜を作製する。すなわち、温度が2℃上昇すると、蛍光体液の実質粘度が約10%変化し、吐出量が増加する。この時、基板速度を吐出量が増加した分だけ上げてやることで、凹部には結果的に一定量の蛍光体が充填できることになる温度が下降した場合は、この逆をやればよいことになる。
【0029】
また、ポンプは容積移動型のギアポンプでも、液面を空気圧等で押しだしてもよい。
【0030】
また、流量計を供給系22とポンプ141の間にセットし、流量を直接検出し、基板移動速度を変化させてもよい。
【0031】
(実施の形態5)
図13(a)(b)で実施形態5を説明する。152は変位計、153はヘッド回転角度付き装置、20は例えば3本吐出のディスペンサー、156は、変位計移動モーター、155は、ヘッド移動モーター、144は、基板移動モーターの制御盤、154は、コントローラーである。まず、変位計152にて、凹部ラインのピッチ方向の凹凸を測定し、そのデータをもとに、ディスペンサー20を回転させる角度と凹部ラインのピッチ方向に移動させる(並進)距離をきめる。図13(b)にレーザー変位計の測定データを示す。このデータの凹部間の間隔を読み取り、ヘッドを移動させる(並進)距離を決定する。ディスペンサー20は、3本吐出のものを用いた。補正の分解能を上げるためにはディスペンサー本数は少ない方が良い。3本の吐出口の間隔と凹部の間隔が合うように、ディスペンサーに回転角を与える。図13(c)に凹部の間隔とディスペンサー20の回転の模式図を示す。ディスペンサーの吐出間隔は決まっているので、凹部の間隔から、計算で回転角度が出される。
【0032】
動作を示す。変位計152を、凹部のラインのピッチ方向に、凹部の端から端まで移動させ、凹凸の間隔より、ディスペンサー20の回転角、ディスペンサーの移動距離を求め実行する。ディスペンサー20から蛍光体液を吐出させながら、下方にある基板を移動させることで、凹部ラインにそって、凹部内部に蛍光体液を吐出する。
【0033】
基板の凹凸部分の規則性がゆがみなどのためで、部分的にで悪い場合、以下の方法で蛍光体液を塗布できる。変位計152を、上記と同様に、凹部のラインのピッチ方向に、凹部の端から端まで移動させ、凹部の間隔を読み取ることを、基板全体に行い、記録することにより、凹部ライン群のゆがみやピッチずれを基板全面にわたって読み取る。このデータをもとに、蛍光体液をディスペンサー20から吐出させながら、基板に塗布する時に、モーター155でヘッドを凹部ラインのピッチ方向に、微小距離移動させながら、不規則性にも対応する。このようにすれば、基板内で一部分凹凸部分がゆがんでいても、蛍光体液を正確に凹部に吐出できる。基板の一部がゆがんでいる場合に関しては、今回は3本で行ったが、本数が、多くなれば、凹部の間隔とあわなくなるので、10本以下がのぞましい。少ないほど、精度よく位置があう。
【0034】
また、ディスペンサーの回転角を与えることと並進を組み合わせれば、どんな不規則な凹部に対しても、蛍光体が形成できる。
【0035】
(実施の形態6)
図14(a)(b)(c)で、実施形態6を説明する。従来の印刷方法では、にじみや裏うつりのため、約数万cpsの高粘度液のみしか用いることができない。そのため、蛍光体液の凹部充填率が低く、図14(a)の基板断面図で示すように、蛍光体膜が底部にしか形成できなかった。そのため、輝度が低かった。この発明では、図14(b)に示すように、凹部の容積の65%〜105%の充填率の蛍光体液を吐出させ、溶剤を蒸発させ
ることで、図14(c)のように、凹部全体に蛍光体膜を付着させる。これにより、表面積が向上し、輝度が約50%以上上昇した。
【0036】
この発明で用いている蛍光体液は、粘度30〜100cpsのものを用いた。図14(c)の凹部の場合、L3=0.100mm、L4=0.150mm、断面積は0.02355mm2で、100%充填し、溶剤を蒸発させると、蛍光体膜が凹部内部に均質に付着し、平均約32ミクロンの膜厚となった。蛍光体膜のスペックは、25μm±5μmであり、液の物性が同一の場合。充填量と最終的に形成される平均蛍光体膜厚との間にはほぼ正比例の関係が成立する。従って、吐出の安定性(±1%)、穴間の吐出量(±1%)を考慮すると65%以上の充填率が必要となる。
【0037】
また、最大充填率は、凹部自体が溶剤を吸収するため、105%まで設定しても、凹部からあふれることはなかった。
【0038】
【発明の効果】
以上に説明したように、本発明の方法は、基板の表面に有する複数のライン状凹部の内面に、蛍光体微粒子が液媒体に分散された蛍光体液を、ディスペンサーから吐出し、熱処理で蛍光体膜を形成する方法において、混色なく、精度よく、更に、必要最小限の塗布液使用量にて、パターン形成を行うものである。
【0039】
この方法により、高精細なプラズマディスプレイパネルを効率よく製造することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施形態の一例を示す図
【図2】 本発明の蛍光体液吐出の模式図
【図3】 ディスペンサーからの距離と吐出断面積の関係を示す図
【図4】 (a)はディスペンサーからの吐出の曲がり角度θを示す図
(b)は液の曲がりと位置ずれを示す説明図
【図5】 実験で求めた曲がり角度θの分布図
【図6】 (a)は本発明の別の実施形態を示す図
(b)は図6−aの断面図
【図7】 従来のディスペンサーの吐出状態を示す図
【図8】 (a)本発明の別の実施形態を示す図
(b)図8−aの吐出口の斜視図
(c)他の実施形態を示す図
【図9】 従来のディスペンサーの断面図
【図10】 本発明のノズルの断面図
【図11】 (a)は本発明のディスペンサーの断面図
(b)は角度の定義を示す図
【図12】 (a)は本発明の別の実施形態を示す図
(b)は温度と吐出量の関係を示す図
【図13】 (a)は本発明の別の実施形態を示す図
(b)は凹凸の測定結果を示す図
(c)はディスペンサーの回転角と凹凸部の関係を示す図
【図14】 (a)従来の蛍光体膜の形状を示す図
(b)本発明の蛍光体液の充填状態を示す模式図
(c)本発明の蛍光体の形状を示す模式図
【符号の説明】
10 基板
20 ディスペンサー
22 蛍光体液供給系
30 蛍光体液
31 垂線
40 マスク
50 れ広がり
90 液ガイド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a color plasma display panel used as a wall-mounted television or an information display, and an apparatus for manufacturing the same.
[0002]
[Prior art]
The back plate of a plasma display panel (PDP), an elongated striped recessed portion is a number features <br/>. It is necessary to produce phosphor films of three colors of red, blue, and green for each concave portion. As a method for forming the phosphor, a screen printing method is often used because it can be easily performed at low cost.
[0003]
This method is a method in which a phosphor film in which phosphor particles are dispersed in a solvent is applied to the entire back panel having recesses, and then dried and cured to form a phosphor film. This is a method of repeating the same work with matching patterns.
[0004]
However, in the screen printing method, the mask is mechanically deformed by the weight of the squeegee and the phosphor liquid, and as a result, it is very difficult to form a pattern with high accuracy.
[0005]
In addition, as a method that can be manufactured with high accuracy, there is a method using photography, but in this case, many steps such as coating, exposure, development, and drying are required, resulting in high cost.
[0006]
In addition, as a method that can be manufactured with high accuracy, there is a method in which a phosphor film made of a phosphor and a high-viscosity solvent is pasted on a substrate, pressed into a concave portion, and unnecessary portions are removed by a method such as exposure. The amount of the phosphor is required to be three times or more the required amount, resulting in high cost.
[0007]
[Problems to be solved by the invention]
In the PDP, in order to perform light emission of each recess satisfactorily, it is necessary to cause the discharge generated in the recess to act efficiently on the phosphor and to efficiently extract the light generated in the phosphor to the outside. For this reason, it is necessary that the phosphor film is arranged in a uniform and uniform thickness with a certain thickness (20 μm ± 5 μm) inside the recess. A dome shape or a parabolic shape is preferred. Moreover, if the film thickness is not the same for all the substrates, unevenness occurs. Naturally, it is not preferable that color mixture exists. In addition, if a fluorescent material is adhered between the concave portions, the contrast is lowered, so that good screen quality cannot be expected.
[0008]
However, the whole of the above-described substrate, the method of drying curing the fluorescent body fluid was applied by printing methods, it can not be sufficiently satisfied the requirements as described above. Filling the inside of the recess with a large amount of phosphor liquid surely forms the phosphor film on the entire inner surface of the recess, and the film thickness to be formed becomes too thick, and the possibility that the phosphor film is formed beyond the recess is high. . When the amount of the phosphor liquid is reduced, the phosphor liquid is supplied only near the bottom of the recess, and the phosphor film is formed only on that portion.
[0009]
Furthermore, before the phosphor liquid is applied and dried, there is a problem that the phosphor in the liquid settles and adheres only to the bottom of the recess.
[0010]
In order to solve such a problem, a method of supplying a phosphor to fill the recess completely to form a thick phosphor film, and then polishing and removing a part of the phosphor film to a desired film thickness is also considered. However, there are problems such as polishing cost, phosphor cost, and difficulty in controlling polishing.
[0011]
There is also a method of sticking the phosphor film shown above on the substrate, pressing it into the recess, and removing unnecessary parts by a method such as exposure, but the amount of the phosphor is required to be at least three times the required amount. Become expensive.
[0012]
As a problem of the substrate itself, in particular, in the case of a substrate manufactured by a printing method, baking is performed at around 500 degrees in order to skip the solvent used in printing. For this reason, the substrate glass is distorted, and there are many cases in which irregularities have portions that lack regularity (projection spacing, recess spacing). In this case, since the discharge interval of the nozzle does not coincide with the rib interval, it cannot be simply applied. In addition, substrates produced by other methods are also distorted and strained due to heat treatment.
[0013]
[Means for Solving the Problems]
Straight recess formed in plurality on a surface of a substrate, discharging the fluorescent fluid from the de I Spencer A method of forming a phosphor film in the heat treatment, the volume of the linear concave portion of the discharge amount from the dispenser the amount of the filling rate is 105% from 65% with respect to, between the substrate and the dispenser, selectively a mask open mouth is formed is positioned parallel said substrate substantially, said through the mask and the substrate and the mask while discharging the fluorescent fluid from the dispenser using the method of relatively moving in the linear direction of the linear concave portion relative to the dispenser.
[0014]
Straight recess formed in plural on the surface of the base plate, ejecting the fluorescent fluid from the de I Spencer A method of forming a phosphor film by thermal processing, the linear recess the discharge rate from the dispenser the filling rate to the volume is in an amount to achieve 105% from 65%, the dispenser was while discharging the fluorescent body fluid along the linear direction of the linear concave portion relatively moving the substrate and the dispenser, the straight line direction temporarily stop Ru how the use of the discharge on the move.
[0015]
Dispenser, the discharge port comprises a plurality of dispensers disposed substantially linearly, a method of simultaneously discharging different color from their respective of said plurality of dispensers.
[0016]
Detecting the distance in the direction perpendicular in the linear direction and the substrate surface of the straight line recess, dispenser, the discharge port comprises a plurality of dispensers disposed substantially linearly, so the previous SL plurality of dispensers times translocated , a method to adjust the pitch of the discharge port of the dispenser during the detected interval.
[0017]
Except for the plane including the discharge port of the de I Spencer all aspects of fluorescent fluid is in contact, at an angle of the normal direction vector and the gravity direction vector of the side of the surface in contact with liquid, the smaller angle 0 ° A method that is up to 135 degrees is used.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 shows Embodiment 1 of the present invention. 20 is a dispenser, 22 is a phosphor liquid supply system, 30 is a phosphor liquid, 40 is a mask, and 10 is a substrate.
[0019]
The substrate 10 is made of a glass material, and concave portions made of different substances are formed in a line shape on the substrate. The dispenser 20 fills the phosphor liquid in the portion corresponding to the opening of the substrate 10 by moving at high speed along the opening at about 0.5 to 2 m / sec while discharging the liquid. As for the size of the discharge port of the dispenser 20, since a phosphor is inserted into a groove of 0.15 mm, a circular aperture having a smaller diameter is required. The dispenser 20 may be fixed and the base on which the substrate 10 is set may be reciprocated by a motor integrally with the mask. The discharge amount is controlled so that 90% of the volume of the recess is filled with the phosphor liquid. It is desirable that the liquid discharged from the dispenser 20 is always continuously discharged.
[0020]
As the mask material, a metal plate of aluminum and SUS316 with a thickness of 0.5 mm was used. Thick thickness of the mask, when the distance between the mask and the substrate are close, accumulate bounce fluorescent fluid in the portion of the thickness by re-dropped, or contain fluorescent fluid to another part, the color no Ragaokoru . A phosphor liquid having a viscosity of 30 to 100 cps and a low viscosity is used.
[0021]
The configuration of the opening and the non-opening of the mask can be freely selected according to the uneven pattern of the substrate.
[0022]
The distance between the discharge port of the dispenser 20 and the substrate is determined by the state of spreading and bending of the phosphor liquid from the dispenser 20. First, consider the spreading state. In the case of the present invention, unlike the normal case, the discharge port is as small as about 0.1 mm in diameter, the surface area per discharge cross-sectional area is large, and the discharge speed is also high. In addition, since a highly concentrated slurry is used, it behaves quite differently from normal water. That is, the ejection state as shown in FIG. As shown in FIG. 2, the liquid discharged at the point A, the initial speed V1 , the cross-sectional area S1, and the discharge amount Q1 (Q1 = V1 × S1) is the point B, the speed V2, the cross-sectional area S2, and the discharge amount Q2 (Q2). = V2 × S2). Since V2 becomes larger than V1 due to free fall and the discharge amount is constant (Q1 = Q2), S2 becomes inevitably smaller. Further, as the free fall distance advances, the speed increases. Finally, at the point C, the outer portion becomes fine particles and scatters. In order to apply the phosphor liquid to the concave portion, the discharge cross-sectional area must be smaller than the groove width of the concave portion, and it is necessary to be connected linearly. The spread state is greatly influenced by the surface tension, viscosity, and initial speed of the liquid. The initial speed is limited in range from the stability (clogging) of the dispenser, and the surface tension is also limited by the solvent. Also, the viscosity of the liquid is limited because it is discharged from the discharge port of about 0.1 mm. Therefore, the phosphor liquid that can be used in this method is limited in terms of characteristics. FIG. 3 shows values obtained by experiments on the relationship between the discharge sectional area of the liquid used this time and the distance from the dispenser. From where it exceeds 50 mm, it becomes granular and scattering begins. Therefore, in order to perform a stable coating in a straight line, the coating cannot be performed unless the distance h between the dispenser discharge port and the substrate is 50 mm or less.
[0023]
Next, consider the rolling state. As shown in FIG. 4A, the liquid discharge 30 from the dispenser bends at a minute angle with respect to the perpendicular 31. The reason for the bending is due to the processing straightness accuracy of the discharge port, lack of objectability, scratches, and nonuniformity of the surface state of the discharge port. In particular, in this case, since the viscosity of the liquid is high and the slurry liquid is high in concentration, even if the liquid is very small in the vicinity of the discharge port, the liquid spreads unevenly, the surface tension balance is lost, and the discharge is easily bent. In the case of discharge port processing accuracy, lack of objectability, scratches, etc., it always bends in the same direction. On the other hand, in the case of non-uniformity in the surface state of the discharge port, it changes with discharge. The bending state was examined with a dispenser when the former processing accuracy was completely guaranteed. The result is shown in FIG. In FIG. 5, the range of the bend in which the 99% reproducibility probability can be guaranteed is ± 0.05 degrees, and it is necessary to always expect an angular deviation of this degree of straight travel.
[0024]
The distance h between the recess and the dispenser is determined from the above two constraints. From the state of the discharge cross-sectional area, it is essential to use 50 mm or less. On the other hand, when the distance h between the concave portion and the dispenser is 60 mm from the bending of the discharge, the distance of the bending by the discharge is L1 = 0.052 mm. As shown in FIG. 4B, the width of the half of the groove of the recess is L2 = 0.075 mm, which is 0.052 mm from the center, and the difference 0.023 mm is the maximum allowable radius of the discharge liquid. . This diameter is allowed up to 0.046 mm. When discharged from the current discharge population 1 mm, at a distance of 60 mm, the diameter of the discharge, is 0.045 mm, it can be completely discharged in the recess. Furthermore, if the distance between the dispenser and the recess is reduced to 60 mm or less, the discharge diameter allowed from the discharge bend increases and all the discharge can be inserted into the recess. From the above two common ranges, it is essential that the distance between the dispenser discharge port and the substrate is 50 mm or less.
[0025]
As an application of the mask, as shown in FIG. 6A and its sectional view 6B, a mask 40 having the same size as the whole substrate is produced, and an opening corresponding to the concave portion is opened in the mask 40. It is also conceivable to discharge the phosphor liquid from above. In this way, the phosphor can be selectively applied only to the concave portion without attaching the phosphor to the convex portion. The thickness of the mask 40 is preferably about 1 to 0.5 mm. If the thickness is large, the discharge is bent and the phosphor liquid is applied to the inner portion of the mask 40 and is transmitted to the back surface (substrate side) of the mask 40, and is on the convex portion.
[0026]
(Embodiment 2)
The present invention will be described with reference to FIGS. FIG. 7 shows a cross section of a conventional dispenser 20 and a cross section of the substrate 10. In addition, the liquid and the like are the same as those in the first embodiment. As can be seen from FIG. 7, the phosphor liquid is different from water or alcohol, has a high viscosity, and has a low surface tension. Therefore, it is easy to generate the wetting and spreading 50 near the discharge port, and as a result, the discharge is easily bent. Unexpected Re When spread 50 generates the discharge bends in that direction. If the discharge port is wiped off with a cloth or the like, it is discharged straight, but the discharge tends to bend due to changes over time and long-term stability. In the present invention, as shown in FIG. 8, the liquid guide 90 is provided to straighten the discharge. The guide 90 is located near the center of the discharge port of the dispenser 29, and protrudes from the discharge surface and is positioned linearly. It is drawn to this guide 90 and falls straight down. The guide 90 can be made of a thin wire such as a piano wire, a horse, a pig, a goat hair, or nylon. In the case of gentle horses, pigs, goat hair, and nylon, the phosphor liquid can be reliably discharged into the recesses by discharging the phosphor liquid while being in direct contact with the bottom of the recess. Furthermore, even if the liquid discharge ON / OFF operation is repeated, the discharge port of the dispenser 20 is not soiled by the liquid, and is stable. Further, in this embodiment, the liquid guide is discharged from the center of the discharge port, but by providing the protruding portion 91 in which a part of the discharge port protrudes from the discharge surface, the same effect as above can be obtained. (FIG. 8C).
[0027]
(Embodiment 3)
The third embodiment will be described with reference to FIGS. The dispenser 20 is, for example, a dispenser having three discharge ports. In addition, the liquid and the like are the same as those in the first embodiment. FIG. 9 is a cross-section of the conventional dispenser after discharging the phosphor. As time passes, the phosphor 110 settles around the discharge port, and the discharge port is clogged or the discharge line is turned. In particular, between the discharge port and the side surface of the dispenser, the flow rate is slow and the phosphor is likely to precipitate. Compared to that, the flow rate between the discharge ports is high and the sedimentation is not easy. As a method for eliminating these precipitates, sectional views 10 and 11 of the head of the present invention are shown. In FIG. 10, a set of ceramic piezoelectric elements 120 is embedded in the head, and ultrasonic waves can be generated. When applying the phosphor liquid to the substrate, it is desirable not to generate ultrasonic waves in order to maintain ejection stability. Or you may generate a low output ultrasonic wave continuously. Due to this ultrasonic wave, the phosphor precipitate 110 is not generated, and the discharge line is stabilized over a long period of time. Also, it can be combined with ON / OFF of discharge. That is, when it is OFF, an ultrasonic wave is generated to prevent the phosphor from being precipitated, and when it is ON, no ultrasonic wave is generated. In FIG. 11A, a steep slope is provided on the entire surface of the dispenser so that the phosphor does not settle. The surface inclination angle was defined as the smaller angle formed by the normal of the surface in contact with the liquid and the gravitational direction (FIG. 11B). The limit slope angle that suppresses sedimentation was determined by the following experiment. That is, the phosphor solution was dropped on a metal plate with the tilt angle changed arbitrarily, and the behavior of the phosphor solution on the metal plate was observed. As a result, in the case of θ = 0 to 135 degrees, it was confirmed that the phosphor liquid did not remain and flowed downward on the metal plate without precipitation.
[0028]
(Embodiment 4)
A fourth embodiment will be described with reference to FIGS. In FIG. 12A, the dispenser 20 is a dispenser having three discharge ports. In addition, the liquid and the like are the same as those in the first embodiment. 140 is a pump for supplying a phosphor solution, 142 is a phosphor solution tank, 143 is a pump control unit, 144 is a substrate moving motor control unit, 145 is a thermocouple, 146 is a belt, 147 is a motor, 148 is a belt 146 and a substrate It is a fastening bracket that mechanically fastens. The temperature of the phosphor liquid is measured with a thermocouple of 145, the discharge amount is estimated from the graph of FIG. 12B measured in advance, and the substrate speed at which a certain amount of phosphor liquid is filled in the recess is obtained. By changing the substrate moving speed in the motor control unit 144, the change in the discharge amount due to the temperature of the liquid is corrected, and the phosphor liquid is uniformly discharged into the recess. The viscosity of the phosphor liquid varies greatly depending on the temperature, which is the main cause of the change in ejection. For this reason, the ejection changes greatly due to the change in the liquid temperature. Further, the substrate speed is changed by transmitting the rotation of the motor 147 attached to the lower portion of the substrate to the substrate through the belt 146, and the rotation speed of the motor 147 can be freely controlled by the controller 144. According to the present invention, the change in the discharge amount due to the change in the liquid temperature is compensated with the substrate speed that is easy to control with high accuracy, and the filling rate into the concave portion is made constant to produce a uniform phosphor film. That is, when the temperature rises by 2 ° C., the substantial viscosity of the phosphor liquid changes by about 10%, and the discharge amount increases. At this time, if the substrate speed is increased by an amount corresponding to the increase in the discharge amount, and the temperature at which the concave portion can be filled with a certain amount of phosphor as a result is lowered, then the opposite should be done. Become.
[0029]
The pump may be a displacement-type gear pump, and the liquid level may be pushed out by air pressure or the like.
[0030]
Alternatively, a flow meter may be set between the supply system 22 and the pump 141 to directly detect the flow rate and change the substrate moving speed.
[0031]
(Embodiment 5)
Embodiment 5 will be described with reference to FIGS. 152 is a displacement meter, 153 is a device with a head rotation angle, 20 is a dispenser for three discharges, 156 is a displacement meter movement motor, 155 is a head movement motor, 144 is a board movement motor control panel, 154 is It is a controller. First, the displacement meter 152 measures the unevenness in the pitch direction of the concave line, and based on the data, determines the angle at which the dispenser 20 is rotated and the distance (translation) to move in the pitch direction of the concave line. FIG. 13B shows the measurement data of the laser displacement meter. The distance between the concave portions of the data is read, and the distance (translation) for moving the head is determined. The dispenser 20 used was a three-discharge dispenser. In order to increase the resolution of correction, it is better that the number of dispensers is small. A rotation angle is given to the dispenser so that the interval between the three ejection openings matches the interval between the recesses. FIG. 13C shows a schematic diagram of the interval between the recesses and the rotation of the dispenser 20 . Since the discharge interval of the dispenser is determined, the rotation angle is calculated from the interval of the recesses.
[0032]
The operation is shown. The displacement meter 152 is moved from the end of the recess to the end in the pitch direction of the recess line, and the rotation angle of the dispenser 20 and the movement distance of the dispenser are determined and executed from the interval of the unevenness. While discharging the phosphor liquid from the dispenser 20, the lower substrate is moved to discharge the phosphor liquid into the recess along the recess line.
[0033]
If the irregularity of the substrate is distorted and is partially unsatisfactory, the phosphor solution can be applied by the following method. Similarly to the above, the displacement meter 152 is moved in the pitch direction of the recess lines from end to end of the recesses, and the interval between the recesses is read over the entire substrate and recorded, whereby the recess line group is distorted. And read the pitch shift over the entire surface of the substrate. Based on this data, while discharging the fluorescent fluid from the dispenser 20, when applied to a substrate, the heads in the motor 155 in the pitch direction of the concave lines, while a small distance movement, corresponding to irregularities. In this way, the phosphor liquid can be accurately discharged into the concave portion even if the uneven portion is partially distorted in the substrate. In the case where a part of the substrate is distorted, the number of the substrates is three this time. However, if the number of the substrates increases, the distance between the recesses does not match. The smaller the number, the better the position.
[0034]
Moreover, if the rotation angle of the dispenser is combined with translation, a phosphor can be formed in any irregular recess.
[0035]
(Embodiment 6)
Embodiment 6 will be described with reference to FIGS. 14 (a), 14 (b), and 14 (c). In the conventional printing method, only a high-viscosity liquid of about tens of thousands cps can be used due to blurring and back-faced movement. Therefore, the recess filling ratio of the phosphor liquid is low, and as shown in the substrate cross-sectional view of FIG. 14A, the phosphor film can be formed only on the bottom. Therefore, the brightness was low. In this invention, as shown in FIG. 14 (b), the phosphor liquid having a filling rate of 65% to 105% of the volume of the concave portion is discharged and the solvent is evaporated, whereby the concave portion as shown in FIG. 14 (c) is obtained. A phosphor film is attached to the entire surface. Thereby, the surface area was improved and the luminance was increased by about 50% or more.
[0036]
The phosphor liquid used in the present invention has a viscosity of 30 to 100 cps. In the case of the concave portion of FIG. 14C, L3 = 0.100 mm, L4 = 0.150 mm, the cross-sectional area is 0.02355 mm2, and when 100% is filled and the solvent is evaporated, the phosphor film is homogeneous in the concave portion. Attached and averaged about 32 microns. The specs of the phosphor film are 25 μm ± 5 μm, and the physical properties of the liquid are the same. A substantially directly proportional relationship is established between the filling amount and the finally formed average phosphor film thickness. Therefore, when the discharge stability (± 1%) and the discharge amount between holes (± 1%) are taken into consideration, a filling rate of 65% or more is required.
[0037]
In addition, since the maximum filling rate absorbs the solvent, the maximum filling rate does not overflow from the recess even if it is set to 105%.
[0038]
【The invention's effect】
As described above, the method of the present invention, the inner surface of the plurality of linear recesses having on a surface of the substrate, the fluorescent fluid in which the phosphor particles are dispersed in a liquid medium, discharged from de I Spencer heat treatment In the method of forming a phosphor film, pattern formation is performed with no color mixing, with high accuracy, and with the minimum necessary amount of coating liquid used.
[0039]
This method makes it possible to efficiently manufacture a high-definition plasma display panel.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention. FIG. 2 is a schematic diagram of phosphor liquid discharge according to the present invention. FIG. 3 is a diagram showing a relationship between a distance from a dispenser and a discharge cross-sectional area. ) Is a diagram showing the bending angle θ of the discharge from the dispenser. (B) is an explanatory diagram showing the bending and misalignment of the liquid. FIG. 5 is a distribution diagram of the bending angle θ obtained in the experiment. FIG. 7B is a cross-sectional view of FIG. 6A. FIG. 7 is a diagram showing a discharge state of a conventional dispenser. FIG. 8A is a diagram showing another embodiment of the present invention. (B) Perspective view of the discharge port of FIG. 8-a (c) View showing another embodiment [FIG. 9] Cross-sectional view of a conventional dispenser [FIG. 10] Cross-sectional view of the nozzle of the present invention [FIG. ) Is a cross-sectional view of the dispenser of the present invention. (B) is a diagram showing the definition of the angle. [FIG. 12] (a) is another embodiment of the present invention. FIG. 13B is a diagram showing the relationship between temperature and discharge amount. FIG. 13A is a diagram showing another embodiment of the present invention. FIG. 13B is a diagram showing measurement results of unevenness. FIG. 14 is a diagram showing the relationship between the rotation angle of the dispenser and the concavo-convex portion. FIG. 14 (a) A diagram showing the shape of a conventional phosphor film. (B) A schematic diagram showing a filling state of the phosphor liquid of the present invention. Schematic diagram showing the shape of the phosphor [Explanation of symbols]
10 substrate 20 dispenser 22 fluorescent fluid supply system 30 fluorescent fluid 31 perpendicular 40 mask 50 Nu Re spread 90 liquid guide

Claims (5)

基板の表面に複数形成された直線状凹部に、蛍光体液をディスペンサーから吐出し、熱処理で蛍光体膜を形成する方法であって、前記ディスペンサーからの吐出量を前記直線状凹部の体積に対する充填率が65%から105%になる量にし、前記基板と前記ディスペンサーの間に、選択的に開口部が形成されたマスクを前記基板と略平行に位置させ、前記マスクを介して前記ディスペンサーから蛍光体液を吐出させながら前記基板と前記マスクとを前記ディスペンサーに対して前記直線状凹部の直線方向に相対的に移動させることを特徴とするカラー表示PDPの蛍光体形成方法。  A method in which a phosphor liquid is discharged from a dispenser into a plurality of linear recesses formed on the surface of a substrate, and a phosphor film is formed by heat treatment, wherein a discharge rate from the dispenser is a filling rate with respect to a volume of the linear recesses A mask having an opening selectively formed between the substrate and the dispenser is positioned substantially parallel to the substrate, and the phosphor liquid is removed from the dispenser through the mask. A method of forming a phosphor of a color display PDP, wherein the substrate and the mask are moved relative to the dispenser in a linear direction of the linear recess while discharging the liquid. 基板の表面に複数形成された直線状凹部に、蛍光体液をディスペンサーから吐出し、熱処理で蛍光体膜を形成する方法であって、前記ディスペンサーからの吐出量を前記直線状凹部の体積に対する充填率が65%から105%になる量にし、前記ディスペンサーで蛍光体液を吐出させながら前記直線状凹部の直線方向にそって前記基板と前記ディスペンサーを相対的に移動させ、前記直線方向の移動中に吐出を一時的に止めることを特徴とするカラー表示PDPの蛍光体形成方法。  A method in which a phosphor liquid is discharged from a dispenser into a plurality of linear recesses formed on the surface of a substrate, and a phosphor film is formed by heat treatment, wherein a discharge rate from the dispenser is a filling rate with respect to a volume of the linear recesses The amount of the liquid crystal is changed from 65% to 105%, and the substrate and the dispenser are relatively moved along the linear direction of the linear recess while discharging the phosphor liquid with the dispenser, and discharged while moving in the linear direction. A method for forming a phosphor of a color display PDP, characterized by temporarily stopping the process. ディスペンサーは、吐出口が略直線状に配置された複数のディスペンサーからなる請求項1または2に記載のカラー表示PDPの蛍光体形成方法。  The method for forming a phosphor of a color display PDP according to claim 1, wherein the dispenser includes a plurality of dispensers having discharge ports arranged substantially linearly. 複数のディスペンサーのそれぞれから異なった色を同時に吐出する請求項3に記載のカラー表示PDPの蛍光体形成方法。  4. The method for forming a phosphor of a color display PDP according to claim 3, wherein different colors are simultaneously discharged from each of the plurality of dispensers. 直線状凹部の直線方向と基板面内で直交する方向の間隔を検出し、複数のディスペンサーの吐出口の配置方向が前記直線状凹部の直線方向に対して傾くように前記複数のディスペンサーを回転させ、検出した間隔に前記ディスペンサーの前記直線状凹部の直線方向と直交する方向の塗布ピッチをあわせる請求項3または4に記載のカラー表示PDPの蛍光体形成方法。The interval between the linear direction of the linear recesses and the direction orthogonal to the substrate surface is detected, and the plurality of dispensers are rotated so that the discharge port arrangement directions of the dispensers are inclined with respect to the linear direction of the linear recesses. The method for forming a phosphor of a color display PDP according to claim 3 or 4, wherein a coating pitch in a direction orthogonal to a linear direction of the linear concave portion of the dispenser is adjusted to the detected interval.
JP566398A 1998-01-14 1998-01-14 Fluorescent substance forming method and apparatus for color display PDP Expired - Fee Related JP3656387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP566398A JP3656387B2 (en) 1998-01-14 1998-01-14 Fluorescent substance forming method and apparatus for color display PDP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP566398A JP3656387B2 (en) 1998-01-14 1998-01-14 Fluorescent substance forming method and apparatus for color display PDP

Publications (2)

Publication Number Publication Date
JPH11204032A JPH11204032A (en) 1999-07-30
JP3656387B2 true JP3656387B2 (en) 2005-06-08

Family

ID=11617354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP566398A Expired - Fee Related JP3656387B2 (en) 1998-01-14 1998-01-14 Fluorescent substance forming method and apparatus for color display PDP

Country Status (1)

Country Link
JP (1) JP3656387B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508315B2 (en) * 1999-08-02 2010-07-21 大日本印刷株式会社 Discharge means
TW495808B (en) * 2000-02-04 2002-07-21 Semiconductor Energy Lab Thin film formation apparatus and method of manufacturing self-light-emitting device using thin film formation apparatus
TWI237287B (en) 2002-04-24 2005-08-01 Fujitsu Hitachi Plasma Display Fluorescent layer forming apparatus
KR100591693B1 (en) * 2004-04-13 2006-06-22 주식회사 탑 엔지니어링 Paste applicator and control method thereof
JP4573645B2 (en) * 2004-12-27 2010-11-04 大日本スクリーン製造株式会社 Coating device

Also Published As

Publication number Publication date
JPH11204032A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US6214409B1 (en) Liquid coating nozzle liquid coating nozzle manufacturing method liquid coating method liquid coating apparatus and cathode ray tube manufacturing method
US7335604B2 (en) Thin-film coating apparatus
US5985069A (en) Method of manufacturing a flat display panel and flat display panel
US6372285B2 (en) Method of forming liquid film
KR20070055442A (en) Liquid crystal dispensing apparatus and in-line process apparatus
JP5436655B2 (en) Light guide plate and light guide plate manufacturing method
US20070070105A1 (en) Methods and apparatus for adjusting pixel fill profiles
US20060099329A1 (en) Apparatus and method for forming phosphor layers on a display panel
JP3656387B2 (en) Fluorescent substance forming method and apparatus for color display PDP
KR20070079820A (en) Slit coater for manufacturing display device and manufacturing method of display device using the same
JP2007318128A (en) Device and method for measuring uniformity in discharge in widthwise direction of slit nozzle
JP2001357780A (en) Manufacturing method and manufacturing device of plasma display panel
JP2004066232A (en) Method of manufacturing coated film
JP2005329305A (en) Sheet type coating method, sheet type coating apparatus, coated substrate and method of manufacturing sheet type coated member
CN100483224C (en) Nozzle of dispenser
JP2006305548A (en) Coating applicator and method for applying coating liquid
JP2007187948A (en) Nozzle, coating method and device using nozzle, and manufacturing method and device of color filter
JP4569357B2 (en) Pre-discharge device
JP2000107671A (en) Method for making chemical coating film thickness uniform, device for enbodying this method and chemical coating applicator including this device
JPH0363628A (en) Spacer and formation thereof
JPH091024A (en) Dispenser apparatus
CN110687722B (en) Alignment liquid coating method and mask plate assembly
JP2003260398A (en) Coating apparatus and coating method
JPH11179262A (en) Liquid chemical coating method and device therefor
JP5338071B2 (en) Coating method, coating apparatus, and method for manufacturing liquid crystal display member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050215

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050228

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees