JP5436655B2 - Light guide plate and light guide plate manufacturing method - Google Patents

Light guide plate and light guide plate manufacturing method Download PDF

Info

Publication number
JP5436655B2
JP5436655B2 JP2012501533A JP2012501533A JP5436655B2 JP 5436655 B2 JP5436655 B2 JP 5436655B2 JP 2012501533 A JP2012501533 A JP 2012501533A JP 2012501533 A JP2012501533 A JP 2012501533A JP 5436655 B2 JP5436655 B2 JP 5436655B2
Authority
JP
Japan
Prior art keywords
guide plate
light
coating
light guide
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012501533A
Other languages
Japanese (ja)
Other versions
JPWO2011104765A1 (en
Inventor
隆一 岩川
修 吉村
修 新治
豊英 園田
陽二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2011104765A1 publication Critical patent/JPWO2011104765A1/en
Application granted granted Critical
Publication of JP5436655B2 publication Critical patent/JP5436655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Description

本発明は、液晶表示パネルや看板などの背面から光を照射する面光源装置、所謂バックライト装置用の導光板及び導光板の製造方法に関し、特に導光板の少なくとも表面又は裏面に拡散部を形成した導光板及び導光板の製造方法に関する。   The present invention relates to a surface light source device that emits light from the back surface of a liquid crystal display panel, a signboard, etc., a light guide plate for a so-called backlight device, and a method for manufacturing the light guide plate, and in particular, a diffusion portion is formed on at least the front surface or the back surface of the light guide plate. The present invention relates to a light guide plate and a method for manufacturing the light guide plate.

液晶表示パネルや看板などの背面から光を照射するバックライト装置は、光源を面状に配置して拡散板等によって面均一発光を形成する直下型と、線光源を導光板の端面に配置したエッジライト又はサイドライトと呼ばれる導光板方式が知られている。   A backlight device that emits light from the back of a liquid crystal display panel, a signboard, etc. has a light source arranged in a plane and a direct type that forms a uniform light emission by a diffuser plate, etc., and a linear light source arranged on the end face of the light guide plate A light guide plate system called edge light or side light is known.

近年では、より薄型で軽量、省エネ型のものが望まれてきている。そのようなバックライト装置として導光板方式が着目されている。特に、光源として従来の蛍光灯や冷陰極管に代わり、高輝度で長寿命、省エネの観点からLED(Light Emitting Diode)が注目されている。   In recent years, a thinner, lighter, energy-saving type has been desired. As such a backlight device, a light guide plate method has attracted attention. In particular, instead of conventional fluorescent lamps and cold cathode fluorescent lamps, LEDs (Light Emitting Diodes) have attracted attention from the viewpoint of high brightness, long life, and energy saving.

バックライト装置用の導光板は、導光板内部に拡散材を分散させたり、表面や裏面の少なくとも一方に光拡散層若しくは拡散パターンを設けたりしている。この導光板は、端面に設けられた冷陰極管やLEDアレイ光源から当該導光板内へ光を入光させ、出射側へ光を出射させて面光源装置を形成するものである。   In a light guide plate for a backlight device, a diffusion material is dispersed inside the light guide plate, or a light diffusion layer or a diffusion pattern is provided on at least one of the front surface and the back surface. This light guide plate allows light to enter the light guide plate from a cold cathode tube or LED array light source provided on the end face, and emit light to the output side to form a surface light source device.

このような透過型液晶表示パネルや看板などに用いられる導光板方式のバックライト装置として、グラデーション分布を設ける技術が知られている(特許文献1を参照)。当該グラデーション分布は、バックライト装置の出射面の明るさが均一となるように、光源から離れるほど拡散層の光拡散能力を大きくしている。   As a light guide plate type backlight device used for such a transmissive liquid crystal display panel or a signboard, a technique for providing a gradation distribution is known (see Patent Document 1). The gradation distribution increases the light diffusion capability of the diffusion layer as the distance from the light source increases so that the brightness of the exit surface of the backlight device becomes uniform.

拡散層や拡散パターンによってグラデーション分布を設ける方法として、金型を用いた射出成型やプレス成型によって凹凸パターンを転写する方法が知られている。当該金型には、予め所望のグラデーションパターンが形成されている。また、光拡散性のインクをスクリーン印刷法によってドット印刷する方法(特許文献2を参照)なども知られている。   As a method of providing gradation distribution by a diffusion layer or a diffusion pattern, a method of transferring an uneven pattern by injection molding using a mold or press molding is known. A desired gradation pattern is formed in advance on the mold. Also known is a method of dot-printing light diffusing ink by screen printing (see Patent Document 2).

特開昭57−128383号公報JP-A-57-128383 特許第3734547号公報Japanese Patent No. 3734547

導光板基材に形成される拡散層は、当該拡散層のパターンが目立たないよう個々の拡散部を微細化、小ピッチ化する必要がある。ところで近年、表示装置には薄型化が要求されている。しかし、導光板を薄くすると当該拡散層のパターンが目立ち易くなる。そのため、当該拡散層のパターンを一層微細化、小ピッチ化する必要がある。   In the diffusion layer formed on the light guide plate substrate, it is necessary to make the individual diffusion portions finer and smaller in pitch so that the pattern of the diffusion layer is not noticeable. In recent years, display devices are required to be thin. However, when the light guide plate is thinned, the pattern of the diffusion layer is easily noticeable. Therefore, it is necessary to further refine the pattern of the diffusion layer and reduce the pitch.

ところが、版や金型を用いた射出成型やプレス成型、及びスクリーン印刷法では、拡散層のパターンを十分微細化することが困難である。また、設計パターンに不備がある場合には、再設計はもとより、高額な版や金型、及びスクリーン版を作り直すこととなり、コストアップに繋がっていた。   However, in the injection molding, press molding, and screen printing methods using a plate or a mold, it is difficult to sufficiently miniaturize the pattern of the diffusion layer. If the design pattern is inadequate, not only redesign, but also expensive plates, molds, and screen plates are recreated, leading to increased costs.

本発明は、拡散層の微細パターンを簡易、且つ安価に形成できる導光板及び導光板の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the light-guide plate which can form the fine pattern of a diffused layer easily and cheaply, and a light-guide plate.

本発明に係る導光板の製造方法は、面光源装置を構成するべく、光源が端面に配置される導光板の製造方法であって、導光板基材の裏面若しくは表面、又は両面に光拡散微粒子及び透光性バインダを含む塗布液を微細液滴状態で塗布することによって拡散層を塗工し、前記光拡散微粒子は凝集体とし、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率を0.1%以上70%以下とする。これにより、従来のように版や金型を作成しなくても、塗布液を導光板基材に塗布すると、微細パターンの光拡散能力に優れた拡散層を簡単、且つ安価に形成できる。   The light guide plate manufacturing method according to the present invention is a light guide plate manufacturing method in which a light source is disposed on an end face to constitute a surface light source device, and the light diffusing fine particles are formed on the back surface or front surface or both surfaces of the light guide plate substrate. And a coating liquid containing a light-transmitting binder is applied in the form of fine droplets to coat the diffusion layer, the light diffusing fine particles are aggregated, and the aggregate occupied by the aggregate on the coated surface of the light guide plate base material. The ratio between the area and the application area of the coating solution is set to 0.1% to 70%. Thereby, even if it does not produce a plate and a metal mold | die conventionally, when a coating liquid is apply | coated to a light-guide plate base material, the diffusion layer excellent in the light-diffusion capability of a fine pattern can be formed easily and cheaply.

前記拡散層を塗工するに際し、前記光源に近い部分は前記光拡散微粒子の塗布密度を低くし、前記光源から遠い部分は前記光拡散微粒子の塗布密度を高くすること、が好ましい。これにより、従来のように版や金型を作成しなくても、塗布液を導光板基材に塗布すると、微細パターンの光拡散能力に優れた拡散層を簡単、且つ安価に形成できる。   When coating the diffusion layer, it is preferable that the portion near the light source has a low coating density of the light diffusing fine particles, and the portion far from the light source has a high coating density of the light diffusing fine particles. Thereby, even if it does not produce a plate and a metal mold | die conventionally, when a coating liquid is apply | coated to a light-guide plate base material, the diffusion layer excellent in the light-diffusion capability of a fine pattern can be formed easily and cheaply.

前記塗布液は、当該塗布液をノズルから噴霧させるスプレー塗工法によって、前記導光板基材の裏面若しくは表面、又は両面に塗布すること、が好ましい。スプレー塗工法は、軽量で小さなノズルをX−Y方向に走査するだけであるから、安価な設備で目的が達せられる。すなわち、スプレー塗工法は、大型導光板にも安価な設備にて適用される。   The coating liquid is preferably applied to the back surface, the front surface, or both surfaces of the light guide plate base material by a spray coating method in which the coating liquid is sprayed from a nozzle. Since the spray coating method only scans light and small nozzles in the XY directions, the object can be achieved with inexpensive equipment. That is, the spray coating method is applied to a large light guide plate with inexpensive equipment.

複数個のノズルを並列に配置し、前記複数個のノズルを略平行に走査させることによって、前記光拡散微粒子の塗布密度を1次元的又は2次元的に変化させること、が好ましい。   It is preferable that the coating density of the light diffusing fine particles is changed one-dimensionally or two-dimensionally by arranging a plurality of nozzles in parallel and scanning the plurality of nozzles substantially in parallel.

前記ノズルから前記導光板基材における塗工面までの間隔は70mm以上300mm以下であること、が好ましい。   The distance from the nozzle to the coating surface of the light guide plate substrate is preferably 70 mm or more and 300 mm or less.

前記スプレー塗工法は、前記塗布液をノズルから噴出させながら、前記導光板基材の塗工面上において、前記ノズルを前記導光板基材の第1の辺と略平行な方向に移動させる走査を、前記第1の辺と直交する方向に所定の送りピッチで繰り返し、前記塗工面の全面又は一部に前記塗布液を塗布すること、が好ましい。   In the spray coating method, the nozzle is moved in a direction substantially parallel to the first side of the light guide plate base material on the coating surface of the light guide plate base material while ejecting the coating liquid from the nozzle. It is preferable that the coating liquid is applied to the entire surface or a part of the coating surface by repeating at a predetermined feed pitch in a direction orthogonal to the first side.

前記ノズルを前記導光板基材の第1の辺と略平行な方向に移動させる走査を、前記第1の辺と直交する方向に所定の送りピッチで繰り返す工程を、前記導光板基材の塗工面上において部分的に繰り返すことによって、前記光拡散微粒子の塗布密度を1次元的に変化させること、が好ましい。   The step of repeating the scanning for moving the nozzle in a direction substantially parallel to the first side of the light guide plate base material at a predetermined feed pitch in a direction orthogonal to the first side is applied to the light guide plate base material. It is preferable to change the coating density of the light diffusing fine particles one-dimensionally by partially repeating on the work surface.

前記ノズルの送りピッチを変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させること、が好ましい。   It is preferable to change the coating density of the light diffusing fine particles in a one-dimensional manner by changing the feed pitch of the nozzles and applying the coating liquid to the whole or part of the coating surface of the light guide plate substrate. .

前記ノズルの走査速度を当該ノズルの走査毎に変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させること、が好ましい。   By changing the scanning speed of the nozzle for each scanning of the nozzle and applying the coating liquid to the whole or a part of the coating surface of the light guide plate base material, the coating density of the light diffusing fine particles is one-dimensionally changed. It is preferable to change.

前記ノズルからの塗布液の単位時間あたりの塗布量を当該ノズルの走査毎に変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させること、が好ましい。   The amount of coating liquid applied from the nozzle per unit time is changed for each scanning of the nozzle, and the light-diffusing fine particles are applied by coating the coating liquid on the whole or part of the coating surface of the light guide plate substrate. It is preferable to change the coating density in a one-dimensional manner.

本発明に係る導光板は、面光源装置を構成するべく、光源が端面に配置される導光板であって、導光板基材の裏面若しくは表面、又は両面に光拡散微粒子及び透光性バインダを含む塗布液を塗布することによって拡散層が塗工されており、前記光拡散微粒子は凝集体とされ、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率は0.1%以上70%以下であることを特徴とする。これにより、従来のように版や金型を作成しなくても、塗布液を導光板基材に塗布すると、微細パターンの光拡散能力に優れた拡散層を簡単、且つ安価に形成できる。   A light guide plate according to the present invention is a light guide plate in which a light source is disposed on an end surface to constitute a surface light source device, and a light diffusion fine particle and a light-transmitting binder are provided on the back surface, the front surface, or both surfaces of the light guide plate substrate. A diffusion layer is applied by applying a coating solution containing the light diffusion fine particles as aggregates, and a plane area occupied by the aggregates on a coating surface of the light guide plate substrate and a coating area of the coating solution The ratio is between 0.1% and 70%. Thereby, even if it does not produce a plate and a metal mold | die conventionally, when a coating liquid is apply | coated to a light-guide plate base material, the diffusion layer excellent in the light-diffusion capability of a fine pattern can be formed easily and cheaply.

前記塗布液は、当該塗布液をノズルから噴霧させるスプレー塗工法によって、前記導光板基材の裏面若しくは表面、又は両面に塗布すること、が好ましい。スプレー塗工法は、軽量で小さなノズルをX−Y方向に走査するだけであるから、安価な設備で目的が達せられる。すなわち、スプレー塗工法は、大型導光板にも安価な設備にて適用される。   The coating liquid is preferably applied to the back surface, the front surface, or both surfaces of the light guide plate base material by a spray coating method in which the coating liquid is sprayed from a nozzle. Since the spray coating method only scans light and small nozzles in the XY directions, the object can be achieved with inexpensive equipment. That is, the spray coating method is applied to a large light guide plate with inexpensive equipment.

1つの前記凝集体に含まれる光拡散微粒子の個数は10個以上10000個以下であること、が好ましい。   The number of light diffusing fine particles contained in one aggregate is preferably 10 or more and 10,000 or less.

前記光源から離れるにつれて、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率又は前記塗布液の塗布面積と前記導光板基材の塗工面の面積との塗工面積比率が高くなること、が好ましい。   As the distance from the light source increases, the ratio of the flat area occupied by the aggregates on the coated surface of the light guide plate substrate and the coated area of the coating solution or the coated area of the coating solution and the coated surface area of the light guide plate substrate It is preferable that the coating area ratio is high.

本発明によれば、拡散層の微細パターンを簡易、且つ安価に形成できる導光板及び導光板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the light-guide plate and light-guide plate which can form the fine pattern of a diffused layer easily and cheaply can be provided.

本発明に係る導光板の製造方法において、導光板基材の塗工面に塗布液をスプレー塗工する様子を示す概略図である。In the manufacturing method of the light-guide plate which concerns on this invention, it is the schematic which shows a mode that a coating liquid is spray-coated on the coating surface of a light-guide plate base material. 塗布液が導光板基材にスプレー塗工法で塗布された状態を示す側面図である。It is a side view which shows the state by which the coating liquid was apply | coated to the light-guide plate base material with the spray coating method. 塗布液が導光板基材にスプレー塗工法で塗布された状態を示す平面図である。It is a top view which shows the state by which the coating liquid was apply | coated to the light-guide plate base material with the spray coating method. 塗布液が導光板基材にスプレー塗工法で塗布された状態を示す側面図である。It is a side view which shows the state by which the coating liquid was apply | coated to the light-guide plate base material with the spray coating method. 塗布液が導光板基材にスプレー塗工法で塗布された状態を示す平面図である。It is a top view which shows the state by which the coating liquid was apply | coated to the light-guide plate base material with the spray coating method. 光拡散微粒子が個別に並んだ状態を示す側面図である。It is a side view which shows the state in which the light-diffusion fine particle was arranged in a line. 光拡散微粒子が個別に並んだ状態を示す平面図である。It is a top view which shows the state in which the light-diffusion fine particle was located in a line. 面光源装置の輝度分布を測定する様子を示す概略図である。It is the schematic which shows a mode that the luminance distribution of a surface light source device is measured. 送りピッチを変えて塗布液を均一塗布した導光板の相対輝度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the relative luminance of the light-guide plate which apply | coated the coating liquid uniformly by changing a feed pitch. 塗布液をスプレー塗工法で塗布する際のノズルの軌跡を概略的に示す図である。It is a figure which shows roughly the locus | trajectory of the nozzle at the time of apply | coating a coating liquid with a spray coating method. 図7Aに示すノズルの軌跡によって、塗布された光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the coating density of the applied light-diffusion fine particle with the locus | trajectory of the nozzle shown to FIG. 7A. 塗布液をスプレー塗工法で塗布する際のノズルの走査方向及び送り方向を規定した図である。It is the figure which prescribed | regulated the scanning direction and feed direction of a nozzle at the time of apply | coating a coating liquid with a spray coating method. 本発明の導光板の製造方法に用いる塗工法の条件を詳細に示す図である。It is a figure which shows the conditions of the coating method used for the manufacturing method of the light-guide plate of this invention in detail. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 図8Bに示した塗工法によるノズルの軌跡、及び光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows the locus | trajectory of the nozzle by the coating method shown to FIG. 8B, and the distribution of the X direction of the coating density of light-diffusion fine particle. 塗布液を導光板基材に均一塗布した際の光拡散微粒子の塗布密度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the coating density of the light-diffusion fine particle at the time of apply | coating a coating liquid uniformly to a light-guide plate base material. 図10Aの導光板基材の左端に光源を設置して、測定した輝度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the brightness | luminance which installed the light source in the left end of the light-guide plate base material of FIG. 10A, and was measured. 光拡散微粒子の目標塗布密度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the target application density of light-diffusion fine particles. 異なる光拡散微粒子の目標塗布密度のX方向の分布を示す図である。It is a figure which shows distribution of the X direction of the target application density of a different light-diffusion fine particle. 導光板の4辺に線光源を設置することを想定した2次元グラデーション分布を模式的に示す図である。It is a figure which shows typically the two-dimensional gradation distribution assumed that a line light source is installed in 4 sides of a light-guide plate. 複数個のノズルによって、導光板基材の塗工面に塗布液をスプレー塗工する様子を示す概略図である。It is the schematic which shows a mode that a coating liquid is spray-coated on the coating surface of a light-guide plate base material with a some nozzle. 本発明に係る導光板の製造方法の各工程順を示す概略図である。It is the schematic which shows each process order of the manufacturing method of the light-guide plate which concerns on this invention. 塗布液が水玉状に塗布された導光板を概略的に示す側面図である。It is a side view which shows roughly the light-guide plate with which the coating liquid was apply | coated to the polka dot shape. 塗布液が水玉状に塗布された導光板を概略的に示す平面図である。It is a top view which shows roughly the light-guide plate with which the coating liquid was apply | coated to the shape of a polka dot. 塗工面の全面に塗布液が塗布された導光板を概略的に示す側面図である。It is a side view which shows roughly the light-guide plate with which the coating liquid was apply | coated to the whole surface of the coating surface. 塗工面の全面に塗布液が塗布された導光板を概略的に示す平面図である。It is a top view which shows roughly the light-guide plate with which the coating liquid was apply | coated to the whole surface of the coating surface. 導光板基材の塗工面の顕微鏡写真である。It is a microscope picture of the coating surface of a light-guide plate base material. 導光板基材の塗工面の顕微鏡写真である。It is a microscope picture of the coating surface of a light-guide plate base material.

先ず、本発明の技術的思想を想到した経緯について説明し、その後、各実施形態の詳細を説明する。   First, the background of the technical idea of the present invention will be described, and then the details of each embodiment will be described.

導光板基材に拡散層を形成する技術には、スクリーン印刷法やオフセット印刷法等が挙げられる。いずれも最初に印刷版や金型といったマスターとなるパターンを作成する必要がある。例えば、スクリーン印刷版ではレーザー描画やインクジェットプリンターで精密に光学設計されたパターンを作画する。次に、感光乳剤を塗布したシルク上にできたパターン画を選択感光、洗浄する。これにより、当該導光板に拡散層を形成する。   Examples of the technique for forming the diffusion layer on the light guide plate substrate include a screen printing method and an offset printing method. In either case, it is necessary to create a master pattern such as a printing plate or a mold first. For example, a screen printing plate draws a pattern that is precisely optically designed by laser drawing or an ink jet printer. Next, the pattern image formed on the silk coated with the photosensitive emulsion is selectively exposed and washed. Thereby, a diffusion layer is formed on the light guide plate.

これらの工程においては、それぞれ微細化に限界がある。例えばレーザー描画の線幅や乳剤の感光感度による制約や、洗浄時のこびりつき等の問題をクリアしなければならない。また仮に当該版ができたとしても、微細化に伴う印刷不良や転写率変動による製品の性能変動といった印刷工程や性能の問題を誘発する。そのため、印刷技術の向上も同時に必要となる。さらに設計パターンや作成した版が不良であった場合には、高額なマスター版を作り直すことになる。これらの問題を回避するためには、マスター版を必要としない拡散層形成手法が本質的にふさわしい。   In these processes, there is a limit to miniaturization. For example, problems such as laser drawing line width and emulsion sensitivity, and stickiness during cleaning must be cleared. Even if the plate is produced, it causes printing process and performance problems such as printing defects accompanying miniaturization and product performance fluctuations due to fluctuations in transfer rate. Therefore, it is necessary to improve the printing technology at the same time. Furthermore, if the design pattern or the created version is defective, an expensive master version is recreated. In order to avoid these problems, a diffusion layer forming method that does not require a master plate is essentially suitable.

一方で大サイズ導光板においては光出射面の輝度を均一にしたいとの観点から、拡散層にグラデーションパターンを形成することがある。すなわち、光源近傍は低い光拡散能力のパターンとし、光源から離れるにつれて、高い光拡散能力のパターンを形成する方法である。光拡散能力を小さくするには、例えばパターンのピッチや面積を小さくするといった幾何学的パターンニングで行う方法と、拡散材や反射材の濃度を下げる等の拡散層の光拡散能力自体を物理的に低下させる方法が挙げられる。しかし、拡散材や反射材の濃度変更は著しく生産性を落とす。そのため、塗布部の面積密度やピッチ、高さで調整するのが一般的である。ところが前記の理由で精密パターニング印刷が障壁となり、導光板の大型化が困難となっている。   On the other hand, in a large-sized light guide plate, a gradation pattern may be formed in the diffusion layer in order to make the luminance of the light exit surface uniform. That is, a pattern with a low light diffusion capability is formed near the light source, and a pattern with a high light diffusion capability is formed as the distance from the light source increases. In order to reduce the light diffusion capacity, for example, the geometrical patterning method that reduces the pitch and area of the pattern and the light diffusion capacity itself of the diffusion layer, such as reducing the concentration of the diffusion material and the reflection material, are physically used. The method of reducing to is mentioned. However, changing the concentration of the diffusing material or reflecting material significantly reduces productivity. Therefore, it is common to adjust by the area density, pitch, and height of the application part. However, for the reasons described above, precision patterning printing becomes a barrier, and it is difficult to increase the size of the light guide plate.

そこで、本発明はこれらの問題に鑑み、版や金型を作成することなく、微細パターンの拡散層を簡易、且つ安価に形成できる導光板及び導光板の製造方法を提供しようとした。
即ち、本発明に係る導光板及び導光板の製造方法は、以下のような構成及び工程とした。
Therefore, in view of these problems, the present invention has sought to provide a light guide plate and a method for manufacturing the light guide plate that can form a diffusion layer having a fine pattern easily and inexpensively without creating a plate or a mold.
That is, the light guide plate and the method for manufacturing the light guide plate according to the present invention have the following configurations and processes.

<実施形態1>
本発明の実施形態1を以下に説明する。本発明に係る導光板は、液晶表示パネルや看板などの背面から光を照射するバックライト装置の構成部材の一つである。導光板の端面に光源が配置される。
<Embodiment 1>
Embodiment 1 of the present invention will be described below. The light guide plate according to the present invention is one of constituent members of a backlight device that emits light from the back surface of a liquid crystal display panel, a signboard, and the like. A light source is disposed on the end face of the light guide plate.

この導光板は、図1及び2に示すように、導光板基材1の裏面若しくは表面、又は両面に光拡散微粒子21及び透光性バインダ22を含む塗布液2を微細液滴状態で塗布することによって拡散層3を塗工する。当該光拡散微粒子21は凝集体210となる。   As shown in FIGS. 1 and 2, this light guide plate applies a coating liquid 2 containing light diffusing fine particles 21 and a light-transmitting binder 22 on the back surface, front surface, or both surfaces of the light guide plate substrate 1 in a fine droplet state. Thus, the diffusion layer 3 is applied. The light diffusing fine particles 21 become aggregates 210.

具体的に云うと、先ず導光板基材1を用意する。導光板基材1としては、ポリメチルメタクリレート(PMMA)樹脂、ポリスチレン樹脂、ポリカーボネート樹脂など一般の透明樹脂基板が好適に用いられる。特に、大型導光板基板としては、最も透明性に優れるポリメチルメタクリレート樹脂基板がより好適である。また導光板基材1のソリが曲率(最も湾曲している部分の曲率)で±1.61×10−4(1/mm)以内であることが好ましい。Specifically, first, the light guide plate substrate 1 is prepared. As the light guide plate substrate 1, a general transparent resin substrate such as polymethyl methacrylate (PMMA) resin, polystyrene resin, polycarbonate resin, or the like is preferably used. In particular, as the large light guide plate substrate, a polymethyl methacrylate resin substrate having the most excellent transparency is more preferable. The warp of the light guide plate substrate 1 is preferably within a range of ± 1.61 × 10 −4 (1 / mm) in curvature (curvature of the most curved portion).

次に、導光板基材1の裏面若しくは表面、又は両面(但し、本実施形態では表面のみであり、塗工面という。)に光拡散微粒子21及び透光性バインダ22を含む塗布液2を塗布する。ちなみに、本実施形態の拡散層3は、図2A、Bに示すように、塗布部と未塗布部とがランダムに配置されるように、塗布液2を塗布した。但し、図2A、Bの図示例では島状の塗布部がランダムに配置されているが、図3A、Bに示すように、島状の未塗布部がランダムに配置されていても良い。   Next, the coating liquid 2 containing the light diffusing fine particles 21 and the translucent binder 22 is applied to the back surface or the front surface of the light guide plate substrate 1 or both surfaces (however, in this embodiment, only the front surface is referred to as a coating surface). To do. Incidentally, as shown in FIGS. 2A and 2B, the diffusion layer 3 of the present embodiment was coated with the coating solution 2 so that the coated portion and the uncoated portion were randomly arranged. However, in the illustrated example of FIGS. 2A and 2B, island-shaped application portions are randomly arranged, but as shown in FIGS. 3A and 3B, island-shaped uncoated portions may be randomly arranged.

ここで、面光源装置に用いられる導光板とは、臨界角以下の角度で入光した光が気相と個相との界面(以下、気個界面という場合がある。)で全反射を繰り返しながら当該導光板内を進行することを利用して光源から離れたところまで光を伝播させる。これにより、光を取り出したい界面の全反射を阻害することで光を取り出す。従って、発光させたい部分に拡散層を形成するのは勿論であるが、発光させたくない部分では界面をそのまま残す技術が必要となる。すなわち、拡散層を形成するのは勿論であるが、意図的に気個界面を残す技術が必要である。この要求に対応する拡散層形成手法としては、塗布液を気体の噴出とともに噴霧するスプレーコート法が好ましい。   Here, the light guide plate used in the surface light source device means that light incident at an angle less than the critical angle repeats total reflection at the interface between the gas phase and the individual phase (hereinafter sometimes referred to as a gas interface). However, the light is propagated to a place away from the light source by using the traveling in the light guide plate. Thus, light is extracted by inhibiting total reflection at the interface from which light is to be extracted. Accordingly, it is a matter of course that a diffusion layer is formed in a portion where light emission is desired, but a technique for leaving the interface as it is in a portion where light emission is not desired is required. That is, it is a matter of course that a diffusion layer is formed, but a technique for intentionally leaving a gas interface is necessary. As a diffusion layer forming method corresponding to this requirement, a spray coating method in which a coating liquid is sprayed together with gas ejection is preferable.

一般的に版を用いない塗工装置は、全面均一に塗ることを目的としている。そのため、意図的に未塗布部を作ることは困難である。塗布液不足による掠れでも未塗布部はできるが、当該掠れの制御は極めて不安定である。また時折、不測の事態としてピンホール等の未塗布部が発生することがあるが、本来は制御不能である。一方、スプレーコート法は微細液滴状態の塗布液を噴霧するため、極小単位の塗布部と未塗布部を本質的に内包しているという優れた特長がある。   In general, a coating apparatus that does not use a plate is intended to uniformly coat the entire surface. Therefore, it is difficult to intentionally make an uncoated part. Although the uncoated portion can be formed even when the coating liquid is deficient, the control of the dripping is extremely unstable. Moreover, although unapplied parts, such as a pinhole, may occasionally occur as an unforeseen situation, it is originally uncontrollable. On the other hand, since the spray coating method sprays a coating liquid in the form of fine droplets, it has an excellent feature that it essentially includes a coating unit and a non-coating unit in a very small unit.

そのため、本実施形態においては、スプレーコート法によって塗布液2を導光板基材1に塗布する。すなわち、塗工装置としては、流量安定性に優れ、ノズルの詰まりなどの心配がないものが好適である。また、塗工装置としては、塗布液2を均一な微細液滴状態に噴霧でき、導光板基材1の平面領域外に塗布液2が飛散することが殆どない、塗布効率が高いものが好適である。そこで、塗工装置としては、スプレーコータ4を用いる。但し、拡散層形成手法は、スプレーコート法に限らず、要するに塗布液2を微細液滴状態で導光板基材1に塗布できるスプレー塗工法であれば良い。   Therefore, in this embodiment, the coating liquid 2 is apply | coated to the light-guide plate base material 1 by the spray coat method. That is, as the coating apparatus, an apparatus that is excellent in flow rate stability and does not have a worry of nozzle clogging is preferable. Further, as the coating apparatus, a coating apparatus that can spray the coating liquid 2 in a uniform fine droplet state, hardly scatters the coating liquid 2 outside the planar area of the light guide plate base material 1, and has high coating efficiency is preferable. It is. Therefore, a spray coater 4 is used as a coating apparatus. However, the diffusion layer forming method is not limited to the spray coating method, and may be any spray coating method that can apply the coating liquid 2 to the light guide plate substrate 1 in a fine droplet state.

スプレーコータ4は、ノズル5に気体を圧送して噴出させる。そして、スプレーコータ4は、当該噴出する気体に、貯蔵槽6からポンプ等によってノズル5に圧送された塗布液2を同伴させて、導光板基材1に噴霧する。ノズル5に圧送される気体及び塗布液2の流量は、それぞれ流量制御部7、8によって、制御される。   The spray coater 4 pumps gas to the nozzle 5 to eject it. Then, the spray coater 4 sprays the gas to be ejected onto the light guide plate substrate 1 by bringing the coating liquid 2 pumped from the storage tank 6 to the nozzle 5 by a pump or the like. The flow rates of the gas fed to the nozzle 5 and the coating liquid 2 are controlled by the flow rate control units 7 and 8, respectively.

ノズル5は、旋回流(スパイラルフロー)タイプのものが望ましい。旋回流ノズルは噴霧流体が渦巻き状となり噴霧角が狭くなる。そのため、光拡散微粒子21が凝集し易い。また、光拡散微粒子21が導光板基材1に到着するときの法線方向の流速が低いことから、光拡散微粒子21の凝集を壊すことなく導光板基材1に付着させることができる。   The nozzle 5 is preferably of a swirl flow type. In the swirl flow nozzle, the spray fluid becomes spiral and the spray angle becomes narrow. Therefore, the light diffusing fine particles 21 are likely to aggregate. Further, since the flow velocity in the normal direction when the light diffusing fine particles 21 arrive at the light guide plate substrate 1 is low, the light diffusing fine particles 21 can be attached to the light guide plate substrate 1 without breaking the aggregation of the light diffusing fine particles 21.

ノズル5は、X方向及びY方向に移動可能な構成とされている。ノズル5は、導光板基材1の平面全領域(但し、一部分でも良い。)に塗布液2を噴霧できる構成とされている。ノズル5は、さらに上下方向に移動可能な構成とされている。このように、ノズル5は、ノズル5と導光板基材1との間隔を変化させることができる構成とされていることが好ましい。ちなみに、ノズル5のX・Y方向への駆動機構、及び上下方向への駆動機構は、特に限定されない。但し、本実施形態では、ノズル5をX・Y方向及び上下方向へ移動可能な構成としたが、導光板基材1を支持するステージ(図示を省略)をX・Y方向及び上下方向へ移動可能な構成としても良い。   The nozzle 5 is configured to be movable in the X direction and the Y direction. The nozzle 5 is configured to be able to spray the coating liquid 2 on the entire planar area (but may be a part) of the light guide plate substrate 1. The nozzle 5 is configured to be further movable in the vertical direction. Thus, it is preferable that the nozzle 5 is configured to be able to change the interval between the nozzle 5 and the light guide plate substrate 1. Incidentally, the drive mechanism of the nozzle 5 in the X and Y directions and the drive mechanism in the vertical direction are not particularly limited. However, in this embodiment, the nozzle 5 is configured to be movable in the X / Y direction and the vertical direction, but the stage (not shown) that supports the light guide plate substrate 1 is moved in the X / Y direction and the vertical direction. A possible configuration is also possible.

気体としては、例えば乾燥空気、乾燥窒素などを使用できる。可燃性の溶媒を使用する場合は静電気などによる着火を防ぐため、乾燥窒素を使用することが好ましい。なお、後述するように光拡散微粒子21の凝集を促進させるため、キャリアとなる気体を噴霧前に例えば30℃以上120℃以下に加熱しても良い。   For example, dry air or dry nitrogen can be used as the gas. When a flammable solvent is used, dry nitrogen is preferably used to prevent ignition due to static electricity. As will be described later, in order to promote the aggregation of the light diffusing fine particles 21, the carrier gas may be heated to, for example, 30 ° C. or higher and 120 ° C. or lower before spraying.

塗布液2は、上述したように光拡散微粒子21及び透光性バインダ22を含む混合物である。光拡散微粒子21は、光を透過拡散する部材である。光拡散微粒子21としては、シリカ、炭酸カルシウム、硫酸バリウム、酸化チタン、酸化アルミニウム等の無機系微粒子や、シリコーンビーズ、PMMAビーズ、MSビーズ、スチレンビーズ等の有機系微粒子を用いることができる。   The coating liquid 2 is a mixture containing the light diffusing fine particles 21 and the light transmissive binder 22 as described above. The light diffusing fine particles 21 are members that transmit and diffuse light. As the light diffusion fine particles 21, inorganic fine particles such as silica, calcium carbonate, barium sulfate, titanium oxide, and aluminum oxide, and organic fine particles such as silicone beads, PMMA beads, MS beads, and styrene beads can be used.

導光板基材1の表面(光出射面)に塗布液2を塗布する場合は、光拡散微粒子21として透過散乱する透明ガラス微粒子、透明樹脂微粒子を使用することが好ましい。導光板基材1の裏面(光反射面)に塗布液2を塗布する場合は、光拡散微粒子21として反射散乱する白色粒子、顔料を使用することが好ましい。   When the coating liquid 2 is applied to the surface (light emitting surface) of the light guide plate substrate 1, it is preferable to use transparent glass fine particles and transparent resin fine particles that are transmitted and scattered as the light diffusing fine particles 21. When the coating liquid 2 is applied to the back surface (light reflecting surface) of the light guide plate substrate 1, it is preferable to use white particles and pigment that are reflected and scattered as the light diffusing fine particles 21.

光拡散微粒子21の形状は、真球状、球状、鱗片状、不定形状等であって良く、特に限定されるものではない。
光拡散微粒子21の平均粒径は、1μm以上50μm以下が好ましい。当該平均粒径が前述した下限値より小さいと、光を拡散する能力が不足したり、拡散光が着色したりする恐れがある。当該平均粒径が前述した上限値より大きいと、ノズルを使用した際に詰まり易くなったり、塗布密度が小さい部分で当該光拡散微粒子21による拡散光が輝点となって目立ったりする恐れがある。特に当該平均粒径は、1μm以上20μm以下が好ましい。
The shape of the light diffusing fine particles 21 may be a true spherical shape, a spherical shape, a scale shape, an indefinite shape, or the like, and is not particularly limited.
The average particle diameter of the light diffusing fine particles 21 is preferably 1 μm or more and 50 μm or less. If the average particle size is smaller than the lower limit value described above, the ability to diffuse light may be insufficient, or diffused light may be colored. If the average particle size is larger than the above-described upper limit, clogging may easily occur when the nozzle is used, or light diffused by the light diffusing fine particles 21 may become conspicuous as a bright spot at a portion where the coating density is low. . In particular, the average particle diameter is preferably 1 μm or more and 20 μm or less.

塗布液2に対して光拡散微粒子21が占める割合としては、1wt%以上20wt%以下が好ましい。当該割合が前述した範囲から外れていると、光拡散微粒子21の凝集体の生成が起こり難い場合がある。当該割合が前述した下限値より低いと、高いアスペクト比を得難く、光拡散能力が不足する場合がある。   The ratio of the light diffusing fine particles 21 to the coating liquid 2 is preferably 1 wt% or more and 20 wt% or less. When the ratio is out of the above-described range, the aggregate of the light diffusing fine particles 21 may not easily be generated. If the ratio is lower than the lower limit value described above, it may be difficult to obtain a high aspect ratio and the light diffusion capability may be insufficient.

透光性バインダ22は、光拡散微粒子21を導光板基材1に接着する部材である。透光性バインダ22としては、例えば溶剤型接着剤、熱硬化性樹脂、紫外線硬化性樹脂などを使用できる。また透光性バインダ22としては、後述するように、溶媒希釈中は密着せずに溶媒乾燥後に密着力を発現する樹脂成分、例えばアクリル系粘着剤を用いても良い。但し、非反応性のポリマーを溶媒に溶解させてスプレー塗布し、導光板基材上で溶媒を乾燥させることによって、光拡散微粒子を接着剤として機能させることも本発明の範疇に属する。   The light transmissive binder 22 is a member that adheres the light diffusing fine particles 21 to the light guide plate substrate 1. As the translucent binder 22, for example, a solvent-type adhesive, a thermosetting resin, an ultraviolet curable resin, or the like can be used. As the light-transmitting binder 22, as described later, a resin component such as an acrylic pressure-sensitive adhesive that does not adhere during solvent dilution but develops adhesion after solvent drying may be used. However, it is also within the scope of the present invention to cause the light diffusing fine particles to function as an adhesive by dissolving a non-reactive polymer in a solvent and spray-coating and drying the solvent on the light guide plate substrate.

導光板の導光方向の長さが600mm以下の場合は、透光性バインダ22の屈折率と光拡散微粒子21の屈折率との差が−0.1以下または0.1以上であることが好ましい。光の拡散効果が表面の凹凸及び屈折率差の両方により発揮され、比較的短い導光距離で面方向に効率よく光を取り出すことができるためである。導光板の導光方向の長さが300mm以上の場合は、透光性バインダ22の屈折率と光拡散微粒子21の屈折率との差が−0.1以上0.1以下であることが好ましい。光の拡散効果は主として表面の凹凸のみにより発揮され、徐々に光を取り出すことができ、比較的長い導光距離に向いている。光源付近では屈折率差の小さい光拡散微粒子21を主に使用し、光源から離れた位置では屈折率差の大きい光拡散微粒子21を主に使用しても良い。導光方向で光の拡散効果をよりダイナミックに変化させることができ、長い導光距離でかつ高い光の取り出し効率を両立できる。   When the length of the light guide plate in the light guide direction is 600 mm or less, the difference between the refractive index of the light transmissive binder 22 and the refractive index of the light diffusing fine particles 21 may be −0.1 or less or 0.1 or more. preferable. This is because the light diffusing effect is exhibited by both the unevenness of the surface and the refractive index difference, and light can be efficiently extracted in the surface direction at a relatively short light guide distance. When the length of the light guide plate in the light guide direction is 300 mm or more, the difference between the refractive index of the light transmissive binder 22 and the refractive index of the light diffusing fine particles 21 is preferably −0.1 or more and 0.1 or less. . The light diffusing effect is mainly exhibited only by the unevenness of the surface, and light can be gradually extracted, which is suitable for a relatively long light guide distance. The light diffusing fine particles 21 having a small refractive index difference may be mainly used near the light source, and the light diffusing fine particles 21 having a large refractive index difference may be mainly used at a position away from the light source. The light diffusion effect can be changed more dynamically in the light guide direction, and a high light extraction efficiency can be achieved at a long light guide distance.

透光性バインダ22の粘度は、1mPa・s以上100mPa・s以下が好ましい。当該粘度が前述した下限値より小さいと、導光板基材1でレベリングが起き易く、光拡散能力が低下する。当該粘度が前述した上限値より大きいと、塗りムラを生じ易い。特に好ましくは1mPa・s以上20mPa・s以下である。
透光性バインダ22の屈折率と導光板基材1の屈折率との差が±0.1以内であることが好ましい。透光性バインダ22と導光板基材1との界面での屈折反射を考慮しなくて良いので光学設計が簡単である。
The translucent binder 22 preferably has a viscosity of 1 mPa · s to 100 mPa · s. If the viscosity is smaller than the lower limit value described above, leveling is likely to occur in the light guide plate substrate 1, and the light diffusion capability is reduced. If the viscosity is larger than the above-described upper limit, uneven coating tends to occur. Particularly preferably, it is 1 mPa · s or more and 20 mPa · s or less.
The difference between the refractive index of the translucent binder 22 and the refractive index of the light guide plate substrate 1 is preferably within ± 0.1. Since it is not necessary to consider refractive reflection at the interface between the translucent binder 22 and the light guide plate substrate 1, the optical design is simple.

ところで、スプレーコータを用いて透光性バインダのみを塗布した場合、導光板基材に塗布された透光性バインダがレベリング現象を生じる。当該レベリング現象によって光拡散を起こすのに十分な、すなわち全反射を阻害するのに十分な表面凹凸、特に凹凸高さ÷凹凸の平均ピッチ(以下、アスペクト比という場合がある。)を形成し難く、平坦化してしまう可能性がある。また、何度も透光性バインダを重ね塗りすると、その表面張力から微細液滴状態の塗布液同士が互いに密着して、やはり平坦化してしまう可能性がある。   By the way, when only a translucent binder is applied using a spray coater, the translucent binder applied to the light guide plate base material causes a leveling phenomenon. It is difficult to form a surface unevenness sufficient to cause light diffusion by the leveling phenomenon, that is, a surface unevenness sufficient to inhibit total reflection, particularly an unevenness height / an average pitch of unevenness (hereinafter sometimes referred to as an aspect ratio). , There is a possibility of flattening. Further, if the light-transmitting binder is repeatedly applied, the coating liquid in the form of fine droplets may be brought into close contact with each other due to the surface tension, and may be flattened.

これらを改善するために、高粘度の透光性バインダを塗布する方法や、光拡散微粒子を透光性バインダに添加(混合)し、凹凸を形成する方法が考えられる。しかし、透光性バインダの高粘度化は噴霧時に塗りムラを生じ易い。また、大きな径の光拡散微粒子を透光性バインダに添加した塗布液を塗布すると、スプレーコータのノズルの詰まりや透光性バインダ中に光拡散微粒子が沈降を起こす可能性がある。   In order to improve these, a method of applying a high-viscosity light-transmitting binder and a method of forming irregularities by adding (mixing) light diffusing fine particles to the light-transmitting binder can be considered. However, increasing the viscosity of the translucent binder tends to cause uneven coating during spraying. In addition, when a coating liquid in which light diffusing fine particles having a large diameter are added to a light transmissive binder is applied, there is a possibility that the nozzle of the spray coater is clogged or the light diffusing fine particles are settled in the light transmissive binder.

そこで、本実施形態では溶媒で透光性バインダを1.1〜10倍程度に希釈した。例えば1mPa・s以上20mPa・s以下に希釈した低粘度の透光性バインダに、1μm以上20μm以下の小粒径の光拡散微粒子を添加し、ノズルから導光板基材までの間で噴霧した塗布液2の光拡散微粒子21を再凝集させることで光拡散能力の高い拡散層3を得る(図2A、B及び図3A、Bを参照)。   Therefore, in this embodiment, the translucent binder is diluted by about 1.1 to 10 times with a solvent. For example, a light-diffusing fine particle having a small particle diameter of 1 μm or more and 20 μm or less is added to a low-viscosity light-transmitting binder diluted to 1 mPa · s to 20 mPa · s and sprayed between the nozzle and the light guide plate substrate. By reaggregating the light diffusing fine particles 21 of the liquid 2, the diffusion layer 3 having a high light diffusing ability is obtained (see FIGS. 2A and 2B and FIGS. 3A and 3B).

すなわち、ノズル5から噴霧された塗布液2は、溶媒の含有量が多いうちは分散した状態である。溶媒が乾燥すると表面張力で一つの光拡散微粒子21を核として再凝集する。このとき、光拡散微粒子21は葡萄のフサ状の凝集体210となる。凝集体210は、導光板基材1に付着する。ちなみに、溶媒が多量に残っていると付着後にレベリングを起こすため芳しくない。そのため、ホットエアーを用いて凝集を促進させても良い。   That is, the coating liquid 2 sprayed from the nozzle 5 is in a dispersed state while the content of the solvent is large. When the solvent dries, it reaggregates with one light diffusing fine particle 21 as a nucleus due to surface tension. At this time, the light diffusing fine particles 21 become cocoon-like aggregates 210. Aggregate 210 adheres to light guide plate substrate 1. By the way, if a large amount of solvent remains, leveling will occur after adhesion, which is not good. Therefore, aggregation may be promoted using hot air.

導光板基材1へ到達する時の速度が速いと、図4A、Bに示すように葡萄のフサが潰れて光拡散微粒子21が個別に並んだようになり光拡散能力の低下を招く。これらはノズル5から導光板基材1までの間隔T(図1)を調整することで解消できる。例えば、ノズル5から導光板基材1までの間隔Tとしては、70mm以上300mm以下とすることが好ましい。当該間隔Tが前述した下限値より短いと、溶媒の乾燥が不十分となる。そのため、光拡散微粒子21の凝集体の生成が起りにくく、各光拡散微粒子21が透光性バインダ22中に沈降して光拡散能力が著しく低下する場合がある。また、導光板基材1の塗工面への塗着速度が速いため凝集体が壊れ易い。当該間隔Tが前述した上限値より長いと、塗布液2が導光板基材1の塗工面に到達するまでの間に流速が著しく低くなる。そのため、塗布液2が当該導光板基材1の塗工面に塗着せず、外方へ飛散する量が多くなる。   If the speed at which the light guide plate base material 1 is reached is high, as shown in FIGS. 4A and 4B, the wings of the ridges are crushed and the light diffusing fine particles 21 are individually arranged, leading to a reduction in light diffusing ability. These can be eliminated by adjusting the interval T (FIG. 1) from the nozzle 5 to the light guide plate substrate 1. For example, the interval T from the nozzle 5 to the light guide plate substrate 1 is preferably 70 mm or more and 300 mm or less. When the interval T is shorter than the lower limit value described above, the solvent is not sufficiently dried. Therefore, the formation of aggregates of the light diffusing fine particles 21 hardly occurs, and the light diffusing fine particles 21 may settle in the light transmissive binder 22 and the light diffusing ability may be significantly reduced. Moreover, since the coating speed to the coating surface of the light-guide plate base material 1 is quick, an aggregate is easy to break. When the interval T is longer than the above-described upper limit value, the flow rate is remarkably reduced until the coating liquid 2 reaches the coating surface of the light guide plate substrate 1. Therefore, the coating liquid 2 is not applied to the coated surface of the light guide plate substrate 1 and the amount of the coating liquid 2 scattered outward increases.

溶媒としては、ケトン系、アルコール系、エステル系等制約はない。但し、溶媒は、光拡散微粒子21の再凝集を安定化させるために沸点60℃以上200℃以下のものが好ましい。さらに溶媒は、沈降防止の点から比重0.8以上1.3以下のものが好ましい。当該沸点や比重が前述した上限値より高いと、溶媒の乾燥が不十分となる。そのため、光拡散微粒子21の凝集体の生成が起こり難い場合がある。当該沸点や比重が前述した下限値より低いと、比較的粘度が低いものが多い。そのため、光拡散微粒子21の沈降が起り易いなどの問題が生じる場合がある。当該沸点は120℃以上170℃以下が好ましい。さらに当該沸点は130℃以上160℃以下がより好ましい。   There is no restriction | limiting, such as a ketone type | system | group, alcohol type | system | group, and ester type, as a solvent. However, the solvent preferably has a boiling point of 60 ° C. or higher and 200 ° C. or lower in order to stabilize reaggregation of the light diffusing fine particles 21. Further, the solvent preferably has a specific gravity of 0.8 or more and 1.3 or less from the viewpoint of preventing sedimentation. When the boiling point and specific gravity are higher than the upper limit values described above, the solvent is not sufficiently dried. For this reason, the formation of aggregates of the light diffusing fine particles 21 may hardly occur. When the boiling point or specific gravity is lower than the lower limit value described above, many have relatively low viscosities. Therefore, there may be a problem that the light diffusing fine particles 21 are likely to settle. The boiling point is preferably 120 ° C. or higher and 170 ° C. or lower. Further, the boiling point is more preferably 130 ° C. or higher and 160 ° C. or lower.

溶媒に対する光拡散微粒子21及び透光性バインダ22の混合体の混合比率は、2wt%以上50wt%以下が好ましい。当該混合比率が前述した上限値より多いと、光拡散微粒子21の凝集体210の生成が起こり難い場合や、塗工性に劣る場合がある。当該混合比率が前述した下限値より少なくても光拡散微粒子21の凝集体の生成は特に顕著にならず、溶媒の使用量増大によるコスト増が問題になる場合がある。当該混合比率は3wt%以上30wt%以下がより好ましい。   The mixing ratio of the mixture of the light diffusing fine particles 21 and the light transmissive binder 22 with respect to the solvent is preferably 2 wt% or more and 50 wt% or less. When the mixing ratio is larger than the above-described upper limit, the formation of the aggregate 210 of the light diffusing fine particles 21 may hardly occur or the coatability may be poor. Even when the mixing ratio is less than the above-described lower limit, the formation of aggregates of the light diffusing fine particles 21 is not particularly noticeable, and an increase in cost due to an increase in the amount of solvent used may be a problem. The mixing ratio is more preferably 3 wt% or more and 30 wt% or less.

次に、塗布液2をスプレー塗布した導光板基材1は、当該溶媒を自然風乾や熱風などによって乾燥させる。透光性バインダ22が紫外線硬化樹脂からなる場合は、その後の工程にて紫外線を照射して、当該透光性バインダ22を硬化させる。その結果、図2A、B及び図3A、Bに示すように、一つの光拡散微粒子21を核として複数の光拡散微粒子21が葡萄のフサ状の凝集体210となる。当該凝集体210は、導光板基材1の塗工面に付着する。この凝集体210は、高いアスペクト比を有し、微細パターンの拡散層3を成す。それ故に、従来のように版や金型を作成しなくても、塗布液2を導光板基材1に塗布すると、微細パターンの光拡散能力に優れた拡散層3を簡単、且つ安価に形成できる。しかも、スプレー塗工法により塗布液2を導光板基材1に重ね塗りしても、光拡散微粒子21は凝集状態で密着するので平坦化し難い。そのため、良好にスプレー塗工法により塗布液2を導光板基材1に重ね塗りすることができる。   Next, the light guide plate substrate 1 on which the coating liquid 2 is spray-dried is dried by natural air drying, hot air, or the like. When the translucent binder 22 is made of an ultraviolet curable resin, the translucent binder 22 is cured by irradiating ultraviolet rays in the subsequent steps. As a result, as shown in FIGS. 2A and 2B and FIGS. 3A and 3B, the plurality of light diffusing fine particles 21 form a cocoon-shaped aggregate 210 with one light diffusing fine particle 21 as a nucleus. The aggregate 210 adheres to the coated surface of the light guide plate substrate 1. The aggregate 210 has a high aspect ratio and forms the diffusion layer 3 having a fine pattern. Therefore, when the coating liquid 2 is applied to the light guide plate base material 1 without creating a plate or a mold as in the prior art, the diffusion layer 3 having excellent light diffusing ability of a fine pattern can be easily and inexpensively formed. it can. Moreover, even if the coating liquid 2 is applied over the light guide plate substrate 1 by spray coating, the light diffusing fine particles 21 adhere in an agglomerated state and are difficult to flatten. Therefore, the coating liquid 2 can be satisfactorily applied to the light guide plate substrate 1 by a spray coating method.

ここで、導光板基材1の塗工面における凝集体が占める平面積と塗布液2の塗布面積との比率Rは0.1%以上70%以下とされる。当該比率Rが前述した下限値より少ないと、導光板100の光拡散能力が不足する場合がある。当該比率Rが前述した上限値より大きいと、導光板100の光拡散能力が大きくなり過ぎ、導光長L(図5)が長い場合に光源から離れた位置での出射光量が不足する場合がある。   Here, the ratio R between the flat area occupied by the aggregates on the coated surface of the light guide plate substrate 1 and the coating area of the coating liquid 2 is 0.1% or more and 70% or less. If the ratio R is less than the lower limit value described above, the light diffusion capability of the light guide plate 100 may be insufficient. If the ratio R is larger than the above-described upper limit value, the light diffusing ability of the light guide plate 100 becomes too large, and when the light guide length L (FIG. 5) is long, the amount of emitted light at a position away from the light source may be insufficient. is there.

上述のように製造された導光板100は、導光板基材1の表面に光拡散微粒子21及び透光性バインダ22を含む塗布液2を塗布することによって拡散層3が塗工されている。光拡散微粒子21は凝集体210とされている。導光板基材1の塗工面における凝集体210が占める平面積と塗布液2の塗布面積との比率Rは0.1%以上70%以下とされている。この導光板100は、例えば図5に示したように、一端部に設置されたLEDアレイ等の線光源9と、裏面側に設置された拡散反射フィルム10と、表面側に設置された拡散フィルム11と、で面光源装置を構成する。複数の光拡散微粒子21の凝集体210は、高いアスペクト比を有し、微細パターンの拡散層3を成す。それ故に、従来のように版や金型を作成しなくても、塗布液2を導光板基材1に塗布すると、微細パターンの光拡散能力に優れた拡散層3を簡単、且つ安価に形成できる。ちなみに、導光板基材1と拡散層3との間に、光拡散微粒子21を含まない透光性バインダを導光板基材1の上面全領域に均一な厚みで塗布しても良い。当該透光性バインダは、帯電防止層、ハードコート層などとして機能する。   In the light guide plate 100 manufactured as described above, the diffusion layer 3 is applied by applying the coating liquid 2 including the light diffusion fine particles 21 and the light transmissive binder 22 to the surface of the light guide plate substrate 1. The light diffusing fine particles 21 are aggregates 210. The ratio R between the flat area occupied by the aggregates 210 on the coated surface of the light guide plate substrate 1 and the coating area of the coating liquid 2 is 0.1% or more and 70% or less. For example, as shown in FIG. 5, the light guide plate 100 includes a line light source 9 such as an LED array installed at one end, a diffuse reflection film 10 installed on the back side, and a diffusion film installed on the front side. 11 constitutes a surface light source device. The aggregate 210 of the plurality of light diffusing fine particles 21 has a high aspect ratio and forms the diffusion layer 3 having a fine pattern. Therefore, when the coating liquid 2 is applied to the light guide plate base material 1 without creating a plate or a mold as in the prior art, the diffusion layer 3 having excellent light diffusing ability of a fine pattern can be easily and inexpensively formed. it can. Incidentally, a light-transmitting binder that does not contain the light diffusing fine particles 21 may be applied between the light guide plate substrate 1 and the diffusion layer 3 to the entire upper surface region of the light guide plate substrate 1 with a uniform thickness. The translucent binder functions as an antistatic layer, a hard coat layer, or the like.

塗布液2の塗布面積(拡散層の平面積)と導光板基材1の塗工面の面積との塗工面積比率Sが5%以上95%以下であることが好ましい。当該塗工面積比率Sが前述した下限値より少ないと、導光板100の光拡散能力が不足する場合がある。当該塗工面積比率Sが前述した上限値より大きいと、透光性バインダ22による光の吸収が無視できなくなり、明るさが不足する場合がある。   It is preferable that the coating area ratio S between the coating area of the coating liquid 2 (the planar area of the diffusion layer) and the area of the coating surface of the light guide plate substrate 1 is 5% or more and 95% or less. If the coating area ratio S is less than the lower limit value described above, the light diffusion ability of the light guide plate 100 may be insufficient. If the coating area ratio S is larger than the above-described upper limit value, light absorption by the translucent binder 22 cannot be ignored and the brightness may be insufficient.

1つの凝集体210に含まれる光拡散微粒子21の個数は10個以上10000個以下であることが好ましい。当該個数が前述した下限値より少ないと、導光板100の光拡散能力が不足する場合がある。当該個数が前述した上限値より大きいと、ムラやザラザラ感、輝点といった外観不良を生じ易い。   The number of the light diffusing fine particles 21 contained in one aggregate 210 is preferably 10 or more and 10,000 or less. If the number is less than the lower limit value described above, the light diffusion capability of the light guide plate 100 may be insufficient. When the number is larger than the above-described upper limit value, appearance defects such as unevenness, rough feeling, and bright spots are likely to occur.

但し、導光板基材1の塗工面には光拡散微粒子21の個数が10個以上10000個以下である凝集体以外に、単分散した光拡散微粒子21や10個未満の光拡散微粒子21からなる凝集体210が存在しても良い。この場合、単分散した光拡散微粒子21や10個未満の光拡散微粒子21からなる凝集体210は、光拡散微粒子の総数の20%未満であることが好ましい。   However, the coated surface of the light guide plate substrate 1 is composed of monodispersed light diffusing fine particles 21 and less than 10 light diffusing fine particles 21 in addition to the aggregates in which the number of light diffusing fine particles 21 is 10 or more and 10,000 or less. Aggregates 210 may be present. In this case, it is preferable that the monodispersed light diffusing fine particles 21 and the aggregate 210 composed of less than 10 light diffusing fine particles 21 are less than 20% of the total number of light diffusing fine particles.

ちなみに、凝集体210に含まれる光拡散微粒子21の個数は300〜1000倍程度の光学顕微鏡又はレーザー顕微鏡などの観察によって数えることができる。また、凝集体210を採取して透光性バインダ22を除去した後、光学顕微鏡などの観察によって数えることができる。   Incidentally, the number of the light diffusing fine particles 21 contained in the aggregate 210 can be counted by observation with an optical microscope or a laser microscope of about 300 to 1000 times. Moreover, after collecting the aggregate 210 and removing the translucent binder 22, it can be counted by observation with an optical microscope or the like.

一回の塗布で光拡散能力が不足する場合は、重ね塗りをしても良い。重ね塗りをして、光拡散微粒子21の凝集体同士が密着・一体化しても当該凝集体210の高いアスペクト比が保たれる。そのため、光拡散能力が高く外観不良を起こし難い利点がある。   If the light diffusing ability is insufficient after a single application, it may be overcoated. The high aspect ratio of the aggregate 210 is maintained even if the aggregates of the light diffusing fine particles 21 are adhered and integrated by recoating. Therefore, there is an advantage that the light diffusion ability is high and it is difficult to cause the appearance defect.

凝集体の屈折率と透光性バインダの屈折率との差が0.001以上0.5以下であることが好ましい。光拡散能力は、実質的に透明な材料と屈折率が異なる物質の屈折率差、物質の体積、物質の体積濃度、物質の形状(真球等の定形・不定形)や、表面の微細凹凸等により変化する。当該屈折率差が前述した下限値より小さいと、屈折散乱性が少なく照度均一化効果が得難い。当該屈折率差が前述した上限値より大きいと、界面(気個界面)における反射が多くなり、例えば300mm以上といった比較的導光長が長い場合に照度均一化効果が得難い。   The difference between the refractive index of the aggregate and the refractive index of the translucent binder is preferably 0.001 or more and 0.5 or less. The light diffusing capacity is based on the difference in refractive index of a substance that has a refractive index different from that of a substantially transparent material, the volume of the substance, the volume concentration of the substance, the shape of the substance (a regular or irregular shape such as a true sphere), and fine irregularities on the surface It changes by etc. When the difference in refractive index is smaller than the lower limit value described above, it is difficult to obtain an effect of uniforming illuminance due to low refractive scattering properties. When the difference in refractive index is larger than the above-described upper limit, reflection at the interface (gas interface) increases, and it is difficult to obtain an effect of uniforming illuminance when the light guide length is relatively long, for example, 300 mm or more.

凝集体210における微細凹凸の算術平均表面粗さは0.01μm以上10μm以下であることが好ましい。当該算術平均表面粗さが前述した下限値より小さいと、反射散乱性が少なく全体的に暗くなり易い。当該算術平均表面粗さが前述した上限値より大きいと、反射散乱要素が物理的に大きく、光源付近が局所的に明るい等、照度均一化効果が得難い。   The arithmetic average surface roughness of the fine irregularities in the aggregate 210 is preferably 0.01 μm or more and 10 μm or less. When the arithmetic average surface roughness is smaller than the above-described lower limit, the reflection / scattering property is small and the entire surface tends to be dark. When the arithmetic average surface roughness is larger than the above-described upper limit value, it is difficult to obtain an effect of uniform illuminance such that the reflection / scattering element is physically large and the vicinity of the light source is locally bright.

<実施形態2>
本発明の実施形態2を以下に説明する。本実施形態の導光板及び導光板の製造方法は、実施形態1の導光板及び導光板の製造方法と略同様であるが、導光板の輝度が略均一となるように、光源から離れるにつれて、導光板基材の塗工面における凝集体が占める平面積と塗布液の塗布面積との比率R又は塗布液の塗布面積と導光板基材の塗工面の面積との塗工面積比率Sを高くした。すなわち、光源から離れるにつれて、光拡散微粒子の塗布密度を高くした。
<Embodiment 2>
Embodiment 2 of the present invention will be described below. The light guide plate and the light guide plate manufacturing method of the present embodiment are substantially the same as the light guide plate and light guide plate manufacturing method of the first embodiment, but as the brightness of the light guide plate becomes substantially uniform, The ratio R between the flat area occupied by the aggregates on the coated surface of the light guide plate substrate and the coated area of the coating solution, or the coating area ratio S between the coated area of the coating solution and the coated surface area of the light guide plate substrate was increased. . That is, as the distance from the light source increased, the coating density of the light diffusing fine particles was increased.

近年の表示装置の大型化に伴い、バックライトも大型化が要求されている。すなわち、導光長L(図5)を長くする必要がある。導光板の光出射面の輝度を均一化するためには、特に導光板における光源近傍の拡散層の光拡散能力を小さくし、一方で導光板において光源から離れるほど光拡散能力を大きくする必要がある。そのため、導光板における光源から最も離れた位置では拡散層の光拡散能力を顕著に大きくする必要がある。拡散層のパターンニングが不適切である場合、またパターン設計できたとしても印刷精度が劣る場合には、導光板における光源近傍の端部のみが明るく中央部が暗い、すなわち導光板としての本質的性能が満たされないという問題や、光出射面の輝度ムラが発生するという問題がある。これらの観点から拡散層のパターンの微細化と、その拡散部を光源に近いほど粗であり、光源から離れるほど密になるパターン配置を正確に形成する必要がある。なお、「光源の近傍」とは、導光板の有効光出射部における最も光源寄りに位置する部位をいう。すなわち、「光源の近傍」とは、光源が設置される側の端部をいう。「光源から最も離れた位置」とは、導光板の有効光出射部における最も光源から離れた部位をいう。すなわち、「光源から最も離れた位置」とは、図5に示す導光板の場合は、光源9が設置される側の端部と対向する側の端部をいう。   With the recent increase in size of display devices, the backlight is also required to increase in size. That is, the light guide length L (FIG. 5) needs to be increased. In order to make the brightness of the light exit surface of the light guide plate uniform, it is necessary to reduce the light diffusion capability of the diffusion layer in the vicinity of the light source in the light guide plate, while increasing the light diffusion capability as the distance from the light source in the light guide plate increases. is there. Therefore, it is necessary to remarkably increase the light diffusion capability of the diffusion layer at the position farthest from the light source in the light guide plate. If the patterning of the diffusion layer is inappropriate, or if the printing accuracy is inferior even if the pattern can be designed, only the edge near the light source in the light guide plate is bright and the central portion is dark, that is, essential as a light guide plate There is a problem that the performance is not satisfied and a problem that luminance unevenness occurs on the light exit surface. From these viewpoints, it is necessary to refine the pattern of the diffusion layer and to accurately form a pattern arrangement that is rougher as the diffusion portion is closer to the light source and becomes denser as the distance from the light source is increased. “Near the light source” refers to a portion located closest to the light source in the effective light emitting portion of the light guide plate. That is, “in the vicinity of the light source” means an end portion on the side where the light source is installed. The “position farthest from the light source” refers to a part of the effective light emitting portion of the light guide plate that is farthest from the light source. That is, the “position farthest from the light source” means an end on the side facing the end on the side where the light source 9 is installed in the case of the light guide plate shown in FIG.

本実施形態では、実施形態1と略同様にスプレー塗工法により塗布液2を導光板基材1に塗布する。このとき、一つの光拡散微粒子21を核として複数の光拡散微粒子21が葡萄のフサ状に凝集する。このように凝集した凝集体210が光源から離れるほど密になるグラデーション分布のパターン配置とする。   In the present embodiment, the coating liquid 2 is applied to the light guide plate substrate 1 by a spray coating method in substantially the same manner as in the first embodiment. At this time, a plurality of light diffusing fine particles 21 are aggregated in the shape of a hull with one light diffusing fine particle 21 as a nucleus. The gradation distribution pattern arrangement is such that the aggregates 210 thus aggregated become denser as they move away from the light source.

ここで、厚さ5mm、導光長600mmのPMMA基板に、Y方向へのノズルの走査を、X方向に一定の送りピッチで繰り返して均一塗工を試みた。そして、図6に示す条件で送りピッチを変えて塗布液2を塗布した導光板100の左端にLEDアレイ光源9を設置した。導光板基材1の塗工面を出射面側とした。塗工面の背面に拡散反射フィルム10を設置した。塗工面の前面に拡散フィルム11を設置した。このようにサイドライト式バックライトを作製した。このサイドライト式バックライトの上方から、図5に示すように、面輝度測定器12を用いて測定した。この場合、導光板基材1におけるY方向に配置された辺が、本発明で云う第1の辺となる。   Here, uniform coating was attempted on a PMMA substrate having a thickness of 5 mm and a light guide length of 600 mm by repeating nozzle scanning in the Y direction at a constant feed pitch in the X direction. And the LED array light source 9 was installed in the left end of the light-guide plate 100 which apply | coated the coating liquid 2 by changing the feed pitch on the conditions shown in FIG. The coated surface of the light guide plate substrate 1 was set as the exit surface side. The diffuse reflection film 10 was installed on the back side of the coated surface. A diffusion film 11 was installed on the front surface of the coating surface. Thus, a sidelight type backlight was produced. As shown in FIG. 5, the surface luminance measuring device 12 was used to measure from above the sidelight type backlight. In this case, the side arranged in the Y direction in the light guide plate substrate 1 is the first side referred to in the present invention.

Y方向への一回のノズル5の走査による塗工幅は約50mmである。中心部は光拡散微粒子21の塗布密度が高く、外方に行くにつれ次第に低くなるようなガウシアン分布に類似した分布になっている。X方向への送りピッチが10mmを超えるような荒いピッチの場合には、光拡散微粒子21の塗布密度にムラが生じて、図6に示すように輝度分布に明暗ムラが発生する。送りピッチを10mmとすることで、送りピッチによるムラがない塗工が可能である。   The coating width by one scan of the nozzle 5 in the Y direction is about 50 mm. The central portion has a distribution similar to the Gaussian distribution in which the coating density of the light diffusion fine particles 21 is high and gradually decreases toward the outside. In the case of a rough pitch such that the feed pitch in the X direction exceeds 10 mm, unevenness occurs in the coating density of the light diffusing fine particles 21, and unevenness in brightness is generated in the luminance distribution as shown in FIG. By setting the feed pitch to 10 mm, coating without unevenness due to the feed pitch is possible.

また、図6に示すように、光源9から遠くなればなるほど、相対輝度が低下する。塗布液2を塗布した導光板100の光拡散性能は、導光板基材1の表面上の光拡散微粒子21の塗布密度に比例する。そのため、光源側には光拡散微粒子21の塗布密度を低く、光源遠方側には高くなるように当該塗布液2をスプレー塗布すれば良い。その方法を以下に述べる。   Also, as shown in FIG. 6, the relative luminance decreases as the distance from the light source 9 increases. The light diffusion performance of the light guide plate 100 to which the coating liquid 2 is applied is proportional to the application density of the light diffusion fine particles 21 on the surface of the light guide plate substrate 1. Therefore, the coating liquid 2 may be spray-coated so that the coating density of the light diffusing fine particles 21 is low on the light source side and high on the far side of the light source. The method is described below.

図7A、Bは、ノズル5をY方向に移動させる走査を、X方向に所定の送りピッチで繰り返し、1次元的に導光板基材1の塗工面における中央部周辺では光拡散微粒子21の塗布密度を高く、当該中央部の両側(即ち、端面A、B側)では光拡散微粒子21の塗布密度を低くするグラデーション分布の様子を示したものである。   7A and 7B, scanning for moving the nozzle 5 in the Y direction is repeated at a predetermined feed pitch in the X direction, and the light diffusing fine particles 21 are applied one-dimensionally around the center of the coating surface of the light guide plate substrate 1. The figure shows a gradation distribution in which the density is high and the coating density of the light diffusing fine particles 21 is lowered on both sides (that is, the end faces A and B sides) of the central portion.

この導光板基材1は、両端面A、BにLEDアレイなどの線光源を設置する導光板基材を想定している。図7A、Bの例では、塗布液2の塗布量は一定にしておき、ノズル5をY方向に一定速度で走査する。端面A側から、ノズル5のX方向への送りピッチをムラのないように10mmから開始する。導光板基材1の中央部周辺では送りピッチを順次狭く変化するようにして塗布液2を塗布する。これにより、不連続がない完全なグラデーション分布を実現している。   This light guide plate base material 1 assumes a light guide plate base material in which line light sources such as LED arrays are installed on both end faces A and B. 7A and 7B, the coating amount of the coating liquid 2 is kept constant, and the nozzle 5 is scanned in the Y direction at a constant speed. From the end face A side, the feed pitch in the X direction of the nozzle 5 starts from 10 mm so as not to be uneven. The coating liquid 2 is applied around the central portion of the light guide plate substrate 1 so that the feed pitch is gradually changed in a narrow manner. As a result, a complete gradation distribution without discontinuities is realized.

グラデーション分布を実現する上で、スプレー塗工法は極めて自由度が高い。図8A、Bは、塗布液2を塗布する際の各パラメータ及び各種塗工法を整理したものである。ここでは、導光板基材1の左右両端面A、BにLEDアレイなどの線光源を設置する両端光源タイプの導光板を製造する場合を考える。   The spray coating method is extremely flexible in realizing the gradation distribution. 8A and 8B summarize the parameters and various coating methods when the coating liquid 2 is applied. Here, consider the case of manufacturing a light source plate of both ends light source type in which linear light sources such as LED arrays are installed on the left and right end faces A and B of the light guide plate substrate 1.

両端光源タイプの場合には、面内の輝度分布を一定にするため、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の両端部における光拡散微粒子21の塗布密度を低く、中央部周辺で光拡散微粒子21の塗布密度を高くする。他の条件は、光拡散微粒子21が良好に凝集体210となって導光板基材1に付着するように設定する。なお、本実施形態では、X方向を導光板基材1の長さ方向、すなわち導光方向とし、Y方向を導光板基材1の幅寸法方向とした。   In the case of the both-end light source type, in order to make the in-plane luminance distribution constant, the ratio R or the coating area ratio S is increased as the distance from the light source increases. That is, the coating density of the light diffusing fine particles 21 at both ends of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 is increased around the central portion. The other conditions are set so that the light diffusing fine particles 21 can be satisfactorily aggregated 210 and adhere to the light guide plate substrate 1. In the present embodiment, the X direction is the length direction of the light guide plate substrate 1, that is, the light guide direction, and the Y direction is the width dimension direction of the light guide plate substrate 1.

図8Bの表中で、各パラメータとしては、ノズル5の走査方向、ノズル5の走査速度、ノズル5の送りピッチ、塗布液2の単位時間あたりの塗布量などが考えられる。これらのいずれか1つ又は複数のパラメータを制御し、他のパラメータを一定とする。   In the table of FIG. 8B, the parameters may include the scanning direction of the nozzle 5, the scanning speed of the nozzle 5, the feed pitch of the nozzle 5, the coating amount of the coating liquid 2 per unit time, and the like. Any one or more of these parameters are controlled and the other parameters are kept constant.

具体的に云うと、図8Bに示す塗工法(1)は、以下のように塗布液2を塗布するものである。当該塗工法(1)では、導光板基材1におけるY方向に配置された辺が、本発明で云う第1の辺となる。   More specifically, in the coating method (1) shown in FIG. 8B, the coating liquid 2 is applied as follows. In the said coating method (1), the edge | side arrange | positioned in the Y direction in the light-guide plate base material 1 becomes a 1st edge | side said by this invention.

先ず、全てのパラメータを一定として、透明な導光板基材1の全体又は一部に均一に塗布液2を塗布する(図9A)。次に、中央部周辺に同様にして均一に塗布液2を重ねて塗布する。すなわち、全てのパラメーラを一定として、中央部周辺で塗布液2の塗布を繰り返す。   First, the coating liquid 2 is uniformly applied to the whole or a part of the transparent light guide plate substrate 1 with all parameters being constant (FIG. 9A). Next, the coating solution 2 is applied uniformly and uniformly around the central portion. That is, the application of the coating liquid 2 is repeated around the central portion with all parameters being constant.

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。この状況を、図9Aに示したが、重ね塗りする境界には必ず有限の段差が生じることが避けられない。そのため、塗布液2の塗布量はできるだけ少なく、ノズル5の走査速度はできるだけ速くすることが好ましい。つまり、1回の均一塗工での光拡散微粒子21の塗布密度をできるだけ少なくし、重ね塗り回数を多くするように塗布液2を塗布することが望ましい。
なお、このような多層重ね塗りについては、塗布液2の塗布量、ノズル5の走査速度、ノズル5の送りピッチなどを変えて適宜調整しながら、重ね塗りを実施しても良い。
Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. This situation is shown in FIG. 9A, but it is inevitable that a finite step is always generated at the boundary of overpainting. Therefore, it is preferable that the coating amount of the coating liquid 2 is as small as possible and the scanning speed of the nozzle 5 is as fast as possible. That is, it is desirable to apply the coating liquid 2 so as to reduce the coating density of the light diffusing fine particles 21 in one uniform coating as much as possible and to increase the number of repeated coatings.
Note that such multi-layer overcoating may be performed while appropriately adjusting the coating amount of the coating liquid 2, the scanning speed of the nozzle 5, the feed pitch of the nozzle 5, and the like.

図8Bに示す塗工法(2)は、X方向への送りピッチのみを連続的に変化させ、他のパラメータを一定とした塗工法である。当該塗工法(2)も、導光板基材1におけるY方向に配置された辺が、本発明で云う第1の辺となる。   The coating method (2) shown in FIG. 8B is a coating method in which only the feed pitch in the X direction is continuously changed and other parameters are constant. Also in the coating method (2), the side arranged in the Y direction in the light guide plate substrate 1 is the first side referred to in the present invention.

塗布される光拡散微粒子21の塗布密度は、ノズル5の送りピッチに逆比例して増減する。そのため、所望のグラデーション分布関数の逆比例関係となるように連続的に送りピッチを増減する(図9B)。すなわち、導光板基材1の両端部においてはノズル5の送りピッチを広く、中央部周辺においてはノズル5の送りピッチを狭くする。   The application density of the applied light diffusion fine particles 21 increases and decreases in inverse proportion to the feed pitch of the nozzles 5. Therefore, the feed pitch is continuously increased or decreased so as to have an inversely proportional relationship of the desired gradation distribution function (FIG. 9B). That is, the feed pitch of the nozzles 5 is widened at both ends of the light guide plate substrate 1, and the feed pitch of the nozzles 5 is narrowed around the center.

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。この塗工法(2)は、塗布液2の重ね塗りをしなくても、所望のグラデーション分布が得られて生産性が高い。しかも不連続点が生じない完全なグラデーション分布であるので、輝度ムラのない高品位の面光源装置が得られる。   Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. In this coating method (2), a desired gradation distribution can be obtained and the productivity is high even if the coating liquid 2 is not overcoated. Moreover, since it is a complete gradation distribution in which discontinuities do not occur, a high-quality surface light source device without luminance unevenness can be obtained.

図8Bに示す塗工法(3)は、ノズル5の走査毎に走査速度のみを変化させ、他のパラメータを一定とした塗工法である。当該塗工法(3)も、導光板基材1におけるY方向に配置された辺が、本発明で云う第1の辺となる。   The coating method (3) shown in FIG. 8B is a coating method in which only the scanning speed is changed every time the nozzle 5 is scanned and other parameters are constant. Also in the coating method (3), the side arranged in the Y direction in the light guide plate substrate 1 is the first side referred to in the present invention.

光拡散微粒子21の塗布密度は、ノズル5の走査速度に反比例する。そのため、図9Cに示すように、所望のグラデーション分布の逆比例関係になるように、ノズル5の走査毎の走査速度を連続的に変化させる。すなわち、導光板基材1の両端部はノズル5の走査速度を早く、中央部周辺では遅くする。   The coating density of the light diffusing fine particles 21 is inversely proportional to the scanning speed of the nozzle 5. For this reason, as shown in FIG. 9C, the scanning speed for each scanning of the nozzle 5 is continuously changed so as to have an inversely proportional relationship of a desired gradation distribution. That is, both ends of the light guide plate substrate 1 increase the scanning speed of the nozzle 5 and decrease it around the center.

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。この塗工法(3)も、生産性と輝度ムラ品位の両面において好ましい。   Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. This coating method (3) is also preferable in terms of both productivity and brightness unevenness.

図8Bに示す塗工法(4)は、ノズル5の走査毎に塗布液2の塗布流量のみを変化させ、他のパラメータを一定とした塗工法である。当該塗工法(4)も、導光板基材1におけるY方向に配置された辺が、本発明で云う第1の辺となる。
すなわち、ノズル5を所定のピッチで、端面A側から中央部に送るにつれ、塗布液2の塗布量を多くし、中央部から光源が設置される端面B側に送るにつれ、塗布液2の塗布量を少なくする(図9D)。
The coating method (4) shown in FIG. 8B is a coating method in which only the coating flow rate of the coating liquid 2 is changed every time the nozzle 5 is scanned, and other parameters are constant. In the coating method (4), the side arranged in the Y direction in the light guide plate substrate 1 is the first side referred to in the present invention.
That is, as the nozzle 5 is sent at a predetermined pitch from the end surface A side to the central portion, the coating amount of the coating liquid 2 is increased, and as the nozzle 5 is fed from the central portion to the end surface B side where the light source is installed, the coating liquid 2 is applied. Reduce the amount (Figure 9D).

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。塗工中に、塗布液2の塗布量設定を迅速、簡便に、しかも高精度で再現性よく設定可能であるスプレー塗工法においては、この塗工法(4)も、生産性と輝度ムラ品位の両面において好ましい。   Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. In the spray coating method in which the coating amount setting of the coating liquid 2 can be set quickly, easily, with high accuracy and with high reproducibility during coating, this coating method (4) is also of high productivity and uneven brightness. Preferred on both sides.

但し、端面A側では塗布液2の塗布量を過剰にして光拡散微粒子21の凝集体210を透光性バインダ22に沈降させる。ノズル5を中央部に送るにつれ、当該塗布液2の塗布量を適量とする。さらにノズル5を中央部から端面B側に送るにつれ、再び塗布液2の塗布量を過剰にして光拡散微粒子21の凝集体210を透光性バインダ22に沈降させる。このように塗工することにより、同様の効果を得ることができる。   However, the agglomerate 210 of the light diffusing fine particles 21 is allowed to settle in the translucent binder 22 by increasing the coating amount of the coating liquid 2 on the end surface A side. As the nozzle 5 is sent to the center, the coating amount of the coating liquid 2 is set to an appropriate amount. Further, as the nozzle 5 is sent from the central portion to the end face B side, the coating amount of the coating liquid 2 is excessively increased again to cause the aggregates 210 of the light diffusing fine particles 21 to settle in the translucent binder 22. By applying in this way, the same effect can be obtained.

図8Bに示す塗工法(5)は、ノズル5をX方向に移動させる走査を、Y方向に所定の送りピッチで繰り返す塗工法である。具体的に云うと、ノズル5の走査中に連続的に走査速度を変化させ、他のパラメータは一定とする。当該塗工法(5)は、導光板基材1におけるX方向に配置された辺が、本発明で云う第1の辺となる。   The coating method (5) shown in FIG. 8B is a coating method in which scanning for moving the nozzle 5 in the X direction is repeated at a predetermined feed pitch in the Y direction. More specifically, the scanning speed is continuously changed during the scanning of the nozzle 5, and other parameters are constant. In the coating method (5), the side arranged in the X direction in the light guide plate substrate 1 is the first side referred to in the present invention.

詳細には、所望のグラデーション分布関数の逆関数関係になるように、ノズル5のX方向への走査速度を連続的に変化させる。すなわち、ノズル5のX方向への走査において、導光板基材1の両端部でノズル5の走査速度を速く、中央部周辺で遅くする(図9E)。   Specifically, the scanning speed of the nozzle 5 in the X direction is continuously changed so as to have an inverse function relationship of a desired gradation distribution function. That is, in the scanning of the nozzle 5 in the X direction, the scanning speed of the nozzle 5 is increased at both ends of the light guide plate substrate 1 and is decreased around the center (FIG. 9E).

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。この塗工法(5)も、生産性と輝度ムラ品位の両面において好ましい。   Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. This coating method (5) is also preferable in terms of both productivity and luminance unevenness.

図8Bに示す塗工法(6)も、ノズル5をX方向に移動させる走査を、Y方向に所定の送りピッチで繰り返す塗工法である。具体的に云うと、ノズル5の走査中に連続的に塗布液2の塗布量を変化させ、他のパラメータは一定とする。当該塗工法(6)も、導光板基材1におけるX方向に配置された辺が、本発明で云う第1の辺となる。
詳細には、ノズル5のX方向への走査において、導光板基材1の両端部で塗布液2の塗布量を少なく、中央部周辺で多く噴出する(図9F)。
The coating method (6) shown in FIG. 8B is also a coating method in which the scanning for moving the nozzle 5 in the X direction is repeated at a predetermined feed pitch in the Y direction. More specifically, the application amount of the application liquid 2 is continuously changed during the scanning of the nozzle 5, and the other parameters are constant. Also in the coating method (6), the side arranged in the X direction in the light guide plate substrate 1 is the first side referred to in the present invention.
Specifically, in the scanning of the nozzle 5 in the X direction, the application amount of the coating liquid 2 is small at both ends of the light guide plate substrate 1, and a large amount is ejected around the center (FIG. 9F).

これにより、光源から離れるにつれて、当該比率R又は塗工面積比率Sを高くする。すなわち、導光板基材1の光源に近い両端部における光拡散微粒子21の塗布密度を低く、光源から遠い中央部周辺の光拡散微粒子21の塗布密度を高くする。この塗工法(6)も、生産性と輝度ムラ品位の両面において好ましい。また、塗布液の塗布量を高速に可変できる場合には、この塗工法(6)によって所望のグラデーション分布が簡便に実現できる。   Thereby, the said ratio R or the coating area ratio S is made high as it leaves | separates from a light source. That is, the coating density of the light diffusing fine particles 21 at both ends near the light source of the light guide plate substrate 1 is lowered, and the coating density of the light diffusing fine particles 21 around the central portion far from the light source is increased. This coating method (6) is also preferable in terms of both productivity and luminance unevenness. Further, when the coating amount of the coating liquid can be varied at high speed, a desired gradation distribution can be easily realized by this coating method (6).

但し、導光板基材1の両端部では塗布液2の塗布量を過剰にして光拡散微粒子21の凝集体210を透光性バインダ22に沈降させ、中央部では当該塗布液2の塗布量を適量としても、同様の効果を得ることができる。   However, the application amount of the coating liquid 2 is excessive at both ends of the light guide plate substrate 1 to cause the aggregates 210 of the light diffusing fine particles 21 to settle in the translucent binder 22, and the coating amount of the coating liquid 2 is set at the central portion. Even if the amount is appropriate, the same effect can be obtained.

より、詳しく定量的に説明する。先ず、光拡散微粒子21と透光性バインダ22、さらに必要に応じて溶媒を含む塗布液2を、輝度ムラの発生しない送りピッチ、例えば10mmの送りピッチにて導光板基材1に均一塗工する。このように均一塗工した導光板を、塗布液2の塗布量やノズル5の走査速度などを変えて数種(図示例ではα乃至γの3種類)製造する。図10Aは、製造した導光板α乃至γの光拡散微粒子21の塗布密度を示す。各々の導光板α乃至γについて、左端にLEDアレイなどの線光源を設置して、図5のように輝度分布を測定すると、図10Bに示すようになる。これをもとに、面内均一輝度を与えるような光拡散微粒子21の塗布密度は、左右両端光源の導光板の場合は図10Cに示すようになる。また、左片端光源の導光板の場合は図10Dに示すようになる。   More detailed and quantitative explanation will be given. First, the light-diffusing fine particles 21 and the light-transmitting binder 22 and, if necessary, the coating liquid 2 containing a solvent are uniformly applied to the light guide plate substrate 1 at a feed pitch that does not cause uneven brightness, for example, a feed pitch of 10 mm. To do. Several kinds (three types α to γ in the illustrated example) of the light guide plate coated uniformly as described above are manufactured by changing the coating amount of the coating liquid 2 and the scanning speed of the nozzle 5. FIG. 10A shows the coating density of the light diffusing fine particles 21 on the manufactured light guide plates α to γ. For each light guide plate α to γ, a line light source such as an LED array is installed at the left end, and the luminance distribution is measured as shown in FIG. Based on this, the coating density of the light diffusing fine particles 21 that gives in-plane uniform luminance is as shown in FIG. Moreover, in the case of the light guide plate of the left one end light source, it becomes as shown in FIG. 10D.

このような光拡散微粒子21の塗布密度を実現するために、図8Bに示す6種の塗工法(1)乃至(6)がそれぞれ好適に用いられる。塗布液2の塗布量F(X,Y)、ノズル5のY方向への走査速度V(X)、ノズル5のX方向への走査速度V(X)、ノズル5のX方向への送りピッチΔX(X)、ノズル5のY方向への送りピッチΔY(X)とする。図8Bに示す塗工法(1)乃至(6)は以下のように塗工すれば良い。但し、図8Aの左端でのX座標をX0、左端での塗布液2の塗布量などをそれぞれF0、VY0、ΔX0、左端での光拡散微粒子21の目標塗布密度をC0とすると、図10C又は図10Dにおける位置Xでの光拡散微粒子21の目標塗布密度C(X)は、以下のようにパラメータを決定しながら塗工すれば良い。このとき、塗布ムラを防止するために全ての場合において、最長のノズルの送りピッチは前述の10mmとするように設定する必要がある。
塗工法(1):F、V、ΔX及び重ね塗り段数などを適宜選定して実施
塗工法(2):ΔX(X)=ΔX0×C0/C(X0+ΣΔX)、F及びVは一定
塗工法(3):V(X)=VY0×C0/C(X0+ΣΔX)、F及びΔXは一定
塗工法(4):F(X)=F0×C(X0+ΣΔX)/C0、V及びΔXは一定
塗工法(5):V(X)=VX0×C0/C(X)、F及びΔYは一定
塗工法(6):F(X)=F0×C(X)/C0、V及びΔYは一定
なお、必要に応じて、塗工法(1)乃至(6)を併用しても可能である。
In order to realize such a coating density of the light diffusing fine particles 21, the six coating methods (1) to (6) shown in FIG. 8B are preferably used. The coating amount F (X, Y) of the coating liquid 2, the scanning speed V Y (X) of the nozzle 5 in the Y direction, the scanning speed V X (X) of the nozzle 5 in the X direction, and the nozzle 5 in the X direction. The feed pitch ΔX (X) is the feed pitch ΔY (X) of the nozzle 5 in the Y direction. The coating methods (1) to (6) shown in FIG. 8B may be applied as follows. However, the X coordinate at the left end of FIG. 8A is X 0 , the application amount of the coating liquid 2 at the left end is F 0 , V Y0 , ΔX 0 , and the target application density of the light diffusion fine particles 21 at the left end is C 0 . Then, the target application density C (X) of the light diffusing fine particles 21 at the position X in FIG. 10C or FIG. 10D may be applied while determining parameters as follows. At this time, in order to prevent uneven coating, it is necessary to set the feed pitch of the longest nozzle to be 10 mm as described above.
Coating method (1): F, V Y , ΔX and the number of overcoating steps are appropriately selected and applied Coating method (2): ΔX (X) = ΔX 0 × C 0 / C (X 0 + ΣΔX), F and V Y is constant Coating method (3): V Y (X) = V Y0 × C 0 / C (X 0 + ΣΔX), F and ΔX are constant Coating method (4): F (X) = F 0 × C (X 0 + ΣΔX) / C 0 , V Y and ΔX are constant Coating method (5): V X (X) = V X0 × C 0 / C (X), F and ΔY are constant Coating method (6): F (X ) = F 0 × C (X) / C 0 , V X and ΔY are constant Note that, if necessary, the coating methods (1) to (6) may be used in combination.

このような塗工法(1)乃至(6)を用いて、導光板基材1の表面に光拡散微粒子及び透光性バインダを含む塗布液を塗布することによって拡散層が塗工される。光拡散微粒子は凝集体とされる。導光板基材1の塗工面における凝集体が占める平面積と塗布液の塗布面積との比率は0.1%以上70%以下とされる。そのため、本実施形態でも、複数の光拡散微粒子の凝集体は、高いアスペクト比を有し、微細パターンの拡散層を成す。それ故に、従来のように版や金型を作成しなくても、塗布液を導光板基材1に塗布すると、微細パターンの光拡散能力に優れた拡散層を簡単、且つ安価に形成できる。   Using such coating methods (1) to (6), the diffusion layer is applied by applying a coating liquid containing light diffusing fine particles and a light-transmitting binder to the surface of the light guide plate substrate 1. The light diffusing fine particles are aggregated. The ratio of the flat area occupied by the aggregates on the coated surface of the light guide plate substrate 1 and the coating area of the coating liquid is 0.1% or more and 70% or less. Therefore, also in this embodiment, the aggregate of a plurality of light diffusing fine particles has a high aspect ratio and forms a fine pattern diffusion layer. Therefore, if a coating solution is applied to the light guide plate substrate 1 without creating a plate or a mold as in the prior art, a diffusion layer excellent in light diffusing ability of a fine pattern can be formed easily and inexpensively.

しかも、スプレー塗工法は、導光板基材1の表面や裏面、さらには両面においても何ら問題なく適用できる。例えば、表面については当該塗工法(1)乃至(6)によって、X方向への1次元グラデーション分布を実現し、裏面については当該塗工法(1)乃至(6)によって、Y方向への1次元グラデーション分布を実現し、3辺光源タイプ及び4辺光源タイプの導光板を製造することも可能である。   Moreover, the spray coating method can be applied to the front and back surfaces of the light guide plate substrate 1 and also to both surfaces without any problem. For example, a one-dimensional gradation distribution in the X direction is realized for the front surface by the coating methods (1) to (6), and a one-dimensional gradation in the Y direction is performed for the back surface by the coating methods (1) to (6). It is also possible to realize gradation distribution and manufacture a three-sided light source type and a four-sided light source type light guide plate.

一般に、高発光効率のグラデーション分布を実現するには、広い拡散反射能力レンジ、すなわち光拡散微粒子21の塗布密度レンジが必要である。光拡散微粒子21の塗布密度を増減させて、5倍から10倍以上の光拡散性能を達成させることは一般的に難しい。このような場合には、裏面には光拡散微粒子21の塗布密度を均一にスプレー塗布し、表面に不足分の光拡散性能を補うべく、当該塗工法(1)乃至(6)によってグラデーション分布を実現する。これにより、高発光効率の輝度均一なグラデーション導光板が製造し易い場合もある。本発明は、このような場合にでも有効に適用可能である。   In general, in order to realize a gradation distribution with high luminous efficiency, a wide diffuse reflection capability range, that is, a coating density range of the light diffusing fine particles 21 is required. It is generally difficult to increase or decrease the coating density of the light diffusion fine particles 21 to achieve a light diffusion performance of 5 to 10 times or more. In such a case, the gradation distribution is applied by the coating methods (1) to (6) so that the coating density of the light diffusing fine particles 21 is uniformly sprayed on the back surface, and the surface is supplemented with insufficient light diffusion performance. Realize. Thereby, it may be easy to manufacture a gradation light guide plate with high luminance efficiency and uniform brightness. The present invention can be effectively applied even in such a case.

また、スプレー塗工法は、例えば50インチサイズ以上の大型の導光板にも容易に適用できる。射出成型やプレス成型、ドット印刷等はいずれも大型の精密金型やスクリーン版が必要の他に、大型の設備が必要で、投資コストが高い。また、インクジェット印刷法においても、大判対応とするには巨額の投資が必要である。スプレー塗工法であれば、軽量で小さなノズルをX−Y方向に走査するだけである。そのため、安価な設備で目的が達せられる。すなわち、本発明のスプレー塗工法は、大型導光板にも安価な設備にて適用される。特に、導光長Lが900mm以上の導光板に好適である。この場合、光源の近傍における照度と光源から最も離れた位置における照度との比が0.8以上1.2以下であることが好ましい。   The spray coating method can be easily applied to a large light guide plate having a size of 50 inches or more, for example. Injection molding, press molding, dot printing, etc. all require large precision molds and screen plates, as well as large facilities and high investment costs. In addition, in the ink jet printing method, enormous investment is required to support a large format. With the spray coating method, it is only necessary to scan a light and small nozzle in the XY direction. Therefore, the purpose can be achieved with inexpensive equipment. That is, the spray coating method of the present invention is applied to a large light guide plate with inexpensive equipment. In particular, it is suitable for a light guide plate having a light guide length L of 900 mm or more. In this case, the ratio between the illuminance near the light source and the illuminance at the position farthest from the light source is preferably 0.8 or more and 1.2 or less.

さらに、導光板基材自身に拡散材を含有させたものを用いれば、表面に塗布する光拡散微粒子の塗布密度を全体的に下げて塗布することができる。そのため、場合によっては有益である。例えば、前述のように、表面塗工だけでは光拡散性能が不足する場合である。また例えば、厚くて短い導光板の場合は、光源から入射した導光光が拡散反射面に十分衝突しないうちに反対端面に到達してしまい、十分に面発光しない場合がある。その場合には、僅かに拡散部を導光板内に分散させておくことで、有効に発光させることがでるようになる。本発明は、このような用途にも好適に用いられる。   Furthermore, if the light guide plate base material itself contains a diffusing material, the coating density of the light diffusing fine particles applied to the surface can be lowered as a whole. Therefore, it is beneficial in some cases. For example, as described above, light diffusion performance is insufficient only by surface coating. Further, for example, in the case of a thick and short light guide plate, the light guide light incident from the light source may reach the opposite end surface before sufficiently colliding with the diffuse reflection surface, and the surface light emission may not be sufficiently performed. In that case, it is possible to emit light effectively by slightly dispersing the diffusion portion in the light guide plate. The present invention is also suitably used for such applications.

ちなみに、光源の近傍における塗工面積比率S1が5%以上50%以下であり、光源から最も離れた位置における塗工面積比率S2が20%以上95%以下であり、S2>S1であることが好ましい。   Incidentally, the coating area ratio S1 in the vicinity of the light source is 5% or more and 50% or less, the coating area ratio S2 at the position farthest from the light source is 20% or more and 95% or less, and S2> S1. preferable.

また、光源の近傍における導光板基材の塗工面の(2π/360)×60radグロス値GS1が40以上90以下であり、光源から最も離れた位置における導光板基材1の塗工面の(2π/360)×60radグロス値GS2が10以上60以下であり、GS2>GS1であっても良い。   Further, the (2π / 360) × 60 rad gloss value GS1 of the coated surface of the light guide plate substrate in the vicinity of the light source is 40 or more and 90 or less, and (2π of the coated surface of the light guide plate substrate 1 at the position farthest from the light source. / 360) × 60 rad gloss value GS2 may be 10 or more and 60 or less, and GS2> GS1.

さらに、光源の近傍における面方向のヘイズ値H1が5%以上30%以下であり、光源から最も離れた位置におけるヘイズ値H2が10%以上40%以下であり、H2>H1であっても良い。   Further, the haze value H1 in the surface direction in the vicinity of the light source is 5% or more and 30% or less, the haze value H2 at the position farthest from the light source is 10% or more and 40% or less, and H2> H1 may be satisfied. .

<実施形態3>
本発明の実施形態3を以下に説明する。本実施形態の導光板及び導光板の製造方法は、実施形態2の導光板及び導光板の製造方法と略同様であるが、光拡散微粒子を2次元グラデーション分布としている点が相違する。そのため、相違部分のみを詳細に説明する。
<Embodiment 3>
Embodiment 3 of the present invention will be described below. The light guide plate and the light guide plate manufacturing method of the present embodiment are substantially the same as the light guide plate and light guide plate manufacturing method of the second embodiment, except that the light diffusing fine particles have a two-dimensional gradation distribution. Therefore, only the differences will be described in detail.

図11は、導光板100の4辺に線光源を設置することを想定した2次元グラデーション分布を模式的に示した。すなわち、図11中のMは、光拡散微粒子の塗布密度が略等しい部分を線で結んで示した。図11中のNは、光拡散微粒子の塗布密度のX方向の分布を示した。図11中のPは、光拡散微粒子の塗布密度のY方向の分布を示した。この目標とするグラデーション分布がC(X,Y)で表せるとすれば、塗工法(1)乃至(6)を単独又は併用して用いることで製造可能である。   FIG. 11 schematically shows a two-dimensional gradation distribution assuming that line light sources are installed on the four sides of the light guide plate 100. That is, M in FIG. 11 indicates a portion where the coating density of the light diffusing fine particles is substantially equal by connecting with a line. N in FIG. 11 indicates the distribution in the X direction of the coating density of the light diffusing fine particles. P in FIG. 11 indicates the distribution in the Y direction of the coating density of the light diffusing fine particles. If the target gradation distribution can be expressed by C (X, Y), it can be manufactured by using coating methods (1) to (6) alone or in combination.

塗工法(1)の応用としては、図11中の(a)の線にそって順次重ね塗りを実施することで可能となる。重ね塗りの境界における輝度ムラや輝度段差を防ぐためには、十分に多くの重ね塗り回数を要する。   As an application of the coating method (1), it is possible to sequentially perform overcoating along the line (a) in FIG. In order to prevent luminance unevenness and luminance steps at the boundary of overcoating, a sufficiently large number of overcoating operations are required.

塗工法(3)の応用としては、Y方向へのノズルの一回の走査中に連続的に走査速度を変化させることで可能となる。すなわち、Y方向へのノズルの走査速度を以下の式に従って走査すれば良い。
(X、Y)=VY0×C0/C(X0+ΣΔX、Y)、F及びΔXは一定
The application method (3) can be applied by continuously changing the scanning speed during one scanning of the nozzle in the Y direction. That is, the nozzle scanning speed in the Y direction may be scanned according to the following formula.
V Y (X, Y) = V Y0 × C 0 / C (X 0 + ΣΔX, Y), F and ΔX are constant

塗工法(4)の応用としては、Y方向へのノズルの一回の走査中に連続的に塗布液の塗布量を変化させることで可能となる。すなわち、Y方向へのノズルの走査中に、塗布液の塗布量を以下の式に従って噴出すれば良い。
F(X,Y)=F0×C(X0+ΣΔX、Y)/C0、V及びΔXは一定
As an application of the coating method (4), it is possible to change the coating amount of the coating solution continuously during one scanning of the nozzle in the Y direction. That is, during the scanning of the nozzle in the Y direction, the coating amount of the coating solution may be ejected according to the following formula.
F (X, Y) = F 0 × C (X 0 + ΣΔX, Y) / C 0 , V Y and ΔX are constant.

塗工法(5)と(6)とを組み合わせて、2次元グラデーション分布を実現することもできる。すなわち、以下の式に従ってX方向にノズルを走査すれば良い。
(X、Y)=VX0×C0/C(X、Y)、F及びΔYは一定
F(X、Y)=F0×C(X、Y)/C0、V及びΔYは一定
A two-dimensional gradation distribution can also be realized by combining the coating methods (5) and (6). That is, the nozzle may be scanned in the X direction according to the following formula.
V X (X, Y) = V X0 × C 0 / C (X, Y), F and ΔY are constant F (X, Y) = F 0 × C (X, Y) / C 0 , V X and ΔY Is constant

また、塗工法(2)を応用して、Y方向への一回のノズルの走査中に、ノズルの走査速度や塗布液の塗布量を変えることで2次元グラデーション分布を実現することもできる。   Further, by applying the coating method (2), a two-dimensional gradation distribution can be realized by changing the nozzle scanning speed and the coating liquid application amount during one nozzle scanning in the Y direction.

ここでいう、2次元グラデーション分布とは4辺光源のものに限らず、直交2光源や3辺光源でも良く、端面周辺部において光拡散微粒子の塗布密度を微調整する場合なども含めるものである。このことは、上述した1次元グラデーション分布においても同様である。   Here, the two-dimensional gradation distribution is not limited to a four-side light source, but may be an orthogonal two-light source or a three-side light source, and includes a case where the application density of the light diffusing fine particles is finely adjusted in the peripheral portion of the end face. . The same applies to the one-dimensional gradation distribution described above.

上述の実施形態1、2における導光板の製造方法において、生産性を考えた場合、1つのノズルだけで広い面積の導光板基材の塗工面上を塗工することは時間がかかる。そのため、必ずしも得策ではない。図12は、例えばY方向、すなわち走査方向と略直交方向に等間隔に複数個のノズル5を並列に配置している。当該複数個のノズル5をX方向に走査する。但し、X方向に等間隔に複数個のノズル5を並列配置し、当該複数個のノズル5をY方向に走査する構成でも良い。このようにマルチノズルとすることで塗布時間を大幅に短縮させることができる。隣接するノズル5と5の間隔は塗布時に互いに干渉しない十分広い間隔が必要であったり、場合によっては隣接するノズルをX方向にずらして互い違いに配置したりすることも考えられる。   In the manufacturing method of the light guide plate in the first and second embodiments described above, when productivity is considered, it takes time to apply on the coating surface of the light guide plate substrate having a large area with only one nozzle. Therefore, it is not always a good idea. In FIG. 12, for example, a plurality of nozzles 5 are arranged in parallel at equal intervals in the Y direction, that is, in a direction substantially orthogonal to the scanning direction. The plurality of nozzles 5 are scanned in the X direction. However, a configuration may be adopted in which a plurality of nozzles 5 are arranged in parallel at equal intervals in the X direction and the plurality of nozzles 5 are scanned in the Y direction. Thus, the application time can be significantly shortened by using a multi-nozzle. It is conceivable that the interval between the adjacent nozzles 5 and 5 needs to be sufficiently wide so as not to interfere with each other at the time of application. In some cases, the adjacent nozzles may be shifted in the X direction and arranged alternately.

これらの複数個のノズル5は、個別又は共通に制御され、塗布液を導光板基材1にスプレー塗布する。   The plurality of nozzles 5 are individually or commonly controlled and spray-apply the coating liquid onto the light guide plate substrate 1.

1次元グラデーション分布の場合は、例えば塗工法(5)又は(6)を応用して並列に配置したノズル5をX方向に1回走査させる。このとき、各々のノズル5は同一の流量とする。次に、輝度ムラを生じさせない十分小さいY方向送りピッチ、例えば10mmほどY方向にずらして、塗工法(5)又は(6)によりX方向に走査する。これをノズル間隔分走査することで全面に均一に塗布することができる。   In the case of a one-dimensional gradation distribution, for example, the nozzles 5 arranged in parallel by applying the coating method (5) or (6) are scanned once in the X direction. At this time, each nozzle 5 has the same flow rate. Next, a sufficiently small Y-direction feed pitch that does not cause luminance unevenness, for example, 10 mm is shifted in the Y direction, and scanning is performed in the X direction by the coating method (5) or (6). By scanning this for the nozzle interval, it can be applied uniformly over the entire surface.

2次元グラデーション分布の場合は、Y方向への光拡散微粒子の塗布密度分布に対応させるように各々のノズル5からの塗布液2の塗布量を、独立に、走査毎に制御することで可能となる。   In the case of the two-dimensional gradation distribution, it is possible to control the coating amount of the coating liquid 2 from each nozzle 5 independently for each scanning so as to correspond to the coating density distribution of the light diffusing fine particles in the Y direction. Become.

図13は、透光性バインダが紫外線硬化型で、溶媒も併用した光拡散微粒子の塗布液を用いてスプレー塗布する場合の試作・製造プロセスを示す。先ず、塗布液2を導光板基材1にスプレー塗布した後に、温風などによって溶媒を乾燥させる。次いで、紫外線を照射して透光性バインダを硬化させて、光拡散微粒子を導光板基材の表面に永久接着させる。   FIG. 13 shows a prototype / manufacturing process when the light-transmitting binder is an ultraviolet curable type and spray coating is performed using a coating solution of light diffusing fine particles in combination with a solvent. First, after the coating liquid 2 is spray-coated on the light guide plate substrate 1, the solvent is dried by warm air or the like. Next, the light-transmitting fine particles are permanently adhered to the surface of the light guide plate substrate by irradiating ultraviolet rays to cure the light-transmitting binder.

多くの場合は、1回のグラデーション分布設計にて所望の輝度均一な導光板が得られることは少ない。しかし、本発明によれば図13に示すように、直ちに輝度分布を測定評価し、所望の均一度が得られない場合には各パラメータに微調整を加えて、再度塗工する。これを必要に応じて繰り返せば、短時間にしかも容易に光拡散微粒子のグラデーション分布を実現することが可能となる。   In many cases, it is rare that a light guide plate having a uniform luminance is obtained by a single gradation distribution design. However, according to the present invention, as shown in FIG. 13, the luminance distribution is immediately measured and evaluated. If the desired uniformity cannot be obtained, fine adjustment is made to each parameter and coating is performed again. If this is repeated as necessary, the gradation distribution of the light diffusing fine particles can be easily realized in a short time.

以上のように、本発明によれば、光拡散微粒子の1次元グラデーション分布も2次元グラデーション分布も金型や印刷版などを必要とせず、設計から直ちに試作・生産が実施可能である。特に、光源の光を効率良く、しかも均一に前方に出射できるような輝度均一の最適な光拡散微粒子のグラデーション分布は、導光板基材のサイズ、形状、板厚、光源位置などによって全て異なるが、本発明の方法はこのような、多品種で多銘柄の生産に好適に適用されるものである。   As described above, according to the present invention, the one-dimensional gradation distribution and the two-dimensional gradation distribution of the light diffusing fine particles do not require a mold, a printing plate, or the like, and can be prototyped and produced immediately from the design. In particular, the gradation distribution of the optimal light diffusing fine particles with uniform brightness so that the light from the light source can be emitted efficiently and uniformly forwards varies depending on the size, shape, plate thickness, light source position, etc. of the light guide plate substrate. The method of the present invention is suitably applied to the production of such a variety and variety.

上記実施形態1では、光拡散微粒子21の凝集体210を導光板基材1にランダムに付着させている。上記実施形態2では、光源9から離れるにつれて、導光板基材1の塗工面における凝集体210が占める平面積と塗布液2の塗布面積との比率R又は塗布液2の塗布面積と導光板基材1の塗工面の面積との塗工面積比率Sを高くしている。しかし、導光板基材の塗工面における凝集体210が占める平面積と塗布液2の塗布面積との比率が0.1%以上70%以下の要件を満たせば、光拡散微粒子21の凝集体210を導光板基材1に略均一に付着させても良い。すなわち、光源9の近傍における塗工面積比率S1と、光源9から最も離れた位置における塗工面積比率S2との比S2/S1の値が80%以上120%以下であるように構成される。   In the first embodiment, the aggregates 210 of the light diffusing fine particles 21 are randomly attached to the light guide plate substrate 1. In the second embodiment, as the distance from the light source 9 increases, the ratio R of the flat area occupied by the aggregates 210 on the coated surface of the light guide plate substrate 1 and the coating area of the coating solution 2 or the coating area of the coating solution 2 and the light guide plate base The coating area ratio S to the area of the coating surface of the material 1 is increased. However, if the ratio of the flat area occupied by the aggregate 210 on the coated surface of the light guide plate substrate and the coating area of the coating liquid 2 satisfies the requirement of 0.1% or more and 70% or less, the aggregate 210 of the light diffusing fine particles 21. May be attached to the light guide plate substrate 1 substantially uniformly. That is, the ratio S2 / S1 between the coating area ratio S1 in the vicinity of the light source 9 and the coating area ratio S2 at the position farthest from the light source 9 is configured to be 80% or more and 120% or less.

上記実施形態2では、導光板基材1の塗工面における凝集体210が占める平面積と塗布液2の塗布面積との比率を0.1%以上70%以下としているが、この限りでない。要するに、光源に近い部分は光拡散微粒子の塗布密度を低く、光源から遠い部分は光拡散微粒子の塗布密度を高くすれば良い。   In the said Embodiment 2, although the ratio of the flat area which the aggregate 210 in the coating surface of the light-guide plate base material 1 and the application area of the coating liquid 2 is 0.1% or more and 70% or less, it is not this limitation. In short, the coating density of the light diffusing fine particles should be low at the part close to the light source, and the coating density of the light diffusing fine particles should be high at the part far from the light source.

上記実施形態1乃至3では、光拡散微粒子21を凝集体としたが、この限りでない。すなわち、光拡散微粒子21は凝集されていなくても良い。このとき、望ましい光拡散性能を得るために、光拡散微粒子、透光性バインダ、溶媒、導光板基材とノズルとの間隔などのスプレー塗布条件が適宜制御・選択される。このとき、例えば塗布液2を水玉状に塗布しても良い(図14)。また、光拡散性能を大きくするために全面を塗布液2で覆っても良い(図15)。ちなみに、図16A、Bは、MS微粒子と紫外線硬化型の透光性バインダと溶媒との塗布液を、PMMA基材上にスプレー塗布して、硬化させた状態の顕微鏡写真である。図16A、Bにおいて、気泡のように表わされている部分が、光拡散微粒子である。導光板基材1の塗工面に付着した光拡散微粒子は、それぞれ拡散部となるため、微細な拡散部を簡単に形成することができる。また、光拡散微粒子は、必ずランダムに塗布されるため、モアレの発生を抑制することができる。   In Embodiments 1 to 3, the light diffusing fine particles 21 are aggregates, but this is not restrictive. That is, the light diffusing fine particles 21 may not be aggregated. At this time, in order to obtain a desired light diffusion performance, spray coating conditions such as light diffusion fine particles, a light-transmitting binder, a solvent, and a distance between the light guide plate substrate and the nozzle are appropriately controlled and selected. At this time, for example, the coating liquid 2 may be applied in a polka dot shape (FIG. 14). Further, in order to increase the light diffusion performance, the entire surface may be covered with the coating liquid 2 (FIG. 15). Incidentally, FIGS. 16A and 16B are photomicrographs of a state in which a coating liquid of MS fine particles, an ultraviolet curable translucent binder, and a solvent is spray-coated on a PMMA substrate and cured. In FIGS. 16A and 16B, the part represented as a bubble is a light diffusing fine particle. Since the light diffusing fine particles adhering to the coated surface of the light guide plate base material 1 each become a diffusing portion, a fine diffusing portion can be easily formed. Further, since the light diffusing fine particles are always applied randomly, the generation of moire can be suppressed.

<実施例1>
常盤(ステージ)上に導光板基材として、長さ(導光方向の長さ)1200mm、幅1000mm、厚み8mmのアクリル樹脂シートを置き、当該アクリル樹脂シートの上方から、スプレーコータのノズルによって塗布液を噴霧した。塗布液は、光拡散微粒子として樹脂微粒子(屈折率1.56、平均粒径3μmφ)、透光性バインダとしてアクリル系紫外線硬化樹脂、希釈溶媒としてケトン系溶剤にて固形分5wt%となるように希釈した混合溶液である。この塗布液に窒素ガスを同伴させて噴出させた。
<Example 1>
An acrylic resin sheet having a length (length in the light guiding direction) of 1200 mm, a width of 1000 mm, and a thickness of 8 mm is placed as a light guide plate base material on a regular board (stage), and applied from above the acrylic resin sheet by a nozzle of a spray coater. The liquid was sprayed. The coating liquid is resin fine particles (refractive index 1.56, average particle size 3 μmφ) as light diffusing fine particles, acrylic UV curable resin as a light transmissive binder, and a ketone solvent as a diluting solvent so that the solid content is 5 wt%. It is a diluted mixed solution. This coating solution was spouted with nitrogen gas.

このとき、全面に塗布液を塗布するためノズルを導光板基材の平面方向(即ち、X、Y方向)に移動させながら噴霧した。詳細には、導光板基材の長さ方向(即ち、X方向)によって塗布量を変化させ、X方向における中央部で最も多く塗布されるよう、場所によりノズルの送りピッチ10〜40mmで1回〜8回の重ね塗りを行った。ちなみに、導光板基材1とノズル5との距離を100〜200mmとし、塗布液2の塗布量は、0.5〜4.0gr/分で、ノズル5の走査速度は200〜400mm/secとした。   At this time, in order to apply the coating solution over the entire surface, the nozzle was sprayed while being moved in the plane direction of the light guide plate substrate (that is, in the X and Y directions). Specifically, the coating amount is changed according to the length direction (that is, the X direction) of the light guide plate base material, and is applied once at a nozzle feed pitch of 10 to 40 mm depending on the location so as to be applied most at the center in the X direction. -8 times of overcoating were performed. By the way, the distance between the light guide plate substrate 1 and the nozzle 5 is 100 to 200 mm, the coating amount of the coating liquid 2 is 0.5 to 4.0 gr / min, and the scanning speed of the nozzle 5 is 200 to 400 mm / sec. did.

その結果、塗工による表面状態は光源近傍でグロス85、長さ方向600mm位置でグロス15となった。
次いで導光板基材の両端部に白色LEDを線状に配置した光源を設置し、当該導光板基材の裏面側に白色拡散反射シート、表面側となる塗工面に光拡散フィルムを積層し、サイドライト式バックライトを作製した。
As a result, the surface state by coating became gloss 85 near the light source and gloss 15 at a position of 600 mm in the length direction.
Next, a light source in which white LEDs are linearly arranged at both ends of the light guide plate base material is installed, a white diffuse reflection sheet is laminated on the back side of the light guide plate base material, and a light diffusion film is laminated on the coating surface to be the front side, A sidelight type backlight was produced.

当該サイドライト式バックライトを正面2m離れた位置から目視により観察したところ、全面で均一な輝度であり、輝点などの輝度ムラも目立たなかった。   When the sidelight-type backlight was observed visually from a position 2 m away from the front, the luminance was uniform over the entire surface, and luminance unevenness such as bright spots was not noticeable.

<実施例2>
定盤(ステージ)の上に、実施例1と等しいサイズの透明PMMA導光板基材を置き、図7のように、上方からノズルによって塗布液を塗布した。このとき、図8Bに示す塗工法(1)により、走査方向をY方向として、X方向送りピッチ10mmピッチとしてまず均一塗布を実施した。塗布液は、光拡散微粒子としてMS樹脂の架橋粒子(平均粒径3μm、溶媒を除く固形分換残濃度10wt%)、透光性バインダとしてウレタン系紫外線硬化樹脂、希釈溶媒としてPGMAC(プロピレングリコールモノメチルエーテルアセテート)にて固形分20wt%となるように希釈した混合溶液である。この塗布液に窒素ガスを同伴させて噴出させた。
<Example 2>
On the surface plate (stage), a transparent PMMA light guide plate substrate having the same size as that of Example 1 was placed, and the coating solution was applied from above by a nozzle as shown in FIG. At this time, by the coating method (1) shown in FIG. 8B, uniform application was first performed with the scanning direction as the Y direction and the X direction feed pitch as 10 mm. The coating solution is MS resin cross-linked particles (average particle size 3 μm, solid reconstitution residual concentration excluding solvent 10 wt%) as light diffusing fine particles, urethane-based UV curable resin as translucent binder, and PGMAC (propylene glycol monomethyl as diluting solvent). It is a mixed solution diluted with ether acetate) to a solid content of 20 wt%. This coating solution was spouted with nitrogen gas.

導光板基材とノズルとの距離を150mmとし、塗布液の塗布量は、溶液換算で1mL/minで、ノズルの走査速度は150mm/minとした。この場合で、塗布幅は約50mmであった。   The distance between the light guide plate substrate and the nozzle was 150 mm, the coating amount of the coating liquid was 1 mL / min in terms of solution, and the nozzle scanning speed was 150 mm / min. In this case, the coating width was about 50 mm.

この条件にて、ノズルのY方向への走査を、X方向に10mm間隔で送りながら導光板基材の表面全面に塗布液を塗布した。但し、X方向に配置された一方の端面(図5の紙面における下側の端面)側での塗工初めは導光板基材の20mm手前から空走査を開始した。また、X方向に配置された他方の端面(図5の紙面における上側の端面)側での塗り終わりでも導光板基材を20mm超えたところまで走査させた。Y方向に配置された一方の端面(図5の紙面における左側の端面)側では導光板基材の手前20mmから塗工した。また、Y方向に配置された他方の端面(図5の紙面における右側の端面)側では導光板基材を20mm超えて塗工し、ノズルの方向転換部での塗工ムラが基材本体に入らないように実施した。   Under this condition, the coating liquid was applied to the entire surface of the light guide plate substrate while scanning the nozzle in the Y direction at intervals of 10 mm in the X direction. However, at the beginning of coating on one end surface (the lower end surface in FIG. 5) arranged in the X direction, blank scanning was started 20 mm before the light guide plate substrate. In addition, the light guide plate base material was scanned to a point exceeding 20 mm even at the end of coating on the other end surface (upper end surface in FIG. 5) arranged in the X direction. On one end face (left end face in the paper surface of FIG. 5) arranged in the Y direction, coating was performed from 20 mm before the light guide plate substrate. In addition, the other end face arranged in the Y direction (the end face on the right side in the paper surface of FIG. 5) is coated over the light guide plate base material by 20 mm, and coating unevenness at the direction changing portion of the nozzle is applied to the base body. It was carried out not to enter.

両端光源タイプの導光板を製造するために、図9Aのように、8段の重ね塗りを行なった。この導光板の塗工面を出射側として、実施例1と同様にサイドライト式バックライトを作製した。当該サイドライト式バックライトの外観検査及び輝度分布を測定したところ、8段の輝度段差が視認されるが、十分容認されるような均一な導光板が得られた。   In order to manufacture a light source plate of both-ends light source type, as shown in FIG. A sidelight-type backlight was produced in the same manner as in Example 1 with the coated surface of the light guide plate as the emission side. When the appearance inspection and the luminance distribution of the sidelight type backlight were measured, an eight-level luminance step was visually recognized, but a uniform light guide plate that was sufficiently acceptable was obtained.

<実施例3>
実施例2と同じ条件にて塗工を開始したが、当該塗工法(3)にてY方向の走査速度をX方向送りピッチによって半連続的に変化させる方法を用いた。実施例2の塗工条件で、X方向送りピッチが10mmの均一塗布の導光板基材1上の光拡散微粒子の塗布分布をC0、ノズル5のY方向への走査速度150mm/minをVY0、ノズル5のX方向への送りピッチΔX=10mm一定として、導光板基材1上のn回目の走査速度V(X)を以下のように順次変えていった。その他の変数は全て一定として塗工した。
(X)=VY0×C0/C(X0+ΣΔX)
<Example 3>
Coating was started under the same conditions as in Example 2, but a method of changing the scanning speed in the Y direction semi-continuously by the X direction feed pitch in the coating method (3) was used. Under the coating conditions of Example 2, the coating distribution of the light diffusing fine particles on the uniformly coated light guide plate substrate 1 with an X direction feed pitch of 10 mm is C 0 , and the scanning speed 150 mm / min of the nozzle 5 in the Y direction is V. Assuming that Y0 and the feed pitch ΔX in the X direction of the nozzle 5 are constant at 10 mm, the n-th scanning speed V Y (X) on the light guide plate substrate 1 is sequentially changed as follows. All other variables were applied as constant.
V Y (X) = V Y0 × C 0 / C (X 0 + ΣΔX)

塗工したものを、両端光源として外観検査と輝度分布測定したところ、輝度ムラや輝度段差は全く視認されず、輝度均一精度も極めて高い、高品位の導光板が得られた。   When the coated product was subjected to appearance inspection and luminance distribution measurement using both-end light sources, luminance irregularities and luminance steps were not visually recognized at all, and a high-quality light guide plate with extremely high luminance uniformity was obtained.

なお、本発明は上記実施形態及び実施例に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   In addition, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the meaning, it can change suitably.

本発明の導光板及び導光板の製造方法は、液晶表示パネルや看板などの背面から光を照射する面光源装置、所謂バックライト装置用の導光板及び導光板の製造方法として用いることができる。   The light guide plate and the light guide plate manufacturing method of the present invention can be used as a surface light source device that emits light from the back surface of a liquid crystal display panel, a signboard, or the like, a light guide plate for a so-called backlight device, and a method for manufacturing the light guide plate.

1 導光板基材
2 塗布液
3 拡散層
4 スプレーコータ
5 ノズル
6 貯蔵槽
7 流量制御部
9 光源
10 拡散反射フィルム
11 拡散フィルム
12 面輝度測定器
21 光拡散微粒子
22 透光性バインダ
100 導光板
210 凝集体
DESCRIPTION OF SYMBOLS 1 Light guide plate base material 2 Coating liquid 3 Diffusion layer 4 Spray coater 5 Nozzle 6 Storage tank 7 Flow control part 9 Light source 10 Diffuse reflection film 11 Diffusion film 12 Surface luminance measuring device 21 Light diffusion fine particle 22 Translucent binder 100 Light guide plate 210 Agglomerates

Claims (14)

面光源装置を構成するべく、光源が端面に配置される導光板の製造方法であって、
導光板基材の裏面若しくは表面、又は両面に光拡散微粒子及び透光性バインダを含む塗布液を微細液滴状態で塗布することによって拡散層を塗工し、前記光拡散微粒子は凝集体とし、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率を0.1%以上70%以下とすることを特徴とする導光板の製造方法。
A method of manufacturing a light guide plate in which a light source is disposed on an end surface to constitute a surface light source device,
A diffusion layer is applied by applying a coating liquid containing light diffusing fine particles and a light-transmitting binder on the back surface or the front surface or both surfaces of the light guide plate substrate in the form of fine droplets, and the light diffusing fine particles are aggregated, A method of manufacturing a light guide plate, wherein a ratio of a flat area occupied by the aggregates to a coating surface of the light guide plate base material and a coating area of the coating liquid is 0.1% or more and 70% or less.
前記拡散層を塗工するに際し、前記光源に近い部分は前記光拡散微粒子の塗布密度を低くし、前記光源から遠い部分は前記光拡散微粒子の塗布密度を高くすることを特徴とする請求項1に記載の導光板の製造方法。   2. When applying the diffusion layer, a portion close to the light source has a low coating density of the light diffusing fine particles, and a portion far from the light source has a high coating density of the light diffusing fine particles. The manufacturing method of the light-guide plate of description. 前記塗布液は、当該塗布液をノズルから噴霧させるスプレー塗工法によって、前記導光板基材の裏面若しくは表面、又は両面に塗布することを特徴とする請求項1に記載の導光板の製造方法。   The said coating liquid is apply | coated to the back surface or the surface of the said light-guide plate base material, or both surfaces by the spray coating method which sprays the said coating liquid from a nozzle, The manufacturing method of the light-guide plate of Claim 1 characterized by the above-mentioned. 複数個のノズルを並列に配置し、前記複数個のノズルを略平行に走査させることによって、前記光拡散微粒子の塗布密度を1次元的又は2次元的に変化させることを特徴とする請求項3に記載の導光板の製造方法。   4. The coating density of the light diffusing fine particles is changed one-dimensionally or two-dimensionally by arranging a plurality of nozzles in parallel and scanning the plurality of nozzles substantially in parallel. The manufacturing method of the light-guide plate of description. 前記ノズルから前記導光板基材における塗工面までの間隔は70mm以上300mm以下であることを特徴とする請求項3または4に記載の導光板の製造方法。   5. The method for manufacturing a light guide plate according to claim 3, wherein an interval from the nozzle to the coating surface of the light guide plate base is 70 mm or more and 300 mm or less. 前記スプレー塗工法は、前記塗布液をノズルから噴出させながら、前記導光板基材の塗工面上において、前記ノズルを前記導光板基材の第1の辺と略平行な方向に移動させる走査を、前記第1の辺と直交する方向に所定の送りピッチで繰り返し、前記塗工面の全面又は一部に前記塗布液を塗布することを特徴とする請求項3または4に記載の導光板の製造方法。   In the spray coating method, the nozzle is moved in a direction substantially parallel to the first side of the light guide plate base material on the coating surface of the light guide plate base material while ejecting the coating liquid from the nozzle. 5. The light guide plate according to claim 3, wherein the coating liquid is applied to the whole or a part of the coating surface by repeating at a predetermined feed pitch in a direction orthogonal to the first side. Method. 前記ノズルを前記導光板基材の第1の辺と略平行な方向に移動させる走査を、前記第1の辺と直交する方向に所定の送りピッチで繰り返す工程を、前記導光板基材の塗工面上において部分的に繰り返すことによって、前記光拡散微粒子の塗布密度を1次元的に変化させることを特徴とする請求項3または4に記載の導光板の製造方法。   The step of repeating the scanning for moving the nozzle in a direction substantially parallel to the first side of the light guide plate base material at a predetermined feed pitch in a direction orthogonal to the first side is applied to the light guide plate base material. 5. The method for manufacturing a light guide plate according to claim 3, wherein the coating density of the light diffusing fine particles is changed one-dimensionally by being partially repeated on the work surface. 前記ノズルの送りピッチを変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させることを特徴とする請求項3または4に記載の導光板の製造方法。   The coating density of the light diffusing fine particles is changed one-dimensionally by changing the feed pitch of the nozzles and applying the coating liquid to the whole or part of the coating surface of the light guide plate base material. The manufacturing method of the light-guide plate of Claim 3 or 4 to do. 前記ノズルの走査速度を当該ノズルの走査毎に変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させることを特徴とする請求項3または4に記載の導光板の製造方法。   By changing the scanning speed of the nozzle for each scanning of the nozzle and applying the coating liquid to the whole or a part of the coating surface of the light guide plate base material, the coating density of the light diffusing fine particles is one-dimensionally changed. The light guide plate manufacturing method according to claim 3, wherein the light guide plate is changed. 前記ノズルからの塗布液の単位時間あたりの塗布量を当該ノズルの走査毎に変化させ、前記導光板基材の塗工面の全面又は一部に前記塗布液を塗布することによって、前記光拡散微粒子の塗布密度を1次元的に変化させることを特徴とする請求項3または4に記載の導光板の製造方法。   The amount of coating liquid applied from the nozzle per unit time is changed for each scanning of the nozzle, and the light-diffusing fine particles are applied by coating the coating liquid on the whole or part of the coating surface of the light guide plate substrate. The method of manufacturing a light guide plate according to claim 3, wherein the coating density of the light guide is changed one-dimensionally. 面光源装置を構成するべく、光源が端面に配置される導光板であって、
導光板基材の裏面若しくは表面、又は両面に光拡散微粒子及び透光性バインダを含む塗布液を塗布することによって拡散層が塗工されており、
前記光拡散微粒子は凝集体とされ、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率は0.1%以上70%以下であることを特徴とする導光板。
In order to constitute the surface light source device, the light source is a light guide plate disposed on the end surface,
The diffusion layer is coated by applying a coating liquid containing light diffusing fine particles and a light-transmitting binder on the back surface or the surface of the light guide plate substrate, or both surfaces,
The light diffusing fine particles are aggregates, and a ratio of a plane area occupied by the aggregates to a coating surface of the light guide plate base material and a coating area of the coating liquid is 0.1% or more and 70% or less. A light guide plate.
前記塗布液は、当該塗布液をノズルから噴霧させるスプレー塗工法によって、前記導光板基材の裏面若しくは表面、又は両面に塗布することを特徴とする請求項11に記載の導光板。   The light guide plate according to claim 11, wherein the coating liquid is applied to a back surface, a front surface, or both surfaces of the light guide plate base material by a spray coating method in which the coating liquid is sprayed from a nozzle. 1つの前記凝集体に含まれる光拡散微粒子の個数は10個以上10000個以下であることを特徴とする請求項11または12に記載の導光板。   The light guide plate according to claim 11 or 12, wherein the number of light diffusing fine particles contained in one aggregate is 10 or more and 10,000 or less. 前記光源から離れるにつれて、前記導光板基材の塗工面における前記凝集体が占める平面積と前記塗布液の塗布面積との比率又は前記塗布液の塗布面積と前記導光板基材の塗工面の面積との塗工面積比率が高くなることを特徴とする請求項11または12に記載の導光板。   As the distance from the light source increases, the ratio of the flat area occupied by the aggregates on the coated surface of the light guide plate substrate and the coated area of the coating solution or the coated area of the coating solution and the coated surface area of the light guide plate substrate The light guide plate according to claim 11, wherein the coating area ratio is high.
JP2012501533A 2010-02-26 2010-02-26 Light guide plate and light guide plate manufacturing method Expired - Fee Related JP5436655B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001335 WO2011104765A1 (en) 2010-02-26 2010-02-26 Light-guide plate and method for manufacturing a light-guide plate

Publications (2)

Publication Number Publication Date
JPWO2011104765A1 JPWO2011104765A1 (en) 2013-06-17
JP5436655B2 true JP5436655B2 (en) 2014-03-05

Family

ID=44506215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501533A Expired - Fee Related JP5436655B2 (en) 2010-02-26 2010-02-26 Light guide plate and light guide plate manufacturing method

Country Status (5)

Country Link
JP (1) JP5436655B2 (en)
KR (1) KR20120120935A (en)
CN (1) CN102770704A (en)
TW (1) TWI464462B (en)
WO (1) WO2011104765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219525A1 (en) * 2022-05-10 2023-11-16 Zeljko Mandic Light-emitting polymer film and process of its formation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152785A (en) * 2012-01-24 2013-08-08 Mutoh Industries Ltd Method and device for manufacturing light guide plate
JP2013167780A (en) * 2012-02-16 2013-08-29 Muto Kogyo Kk Method and device for producing light guide plate for liquid crystal tv
JP5909399B2 (en) * 2012-03-30 2016-04-26 武藤工業株式会社 Light guide plate creation method and apparatus
US20160070052A1 (en) * 2013-06-10 2016-03-10 Sharp Kabushiki Kaisha Light guide body and planar light-emission device provided with same
CN104459868A (en) * 2013-09-24 2015-03-25 陈蕾 Light guide plate, light guide plate manufacturing method, backlight LED module, display and panel lamp
CN106405720A (en) * 2016-06-21 2017-02-15 合肥惠科金扬科技有限公司 Light guide plate, light guide plate manufacturing method, backlight module and display device
CN106249481B (en) * 2016-09-18 2020-05-05 青岛海信电器股份有限公司 Backlight module and preparation method of light guide plate
EP4098941A1 (en) 2020-01-31 2022-12-07 Agc Inc. Illumination body having light source
CN115895007B (en) * 2022-12-17 2023-08-08 常熟卓辉光电科技股份有限公司 Light guide plate and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265889A (en) * 1990-03-16 1991-11-26 Asahi Chem Ind Co Ltd Light source device for display body
JPH0780956A (en) * 1993-09-16 1995-03-28 Nissha Printing Co Ltd Production of light scattering material
JP2001141932A (en) * 1999-11-15 2001-05-25 Nitto Denko Corp Polarized light transmission plate and polarized light surface light source
JP2006251589A (en) * 2005-03-14 2006-09-21 Nitto Denko Corp Optical element, polarized plane light source using element, and display apparatus using light source
JP2008027609A (en) * 2006-07-18 2008-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Surface-emitter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128383A (en) * 1981-02-02 1982-08-09 Mitsubishi Electric Corp Surface lighting apparatus
JP2005044744A (en) * 2003-07-25 2005-02-17 Clariant Internatl Ltd Surface light source device
US20050208225A1 (en) * 2004-03-19 2005-09-22 Konica Minolta Photo Imaging, Inc. Coating apparatus and coating method
JP4716754B2 (en) * 2005-02-25 2011-07-06 三菱レイヨン株式会社 Surface light source device, light guide used therefor, and manufacturing method thereof
JP2007010707A (en) * 2005-06-28 2007-01-18 Seiko Epson Corp Method for manufacturing optical sheet, optical sheet, backlight unit, display device, and electronic apparatus
JP2007304219A (en) * 2006-05-09 2007-11-22 Keiwa Inc Base material film for optical sheet, optical sheet and liquid crystal display module
JP2009031570A (en) * 2007-07-27 2009-02-12 Tamura Seisakusho Co Ltd Luminous indicator
WO2009028439A1 (en) * 2007-08-28 2009-03-05 Dic Corporation Prism sheet, and backlight unit and liquid crystal display device using prism sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265889A (en) * 1990-03-16 1991-11-26 Asahi Chem Ind Co Ltd Light source device for display body
JPH0780956A (en) * 1993-09-16 1995-03-28 Nissha Printing Co Ltd Production of light scattering material
JP2001141932A (en) * 1999-11-15 2001-05-25 Nitto Denko Corp Polarized light transmission plate and polarized light surface light source
JP2006251589A (en) * 2005-03-14 2006-09-21 Nitto Denko Corp Optical element, polarized plane light source using element, and display apparatus using light source
JP2008027609A (en) * 2006-07-18 2008-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Surface-emitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219525A1 (en) * 2022-05-10 2023-11-16 Zeljko Mandic Light-emitting polymer film and process of its formation

Also Published As

Publication number Publication date
JPWO2011104765A1 (en) 2013-06-17
KR20120120935A (en) 2012-11-02
CN102770704A (en) 2012-11-07
TW201129832A (en) 2011-09-01
TWI464462B (en) 2014-12-11
WO2011104765A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5436655B2 (en) Light guide plate and light guide plate manufacturing method
JP5271685B2 (en) Light guide plate and light guide plate manufacturing method
TWI530705B (en) Light guide plate, surface light source device, transmission-type image display device, method of manufacturing light guide plate, and ultraviolet curing type ink-jet ink for light guide plate
US11543578B2 (en) Sheet-form solid-state illumination device
US20090147179A1 (en) Prism Sheet and Production Method thereof and Surface Light Source Device
KR100633370B1 (en) Method of manufacturing microlens, microlens, optical film, screen for projection, and projector system
JP4716754B2 (en) Surface light source device, light guide used therefor, and manufacturing method thereof
KR101280187B1 (en) Lens sheet, surface light source, and liquid crystal display device
KR20090088438A (en) Lens sheet, surface light source device and liquid crystal display device
JP2000314882A (en) Liquid crystal display device, light guiding plate and manufacture of light guiding plate
US9115863B2 (en) Optical compound sheet for backlight module
KR101227287B1 (en) Light guide plate, surface light source device, and transmission image display device
TWI303191B (en) Method of manufacturing optical sheet, optical sheet, planar lighting apparatus, and electro optical apparatus
JP2010146772A (en) Light guide plate, and method of manufacturing the same
JP4680635B2 (en) Surface light source device, light guide used therefor, and manufacturing method thereof
JP5431215B2 (en) Light guide plate and surface light source device
JP5724527B2 (en) Light guide plate laminate and manufacturing method thereof
CN115485502A (en) Light guide panel and lighting device including the same
JP2002148417A (en) Optical sheet, method for manufacturing the same, surface light source device and display device
WO2006098127A1 (en) Planar light source device, light guide used for the same, and manufacturing method thereof
JP3942879B2 (en) Manufacturing method of optical sheet
JP2010165548A (en) Light guide plate and method of manufacturing the same
US20090186152A1 (en) Light Guide Plate and Manufacturing Method thereof
JPH06118247A (en) Manufacture of edge light guide boy
JP6696710B2 (en) Method for manufacturing downward prism optical sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees