JP3654744B2 - Roundness measuring machine - Google Patents

Roundness measuring machine Download PDF

Info

Publication number
JP3654744B2
JP3654744B2 JP19772397A JP19772397A JP3654744B2 JP 3654744 B2 JP3654744 B2 JP 3654744B2 JP 19772397 A JP19772397 A JP 19772397A JP 19772397 A JP19772397 A JP 19772397A JP 3654744 B2 JP3654744 B2 JP 3654744B2
Authority
JP
Japan
Prior art keywords
detector
roundness
workpiece
measuring machine
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19772397A
Other languages
Japanese (ja)
Other versions
JPH1123256A (en
Inventor
雄司 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP19772397A priority Critical patent/JP3654744B2/en
Publication of JPH1123256A publication Critical patent/JPH1123256A/en
Application granted granted Critical
Publication of JP3654744B2 publication Critical patent/JP3654744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物(本明細書では「ワーク」という。)の真円度や円柱形状を測定する真円度測定機に係わり、その中で、検出器回転型の真円度測定機に関する。
【0002】
【従来の技術】
真円度測定機には、ベースに設けられた回転テーブルにワークを載置しコラムに設けられた検出器を固定又は上下動して測定するテーブル回転型のものや、回転しないテーブルにワークを載置して検出器を回転又は上下動させて測定する検出器回転型のものがある。テーブル回転型は小型の部品に、検出器回転型は大型の部品に用いられる。
【0003】
検出器回転型の真円度測定機は、図3に示すように、ベース11に水平方向(XY方向)移動自在に支持されたXYテーブル12が設けられるとともに、ベース11にはコラム13が立設され、コラム13に設けられたZガイド14にZテーブル15が鉛直方向(Z方向)移動自在に支持されている。Zテーブル15の前側には回転支持部が内蔵され、回転支持部にはスピンドル16が回転自在に支持されている。
また、スピンドル16の下端には支持アーム17が固着され、支持アーム17にはスライドブロック18が水平一軸方向移動自在に支持されている。そして、スライドブロック18の下面には検出器ホルダー18aが固着され、検出器ホルダー18aに検出器19が取り付けられている。
【0004】
検出器回転型の真円度測定機はこのように構成されており、ワークWをXYテーブル12の上に載置し固定した状態で、XYテーブル12を駆動してワークの測定部分の中心を検出器19の回転中心に概略(検出器19の測定可能範囲内)に合わせた後、スピンドル16により検出器19を回転させてワークWの円周を測定し、測定データから真円度を算出する。
また、検出器19はZテーブル15によってZ方向に移動可能であるので、ワークのZ方向任意の位置(以下「測定断面」又は単に「断面」という)の真円度測定ができる。これによって、各測定断面での真円度データから同軸度や円柱形状の算出も可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、Zテーブル15は、Z方向に移動するときにZガイド14の運動精度によって水平方向の変動が発生する。その結果、ワークの測定部分の中心(以下「ワーク中心」という)に対するスピンドル16の回転中心が変位するため、次のような測定誤差が生じる。
【0006】
これを図5に示す。Cはワーク中心、Roはスピンドル16の回転中心から検出器19までの距離、Soは検出器19から測定子19aがワークに当接した点までの距離を表している。
スピンドル16の回転中心がワーク中心Cに一致していると、検出器19が回転しても検出器19から測定子19aまでの距離Soは変化しないが、スピンドル16の回転中心がワーク中心Cからαだけ変位すると、検出器19から測定子19aまでの距離はSbからScに変化する。この結果、次式で表される誤差δが発生する。
δ=Sc−Sb=2α
【0007】
単にワークの一つの断面の真円度を測定するだけであれば、誤差δは検出器19の回転円周角に比例するので補正計算によって正しい真円度を算出することができるが、複数の断面の真円度を測定して同軸度や円柱形状を求める場合には、誤差δはそのまま測定誤差となる。
【0008】
本発明はこのような事情を鑑みてなされたもので、検出器回転型の真円度測定機でワークの複数の断面の真円度を測定して同軸度を求める場合に、Zガイド14の運動精度の影響を受けずに測定できる方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は前記目的を達成するために、検出器回転型の真円度測定機のスライドブロック18に検出器ガイド21を設け、検出器19を検出器ガイド21に沿ってZ方向の任意の位置に設定できるようにする。そして、ワークの同軸度を求める場合には、Zテーブル15は移動せず、検出器19を移動するようにする。
こうすると、複数の測定断面に検出器19を移動しても、ワーク中心Cに対するスピンドル16の回転中心が変位しないので、前述した誤差δは発生しない。
【0010】
【実施の形態】
本発明に係る真円度測定機の実施の形態の全体図を図1に、検出器付近の詳細図2に、測定説明図を図3に示す。
【0011】
図1に示す真円度測定機は、従来の技術(図3)で説明したものと基本構成は同じである。従来の技術と異なるのは、検出器を支持する構造である。
すなわち、図2に示すように、スライドブロック18の下面に検出器ガイド21が固着され、検出器ガイド21に沿ってZ方向移動自在に検出器ホルダー22が支持されている(回転は規制されている)。検出器ホルダー22には検出器19が取り付けられている。また、検出器ホルダー22は固定ネジ23でZ方向任意の位置に固定できるようになつている。
【0012】
本発明に係わる検出器回転型の真円度測定機はこのように構成されており、ワークWをXYテーブル12の上に載置し固定した状態で、XYテーブル12を駆動してワークの測定部分の中心を検出器19の回転中心に概略(検出器19の測定可能範囲内)に合わせた後、スピンドル16により検出器19を回転させてワークWの円周を測定し、測定データから真円度を算出する。ここまでは、従来の技術で説明した方法と同じである。
【0013】
従来の技術と異なるのは、別の断面を測定する場合であり、本発明ではZテーブル15はそのままに固定しておき、検出器ホルダー22をZ方向に移動する。
その結果、検出器ホルダー22をZ方向に移動すると検出器ガイド21の運動精度によって検出器19の水平方向位置が変位するが、Zテーブル15は水平方向に変動せずスピンドル16の回転中心が変位しないので、従来の技術のような誤差δは発生しない。
【0014】
すなわち、図4に示すように、ワーク中心Cから検出器19までの距離がRoからRaに変化することによって検出器19から測定子19aまでの距離がSoからSaに変化しても、スピンドル16の回転中心は常にワーク中心Cに一致しているので、検出器19から測定子19aまでの距離は同一断面ではどの円周角でも同一である。したがって、誤差は発生しない。
【0015】
なお、実施の形態は、検出器ホルダー22の位置を手動で移動する例であったが、これを、送りネジ機構、ラックピニオン機構、ローラ伝動機構、エアーアクチュエータ機構等を用いて自動的に駆動するように構成すれば、自動測定も可能である。
【0016】
【発明の効果】
以上説明したように本発明によれば、検出器回転型の真円度測定機において、検出器19を支持する水平方向移動自在なスライドブロック18に検出器ガイド21を設け、検出器19を検出器ガイド21に沿ってZ方向の任意の位置に設定できるようにした。そして、ワークの複数の断面の真円度を測定して同軸度を求める場合には、Zテーブル15は移動せず、検出器19を移動するようにした。したがって、Zテーブル15が水平方向に変動せずスピンドル16の回転中心が常にワーク中心Cに位置するので、Zガイド14の運動精度の影響を受けずに測定を行うことができる。
【図面の簡単な説明】
【図1】 本発明にかかる真円度測定機の実施の形態の外観図
【図2】 図1の検出器部分の詳細図
【図3】 従来の真円度測定機の外観図
【図4】 本発明に係る真円度測定機の実施の形態の測定説明図
【図5】 従来の真円度測定機の測定説明図
【符号の説明】
W………ワーク
11……ベース
12……XYテーブル
13……コラム
14……Zガイド
15……Zテーブル
16……スピンドル
17……支持アーム
18……スライドブロック
19……検出器
19a…測定子
21……検出器ガイド
22……検出器ホルダー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roundness measuring machine for measuring the roundness and cylindrical shape of an object to be measured (referred to as “work” in the present specification), and among them, a detector rotating type roundness measuring machine. About.
[0002]
[Prior art]
Roundness measuring machines include a table rotating type that mounts a work on a rotating table provided on the base and moves the detector provided on the column fixed or moved up and down, or a work on a table that does not rotate. There is a detector rotation type that is mounted and measured by rotating or vertically moving the detector. The table rotation type is used for small parts, and the detector rotation type is used for large parts.
[0003]
As shown in FIG. 3, the detector rotation type roundness measuring machine is provided with an XY table 12 supported on a base 11 so as to be movable in the horizontal direction (XY direction), and a column 13 is set up on the base 11. A Z table 15 is supported by a Z guide 14 provided in the column 13 so as to be movable in the vertical direction (Z direction). A rotation support portion is built in the front side of the Z table 15, and a spindle 16 is rotatably supported by the rotation support portion.
A support arm 17 is fixed to the lower end of the spindle 16, and a slide block 18 is supported on the support arm 17 so as to be movable in the horizontal uniaxial direction. A detector holder 18a is fixed to the lower surface of the slide block 18, and a detector 19 is attached to the detector holder 18a.
[0004]
The detector rotation type roundness measuring machine is configured in this way, and with the workpiece W placed and fixed on the XY table 12, the XY table 12 is driven to center the measurement portion of the workpiece. After aligning the rotation center of the detector 19 roughly (within the measurable range of the detector 19), the detector 19 is rotated by the spindle 16 to measure the circumference of the workpiece W, and the roundness is calculated from the measured data. To do.
Further, since the detector 19 can be moved in the Z direction by the Z table 15, it is possible to measure the roundness of an arbitrary position in the Z direction of the workpiece (hereinafter referred to as “measurement section” or simply “section”). This makes it possible to calculate the coaxiality and the cylindrical shape from the roundness data in each measurement section.
[0005]
[Problems to be solved by the invention]
However, when the Z table 15 moves in the Z direction, the horizontal fluctuation occurs due to the movement accuracy of the Z guide 14. As a result, the rotation center of the spindle 16 is displaced with respect to the center of the workpiece measurement portion (hereinafter referred to as “work center”), and the following measurement error occurs.
[0006]
This is shown in FIG. C represents the workpiece center, Ro represents the distance from the rotation center of the spindle 16 to the detector 19, and So represents the distance from the detector 19 to the point where the probe 19a contacts the workpiece.
If the rotation center of the spindle 16 coincides with the workpiece center C, the distance So from the detector 19 to the probe 19a does not change even if the detector 19 rotates, but the rotation center of the spindle 16 does not change from the workpiece center C. When displaced by α, the distance from the detector 19 to the measuring element 19a changes from Sb to Sc. As a result, an error δ expressed by the following equation occurs.
δ = Sc−Sb = 2α
[0007]
If only the roundness of one cross section of the workpiece is simply measured, the error δ is proportional to the rotation circumferential angle of the detector 19, so that correct roundness can be calculated by correction calculation. When the roundness of the cross section is measured to obtain the coaxiality and the cylindrical shape, the error δ becomes a measurement error as it is.
[0008]
The present invention has been made in view of such circumstances, and when the roundness of a plurality of cross sections of a workpiece is measured by a roundness measuring machine of a detector rotation type to obtain the coaxiality, An object of the present invention is to provide a method capable of measuring without being affected by the motion accuracy.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a detector guide 21 on the slide block 18 of a detector-rotating roundness measuring machine, and places the detector 19 along the detector guide 21 in an arbitrary position in the Z direction. Can be set to And when calculating | requiring the concentricity of a workpiece | work, the Z table 15 is not moved but the detector 19 is moved.
In this way, even if the detector 19 is moved to a plurality of measurement sections, the rotation center of the spindle 16 with respect to the workpiece center C is not displaced, and thus the error δ described above does not occur.
[0010]
Embodiment
An overall view of an embodiment of a roundness measuring machine according to the present invention is shown in FIG. 1, a detailed view near a detector is shown in FIG. 2, and a measurement explanatory diagram is shown in FIG.
[0011]
The roundness measuring machine shown in FIG. 1 has the same basic configuration as that described in the prior art (FIG. 3). The difference from the prior art is the structure that supports the detector.
That is, as shown in FIG. 2, the detector guide 21 is fixed to the lower surface of the slide block 18, and the detector holder 22 is supported so as to be movable in the Z direction along the detector guide 21 (the rotation is restricted). ) A detector 19 is attached to the detector holder 22. The detector holder 22 can be fixed at an arbitrary position in the Z direction with a fixing screw 23.
[0012]
The detector rotation type roundness measuring machine according to the present invention is configured in this way, and the workpiece XY table 12 is driven to measure the workpiece while the workpiece W is placed and fixed on the XY table 12. After the center of the portion is approximately aligned with the rotation center of the detector 19 (within the measurable range of the detector 19), the detector 19 is rotated by the spindle 16 to measure the circumference of the workpiece W. Calculate the circularity. Up to this point, the method is the same as that described in the prior art.
[0013]
The difference from the conventional technique is a case where another cross section is measured. In the present invention, the Z table 15 is fixed as it is, and the detector holder 22 is moved in the Z direction.
As a result, when the detector holder 22 is moved in the Z direction, the horizontal position of the detector 19 is displaced due to the movement accuracy of the detector guide 21, but the Z table 15 is not moved in the horizontal direction and the center of rotation of the spindle 16 is displaced. Therefore, the error δ as in the conventional technique does not occur.
[0014]
That is, as shown in FIG. 4, even if the distance from the work center C to the detector 19 changes from Ro to Ra and thus the distance from the detector 19 to the probe 19a changes from So to Sa, the spindle 16 Since the center of rotation always coincides with the workpiece center C, the distance from the detector 19 to the probe 19a is the same at any circumferential angle in the same cross section. Therefore, no error occurs.
[0015]
Although the embodiment is an example in which the position of the detector holder 22 is manually moved, this is automatically driven using a feed screw mechanism, a rack and pinion mechanism, a roller transmission mechanism, an air actuator mechanism, and the like. If configured to do so, automatic measurement is also possible.
[0016]
【The invention's effect】
As described above, according to the present invention, the detector guide 21 is provided in the horizontally movable slide block 18 that supports the detector 19 in the detector rotation type roundness measuring machine, and the detector 19 is detected. It can be set at any position in the Z direction along the vessel guide 21. And when measuring the roundness of several cross sections of a workpiece | work and calculating | requiring a coaxial degree, the Z table 15 did not move but the detector 19 was moved. Therefore, since the Z table 15 does not fluctuate in the horizontal direction and the rotation center of the spindle 16 is always located at the work center C, measurement can be performed without being affected by the motion accuracy of the Z guide 14.
[Brief description of the drawings]
1 is an external view of an embodiment of a roundness measuring apparatus according to the present invention. FIG. 2 is a detailed view of a detector portion of FIG. 1. FIG. 3 is an external view of a conventional roundness measuring apparatus. ] Measurement explanatory diagram of the embodiment of the roundness measuring machine according to the present invention [FIG. 5] Measurement explanatory diagram of a conventional roundness measuring machine [Explanation of symbols]
W ... Work 11 ... Base 12 ... XY table 13 ... Column 14 ... Z guide 15 ... Z table 16 ... Spindle 17 ... Support arm 18 ... Slide block 19 ... Detector 19a ... Measurement Child 21 …… Detector guide 22 …… Detector holder

Claims (1)

ベースに水平方向移動自在に支持されたXYテーブルと、
前記ベース立設されたコラムに設けられたZガイドに、鉛直方向移動自在に支持されたZテーブルと、
前記Zテーブルに内蔵された回転支持部に、回転自在に支持されたスピンドルと、
前記スピンドルの下端に固着された支持アームに、水平一軸方向移動自在に支持されたスライドブロックと、
前記スライドブロックに鉛直方向に設けられた検出器ガイドと、
前記検出器ガイドに鉛直方向移動自在に支持された検出器と、
から構成され、
ワークの複数の断面の真円度を測定して同軸度を求める場合に、前記Zテーブルは移動せず前記検出器を鉛直方向に移動することを特徴とする真円度測定機。
An XY table supported by a base so as to be horizontally movable;
A Z table supported on the Z guide provided on the column erected on the base so as to be movable in the vertical direction;
A spindle rotatably supported on a rotation support part built in the Z table;
A slide block supported by a support arm fixed to a lower end of the spindle so as to be movable in a horizontal uniaxial direction;
A detector guide provided in a vertical direction on the slide block;
A detector supported by the detector guide in a vertically movable manner;
Consisting of
A roundness measuring machine characterized in that, when the roundness of a plurality of cross sections of a workpiece is measured to determine the coaxiality, the Z table does not move but the detector moves in the vertical direction.
JP19772397A 1997-07-08 1997-07-08 Roundness measuring machine Expired - Fee Related JP3654744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19772397A JP3654744B2 (en) 1997-07-08 1997-07-08 Roundness measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19772397A JP3654744B2 (en) 1997-07-08 1997-07-08 Roundness measuring machine

Publications (2)

Publication Number Publication Date
JPH1123256A JPH1123256A (en) 1999-01-29
JP3654744B2 true JP3654744B2 (en) 2005-06-02

Family

ID=16379285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19772397A Expired - Fee Related JP3654744B2 (en) 1997-07-08 1997-07-08 Roundness measuring machine

Country Status (1)

Country Link
JP (1) JP3654744B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252524B2 (en) * 2006-12-26 2013-07-31 Udトラックス株式会社 Roundness measuring device and roundness measuring method
JP5286239B2 (en) * 2009-12-14 2013-09-11 株式会社ミツトヨ Measuring element and roundness measuring machine
JP6086322B2 (en) * 2013-09-24 2017-03-01 株式会社東京精密 Roundness measuring machine
CN107063118A (en) * 2017-03-22 2017-08-18 齐鲁工业大学 The device of automatic measurement axial workpiece outer surface cylindricity
KR102050719B1 (en) * 2018-03-26 2019-12-03 일륭기공(주) Forgings Curve Inspection Device

Also Published As

Publication number Publication date
JPH1123256A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
US7197835B2 (en) Detector supporting mechanism
JP3467063B2 (en) Coordinate measuring device
JP5880096B2 (en) Inner diameter measuring device
JP6419575B2 (en) Machine tool and workpiece measurement method
JP2000501505A (en) Surface shape measurement
JP2006231509A (en) Method for measuring program control type machine tool
JPH0642947A (en) Method and device for measuring run-out or contour
JPH1123255A (en) Circularity measuring machine and calibration method for its detector
EP3239654B1 (en) Roundness measurement device
JP3654744B2 (en) Roundness measuring machine
EP2016366B1 (en) Metrological apparatus for measuring surface characteristics
JP5716427B2 (en) Roundness measuring device and method of correcting misalignment
JP5971445B1 (en) Roundness measuring device
SE444986B (en) DEVICE FOR INBOARD CENTERING OF A CENTER SPINDLE INCLUDED IN THE DEVICE AND A HALL IN A FORM
JP2003240503A (en) Method and apparatus for measuring perfect circle
JP2010271047A (en) Apparatus for measuring shaft having optical type and touch probe type measuring mechanisms and shaft supporting mechanism, and method for measuring specifications and accuracy of shaft by the apparatus
US5643049A (en) Floating contact gage for measuring cylindrical workpieces exiting a grinder
JP3995333B2 (en) Screw shaft measuring method and measuring device
CN111854575B (en) Roll collar ring groove detection device
US20230128675A1 (en) Grinding machine centering gauge
JP2006071563A (en) Apparatus for measuring shape of circular cone
JP2682794B2 (en) Cylindrical accuracy inspection device
JP2667104B2 (en) Cylindrical accuracy inspection device
JP2021056135A (en) Height measuring instrument
JP2020527698A (en) Method and device for acquiring 3D data of 3D surface of workpiece

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees