JP3653987B2 - Selection method for defective insulation resistance of multilayer ceramic capacitors - Google Patents
Selection method for defective insulation resistance of multilayer ceramic capacitors Download PDFInfo
- Publication number
- JP3653987B2 JP3653987B2 JP15172698A JP15172698A JP3653987B2 JP 3653987 B2 JP3653987 B2 JP 3653987B2 JP 15172698 A JP15172698 A JP 15172698A JP 15172698 A JP15172698 A JP 15172698A JP 3653987 B2 JP3653987 B2 JP 3653987B2
- Authority
- JP
- Japan
- Prior art keywords
- insulation resistance
- voltage
- defective
- reference value
- defective product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、積層セラミックコンデンサにおける不良品選別に用いられる絶縁抵抗不良選別方法に関する。
【0002】
【従来の技術】
従来、電子部品の出荷に先立って、不良品を排除するために、様々な選別方法が実施されている。例えば、絶縁抵抗不良を選別する方法としては、電子部品に所定の1種類の電圧を印加し、絶縁抵抗を測定し、該絶縁抵抗が所定の絶縁抵抗基準値を下回る場合、その電子部品を不良品として排除していた。
【0003】
電子部品の絶縁抵抗は、印加電圧によっても異なるため、印加電圧に応じて上記絶縁抵抗基準値が定められている。
ところが、ある印加電圧においては、該印加電圧における絶縁抵抗基準値を上回っており、良品と判断されるが、他の印加電圧で絶縁抵抗を測定した場合には、該他の印加電圧における絶縁抵抗基準値を下回るものがある。このような電子部品は不良品であるため、絶縁抵抗選別方法により確実に除去されねばならない。
【0004】
そこで、従来、上記のような不良品を確実に除去するために、選別に際しての絶縁抵抗基準値を安全度を見込んでかなり高めていた。しかしながら、絶縁抵抗基準値を高めた場合には、上記のような不良品を確実に除去し得るものの、逆に、安全度を見込んだ分だけ、良品が不良品として排除されていた。従って、みかけ不良率、すなわち、不良品中に混入される良品の割合が高くなり、歩留りが低下し、コストを高める原因となっていた。
【0005】
そこで、みかけ不良率を低めるために、絶縁抵抗を測定する際の判定時間、すなわち電圧印加時間を長くし、それによって良品と不良品との差を拡大し、より正確に絶縁抵抗不良を選別する方法が試みられている。積層コンデンサを例にとると、電圧印加時間すなわち充電時間を延長することにより、良品と不良品との差を拡大し、それによって、より高精度に不良品を選別することが試みられている。
【0006】
【発明が解決しようとする課題】
しかしながら、判定時間を延長する方法では、絶縁抵抗選別に際しての処理時間が長くなり、生産性が低下するという問題があった。
【0007】
本発明の目的は、上述した従来技術の欠点を解消し、選別時間を長くすることなく、かつみかけ不良率を高めることなく、不良品を確実に排除し得る積層セラミックコンデンサの絶縁抵抗不良選別方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、積層セラミックコンデンサに同極性であるが値が異なり、かつ定格電圧よりも高い少なくとも2種の電圧の内、相対的に高い電圧を印加し、次に相対的に低い電圧を印加し、それぞれの電圧で絶縁抵抗を測定し、少なくとも1種の電圧印加時における絶縁抵抗が該電圧印加時の絶縁抵抗基準値を下回った場合に不良品と判別することを特徴とする、積層セラミックコンデンサの絶縁抵抗不良選別方法である。
【0010】
【発明の実施の形態】
以下、本発明の絶縁抵抗不良選別方法を、図面を参照しつつより具体的に説明する。
【0011】
上述したように、従来の絶縁抵抗不良選別方法では、▲1▼1種類の電圧を印加し、絶縁抵抗を測定し、▲2▼測定された絶縁抵抗が絶縁抵抗基準値より下回った場合に不良品として選別していた。
【0012】
これに対して、本発明に係る積層セラミックコンデンサの絶縁抵抗不良選別方法では、少なくとも2種の電圧の内、相対的に高い電圧を印加し、次に相対的に低い電圧を印加し、それぞれ絶縁抵抗を測定する。そして、少なくとも1種の電圧印加時における測定された絶縁抵抗値が、該電圧印加時の絶縁抵抗基準値を下回った場合に不良品と判別する。本発明の絶縁抵抗不良選別方法によれば、処理速度を低めることなく、かつ前述したみかけ不良率を高めることなく、不良品を確実に選別し得る。これを、図1を参照して説明する。
【0013】
図1は、積層コンデンサに種々の電圧を印加した場合の絶縁抵抗の分布を示す図である。横軸は印加電圧の値を示し、縦軸は絶縁抵抗を示す。
図1において、矢印Aで示すグループは良品の範囲を示し、矢印Bで示すグループが不良品の分布を示す。
【0014】
図1から明らかなように、積層コンデンサの絶縁抵抗は、該絶縁抵抗を測定する際の印加電圧に応じて変化する。ほとんどの積層コンデンサでは、印加電圧が高くなるにつれて、絶縁抵抗は低下する。
【0015】
従来の絶縁抵抗不良選別方法では、例えば、電圧V1 を印加し、積層コンデンサの絶縁抵抗を測定する。この場合、絶縁抵抗基準値としては、例えば、図1に示す抵抗値Raを選定しておき、測定された絶縁抵抗値が絶縁抵抗基準値Raを下回った場合、不良品と判別していた。
【0016】
しかしながら、製造された積層コンデンサの中には、印加電圧を高めるにつれて、印加電圧の上昇分に応じて絶縁抵抗値が低下しないものもあった。例えば、図1の矢印Cで示す特性の積層コンデンサや、矢印Dで示す特性を示す積層コンデンサも存在した。
【0017】
上記矢印Cで示す特性の積層コンデンサでは、電圧V1 を印加した場合、絶縁抵抗値は、絶縁抵抗基準値Raを上回っているため、良品と判別される。しかしながら、この積層コンデンサは、定格電圧を印加した場合や、電圧V2 (但し、電圧V2 >V1 )を印加した場合には、図1から明らかなように不良品グループに属するものである。従って、このような積層コンデンサは、不良品として確実に除去されねばならない。
【0018】
そこで、従来は、絶縁抵抗基準値Raを、図1に示す位置よりも高め、すなわち矢印Cで示す特性の積層コンデンサをも確実に排除するようにして、良品と不良品とを選別していた。
【0019】
その結果、図1の矢印Eで示す特性の積層コンデンサのように、本来良品である積層コンデンサも不良品として排除されていた。そのため、前述したように、みかけ不良率が高くなっていた。
【0020】
これに対して、本発明の方法では、2種以上の電圧を印加し、絶縁抵抗値を測定し、少なくとも1種の電圧印加時に、該電圧における絶縁抵抗基準値を下回った場合に不良品として選別する。例えば、図1に示すように、電圧V1 ,V2 の2種の電圧を印加した場合に、それぞれ、絶縁抵抗基準値を、Ra,Rbとして設定しておく。電圧V1 を印加した場合には、矢印Cで示す特性の積層コンデンサの絶縁抵抗値は絶縁抵抗基準値Raを上回るが、電圧V2 を印加した際には、絶縁抵抗値は絶縁抵抗基準値Rbを下回る。従って、矢印Cで示す特性の積層コンデンサは不良品として確実に排除される。
【0021】
また、矢印Dで示す積層コンデンサもまた、電圧V2 を印加した場合には、絶縁抵抗基準値Rbを上回るが、電圧V1 を印加した場合には絶縁抵抗値は、絶縁抵抗基準値Raを下回り、不良品と判断される。従って、矢印Dで示す積層コンデンサも、不良品として確実に排除される。
【0022】
他方、矢印Eで示す特性の積層コンデンサについては、電圧V1 ,V2 のいずれを印加した場合も、それぞれの絶縁抵抗基準値を上回るため、良品と判断される。
【0023】
従って、絶縁抵抗基準値Ra,Rbを従来法ほど高めずとも(逆に低くしたとしても)、不良品を確実に排除することができ、それによって、みかけ不良率を低めることができる。
【0024】
本発明の絶縁抵抗不良選別方法のより具体的な実施例を、以下において説明する。
3.2×1.6×1.6mmの寸法を有し、静電容量が10μF、設計絶縁抵抗値が600MΩである同じ製造ロットの多数の積層コンデンサを用意した。この積層コンデンサを用い、従来法及び本発明の方法に従って絶縁抵抗不良の選別を行った。
【0025】
従来法としては、1種の判定電圧を印加し、絶縁抵抗を測定し、測定された絶縁抵抗値が、該判定電圧印加時の絶縁抵抗基準値よりも下回っているか否かで不良品と良品とを選別した。この判定電圧印加パターンを図2に示す。図2において、縦軸は電圧を、横軸は時間を示し、Fが判定電圧、Gが判定時間を示す。下記の表1に示すように、判定電圧及び判定時間並びに絶縁抵抗基準値を種々異ならせ、上記積層コンデンサの絶縁抵抗不良選別を行った。この従来法1〜6における選別結果を下記の表1に併せて示す。
【0026】
なお、表1における良品中に混入する不良品数とは、図1の良品グループに混入されている不良品の数であり、例えば、図1のC,Dで示す特性の積層コンデンサが混入している数を示す。なお、良品、不良品の判定については、定格電圧で、図1のAは良品、Bは不良品としている。
【0027】
また、表1に、併せてみかけ不良率、すなわち図1の矢印Eで示す特性の積層コンデンサのように、良品でありながら不良品として分類されたものの割合を示す。
【0028】
【表1】
【0029】
次に、本発明の方法に従って、図3〜図7の各印加電圧パターンに従って2種以上の電圧を印加し、上記積層コンデンサの絶縁抵抗不良の選別を行った。
すなわち、図3に示す本発明例1では、判定電圧H1 =50Vと、判定電圧H2 =20Vの2種の判定電圧を、それぞれ、10秒及び5秒印加し、それぞれの判定電圧で絶縁抵抗を測定した。また、本発明例1では、図3中に記入したように、判定電圧H1 =50Vを印加した場合には、絶縁抵抗基準値は5MΩとし、判定電圧H2 =20Vを印加した場合には、絶縁抵抗基準値は50MΩとした。そして、少なくとも一方の判定電圧を印加した場合、絶縁抵抗値が絶縁抵抗基準値を下回った場合に不良品とした。
【0030】
下記の表2に、本発明例1における上記判定電圧、判定時間、絶縁抵抗基準値を示す。併せて、本発明例1において、良品中に混入した不良品数及びみかけ不良率を示す。
【0031】
同様に、本発明例2〜5についても、図3〜図7に示す各判定電圧、判定時間、絶縁抵抗基準値と、選別結果を下記の表2に示す。
【0032】
【表2】
【0033】
表1及び表2を比較すれば明らかなように、従来法1〜6では、良品中に混入する不良品を避けることができなかった。また、従来法1と従来法2とを比較すれば、判定電圧が50Vと同じ場合、絶縁抵抗基準値を5MΩから10MΩに高めれば、良品中に混入する不良品数を低減し得るものの、みかけ不良率が5%から42%と非常に大きくなることがわかる。
【0034】
同様に、従来法1と従来法3とを比較すれば、判定時間を15秒から30秒に延長することにより、良品に混入する不良品数を低減すると共に、みかけ不良率をさほど高めずに、選別を行い得ることがわかる。しかしながら、従来法3では、従来法1に比べて、選別時間が2倍必要であり、従って高速処理を行い得ないことがわかる。
【0035】
これに対して、本発明例1〜5では、表2から明らかなように、良品中に混入する不良品数は皆無であり、みかけ不良率は7%以下と非常に低かった。これは、複数種の判定電圧を印加し、少なくとも1種の判定電圧印加時における絶縁抵抗基準値を下回った積層コンデンサのみを不良品として排除することにより、図1に示した不良品グループに属する積層コンデンサだけでなく、C,Dで示すような特性の積層コンデンサ(不良品)をも確実に排除し得ることによる。
【0036】
しかも、表2から明らかなように、本発明例1〜5では、複数種の判定電圧を印加するものの、判定時間については、長くする必要はない。すなわち、例えば、本発明例4のように、4種類の判定電圧H1 〜H4 を印加する場合であっても、各判定電圧を印加する判定時間T1 〜T4 は、それぞれ、3秒とすればよいため、全体としての判定時間が長くなることもない。
【0037】
なお、上述した絶縁抵抗不良選別方法では、直流電圧を印加したが、本発明における選別方法では、直流電圧に限らず、交流電圧を印加してもよい。
【0039】
【発明の効果】
請求項1に記載の発明に係る積層セラミックコンデンサの絶縁抵抗不良選別方法では、積層セラミックコンデンサに少なくとも2種の電圧の内、相対的に高い電圧を印加し、次に相対的に低い電圧を印加して絶縁抵抗値を測定し、少なくとも1種の電圧印加時における絶縁抵抗値が、該電圧印加時の絶縁抵抗基準値を下回った場合に不良品と判別するため、絶縁抵抗不良の積層セラミックコンデンサを確実に選別することができる。
【0040】
すなわち、複数種の電圧を印加して絶縁抵抗値を測定し、選別しているため、各絶縁抵抗基準値をさほど高めずとも、かつ電圧印加時間をさほど長くせずとも、絶縁抵抗不良品を確実に選別することができると共に、上述したみかけ不良率を低下させることができる。すなわち、良品と不良品との選別をより確実にかつ短時間で行い得る。
【0041】
従って、良品である積層セラミックコンデンサを、より確実にかつ安価に提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る積層セラミックコンデンサの絶縁抵抗不良選別方法の原理を説明するための図。
【図2】 従来の電子部品の絶縁抵抗不良選別方法における電圧印加パターンを示す図。
【図3】 本発明例1における電圧印加パターンを示す図。
【図4】 本発明例2における電圧印加パターンを示す図。
【図5】 本発明例3における電圧印加パターンを示す図。
【図6】 本発明例4における電圧印加パターンを示す図。
【図7】 本発明例5における電圧印加パターンを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to insulation resistance defect screening methods Ru use Irare the defective sorting definitive to the product layer ceramic capacitors.
[0002]
[Prior art]
Conventionally, various sorting methods have been implemented in order to eliminate defective products prior to shipment of electronic components. For example, as a method for selecting a defective insulation resistance, a predetermined voltage is applied to an electronic component, the insulation resistance is measured, and if the insulation resistance falls below a predetermined insulation resistance reference value, the electronic component is rejected. It was excluded as a good product.
[0003]
Since the insulation resistance of an electronic component varies depending on the applied voltage, the insulation resistance reference value is determined according to the applied voltage.
However, at a certain applied voltage, it exceeds the insulation resistance reference value at the applied voltage and is judged as a non-defective product. However, when the insulation resistance is measured at another applied voltage, the insulation resistance at the other applied voltage is determined. Some are below the standard value. Since such an electronic component is a defective product, it must be surely removed by an insulation resistance selection method.
[0004]
Therefore, conventionally, in order to reliably remove such defective products as described above, the insulation resistance reference value at the time of selection has been considerably increased in anticipation of safety. However, when the insulation resistance reference value is increased, the defective product as described above can be surely removed, but conversely, the non-defective product is excluded as a defective product as much as the safety degree is expected. Therefore, the apparent defect rate, that is, the ratio of non-defective products mixed in the defective products is increased, which decreases the yield and increases the cost.
[0005]
Therefore, in order to reduce the apparent defect rate, the determination time when measuring the insulation resistance, that is, the voltage application time is lengthened, thereby widening the difference between the non-defective product and the defective product, and selecting the insulation resistance failure more accurately. A method is being tried. Taking a multilayer capacitor as an example, it has been attempted to increase the difference between a non-defective product and a defective product by extending the voltage application time, that is, the charging time, and thereby select defective products with higher accuracy.
[0006]
[Problems to be solved by the invention]
However, the method of extending the determination time has a problem that the processing time for selecting the insulation resistance becomes longer and the productivity is lowered.
[0007]
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to select a defective insulation resistance of a multilayer ceramic capacitor that can reliably eliminate defective products without increasing the selection time and without increasing the apparent defect rate. Is to provide.
[0008]
[Means for Solving the Problems]
The invention described in
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the insulation resistance defect screening method of the present invention will be described more specifically with reference to the drawings.
[0011]
As described above, in the conventional insulation resistance defect screening method, (1) one type of voltage is applied, the insulation resistance is measured, and (2) when the measured insulation resistance falls below the insulation resistance reference value, It was selected as a good product.
[0012]
On the other hand, in the insulation resistance defect screening method for a multilayer ceramic capacitor according to the present invention , a relatively high voltage is applied among at least two kinds of voltages , and then a relatively low voltage is applied. Measure resistance. When the measured insulation resistance value when at least one voltage is applied falls below the insulation resistance reference value when the voltage is applied, the product is determined to be defective. According to the insulation resistance defect selection method of the present invention, defective products can be reliably selected without reducing the processing speed and without increasing the apparent defect rate described above. This will be described with reference to FIG.
[0013]
FIG. 1 is a diagram showing a distribution of insulation resistance when various voltages are applied to the multilayer capacitor. The horizontal axis indicates the value of the applied voltage, and the vertical axis indicates the insulation resistance.
In FIG. 1, a group indicated by an arrow A indicates a non-defective range, and a group indicated by an arrow B indicates a distribution of defective products.
[0014]
As is apparent from FIG. 1, the insulation resistance of the multilayer capacitor changes according to the applied voltage when measuring the insulation resistance. In most multilayer capacitors, the insulation resistance decreases as the applied voltage increases.
[0015]
In the conventional insulation resistance defect selection method, for example, the voltage V 1 is applied and the insulation resistance of the multilayer capacitor is measured. In this case, as the insulation resistance reference value, for example, the resistance value Ra shown in FIG. 1 is selected, and when the measured insulation resistance value falls below the insulation resistance reference value Ra, it is determined as a defective product.
[0016]
However, some of the manufactured multilayer capacitors do not decrease the insulation resistance value in accordance with the increase in the applied voltage as the applied voltage is increased. For example, a multilayer capacitor having the characteristics indicated by the arrow C in FIG. 1 and a multilayer capacitor having the characteristics indicated by the arrow D exist.
[0017]
In the multilayer capacitor having the characteristics indicated by the arrow C, when the voltage V 1 is applied, the insulation resistance value exceeds the insulation resistance reference value Ra, so that it is determined as a good product. However, when a rated voltage is applied or when a voltage V 2 (where voltage V 2 > V 1 ) is applied, this multilayer capacitor belongs to a defective product group as is apparent from FIG. . Therefore, such a multilayer capacitor must be surely removed as a defective product.
[0018]
Therefore, conventionally, the non-defective product and the defective product have been selected so that the insulation resistance reference value Ra is higher than the position shown in FIG. 1, that is, the multilayer capacitor having the characteristic indicated by the arrow C is also reliably excluded. .
[0019]
As a result, a multilayer capacitor that was originally a good product, such as a multilayer capacitor having the characteristics indicated by arrow E in FIG. 1, was excluded as a defective product. Therefore, as described above, the apparent defect rate is high.
[0020]
On the other hand, in the method of the present invention, two or more kinds of voltages are applied, the insulation resistance value is measured, and when at least one kind of voltage is applied, if it falls below the insulation resistance reference value at the voltage, Sort out. For example, as shown in FIG. 1, when two types of voltages V 1 and V 2 are applied, the insulation resistance reference values are set as Ra and Rb, respectively. When the voltage V 1 is applied, the insulation resistance value of the multilayer capacitor having the characteristics indicated by the arrow C exceeds the insulation resistance reference value Ra. However, when the voltage V 2 is applied, the insulation resistance value is the insulation resistance reference value. Below Rb. Therefore, the multilayer capacitor having the characteristics indicated by the arrow C is surely excluded as a defective product.
[0021]
The multilayer capacitor indicated by the arrow D also exceeds the insulation resistance reference value Rb when the voltage V 2 is applied. However, when the voltage V 1 is applied, the insulation resistance value is equal to the insulation resistance reference value Ra. It is judged as a defective product. Therefore, the multilayer capacitor indicated by the arrow D is also reliably excluded as a defective product.
[0022]
On the other hand, the multilayer capacitor having the characteristic indicated by the arrow E exceeds the respective insulation resistance reference value when either of the voltages V 1 and V 2 is applied, and is thus judged as a good product.
[0023]
Accordingly, even if the insulation resistance reference values Ra and Rb are not increased as much as the conventional method (even if it is lowered), defective products can be surely excluded, and the apparent defect rate can be reduced.
[0024]
A more specific embodiment of the insulation resistance defect selection method of the present invention will be described below.
A large number of multilayer capacitors of the same production lot having dimensions of 3.2 × 1.6 × 1.6 mm, a capacitance of 10 μF, and a design insulation resistance value of 600 MΩ were prepared. Using this multilayer capacitor, insulation resistance defects were selected according to the conventional method and the method of the present invention.
[0025]
As a conventional method, one kind of judgment voltage is applied, the insulation resistance is measured, and the defective product and the non-defective product are determined depending on whether or not the measured insulation resistance value is lower than the insulation resistance reference value when the judgment voltage is applied. And sorted. This determination voltage application pattern is shown in FIG. In FIG. 2, the vertical axis represents voltage, the horizontal axis represents time, F represents the determination voltage, and G represents the determination time. As shown in Table 1 below, the determination voltage, the determination time, and the insulation resistance reference value were varied, and the insulation resistance failure of the multilayer capacitor was selected. The sorting results in the
[0026]
The number of defective products mixed in the non-defective product in Table 1 is the number of defective products mixed in the non-defective product group of FIG. 1, for example, mixed capacitors having characteristics shown by C and D in FIG. Number. In addition, regarding the determination of a non-defective product or a defective product, A is a good product and B is a defective product in rated voltage.
[0027]
Table 1 also shows an apparent defect rate, that is, a ratio of a non-defective product classified as a defective product, such as a multilayer capacitor having the characteristics indicated by the arrow E in FIG.
[0028]
[Table 1]
[0029]
Next, according to the method of the present invention, two or more kinds of voltages were applied according to the applied voltage patterns shown in FIGS.
That is, in Example 1 of the present invention shown in FIG. 3, two kinds of judgment voltages of judgment voltage H 1 = 50 V and judgment voltage H 2 = 20 V are applied for 10 seconds and 5 seconds, respectively, and insulation is performed at each judgment voltage. Resistance was measured. Further, in Example 1 of the present invention, as indicated in FIG. 3, when the determination voltage H 1 = 50V is applied, the insulation resistance reference value is 5 MΩ, and when the determination voltage H 2 = 20V is applied. The insulation resistance reference value was 50 MΩ. And when at least one judgment voltage was applied, when the insulation resistance value fell below the insulation resistance reference value, it was considered as a defective product.
[0030]
Table 2 below shows the determination voltage, determination time, and insulation resistance reference value in Example 1 of the present invention. In addition, in Example 1 of the present invention, the number of defective products mixed in the non-defective product and the apparent defective rate are shown.
[0031]
Similarly, Table 2 below shows the determination voltages, determination times, insulation resistance reference values, and selection results shown in FIGS.
[0032]
[Table 2]
[0033]
As is clear from comparison between Table 1 and Table 2, in the
[0034]
Similarly, when comparing the
[0035]
On the other hand, in Examples 1 to 5 of the present invention, as is clear from Table 2, the number of defective products mixed in the non-defective products was never present, and the apparent defective rate was very low as 7% or less. This belongs to the defective product group shown in FIG. 1 by applying a plurality of types of determination voltages and excluding only multilayer capacitors that are below the insulation resistance reference value when at least one type of determination voltage is applied as defective products. This is because not only multilayer capacitors but also multilayer capacitors (defective products) having characteristics as indicated by C and D can be surely eliminated.
[0036]
Moreover, as apparent from Table 2, in Examples 1 to 5 of the present invention, a plurality of types of determination voltages are applied, but the determination time does not need to be increased. That is, for example, even when four types of determination voltages H 1 to H 4 are applied as in Example 4 of the present invention, the determination times T 1 to T 4 for applying each determination voltage are 3 seconds each. Therefore, the determination time as a whole does not increase.
[0037]
In the insulation resistance defect screening method described above, although a DC voltage is applied, the sorting method of the present invention is not limited to a DC voltage, alternating current voltage may be applied.
[0039]
【The invention's effect】
In the method for selecting a defective insulation resistance of a multilayer ceramic capacitor according to the first aspect of the present invention , a relatively high voltage is applied to the multilayer ceramic capacitor and then a relatively low voltage is applied to the multilayer ceramic capacitor. to measure the insulation resistance, at least one insulation resistance value when the voltage is applied is, for discriminating the defective product when the lower insulation resistance reference value when the voltage is applied, the laminated ceramic capacitor insulation resistance defect Can be reliably selected.
[0040]
That is, since the insulation resistance value is measured and selected by applying plural kinds of voltages, a defective insulation resistance product can be obtained without increasing each insulation resistance reference value and without increasing the voltage application time. While being able to select reliably, the above-mentioned apparent defect rate can be reduced. In other words, it is possible to more reliably and quickly select a non-defective product and a defective product.
[0041]
Therefore, it is possible to provide a non-defective multilayer ceramic capacitor more reliably and inexpensively.
[Brief description of the drawings]
FIG. 1 is a view for explaining the principle of a method for selecting a defective insulation resistance of a multilayer ceramic capacitor according to the present invention.
FIG. 2 is a diagram showing a voltage application pattern in a conventional method for selecting a defective insulation resistance of an electronic component.
FIG. 3 is a diagram showing a voltage application pattern in Example 1 of the present invention.
FIG. 4 is a diagram showing a voltage application pattern in Example 2 of the present invention.
FIG. 5 is a diagram showing a voltage application pattern in Example 3 of the present invention.
FIG. 6 is a diagram showing a voltage application pattern in Example 4 of the present invention.
FIG. 7 is a diagram showing a voltage application pattern in Example 5 of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15172698A JP3653987B2 (en) | 1998-06-01 | 1998-06-01 | Selection method for defective insulation resistance of multilayer ceramic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15172698A JP3653987B2 (en) | 1998-06-01 | 1998-06-01 | Selection method for defective insulation resistance of multilayer ceramic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11345738A JPH11345738A (en) | 1999-12-14 |
JP3653987B2 true JP3653987B2 (en) | 2005-06-02 |
Family
ID=15524954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15172698A Expired - Lifetime JP3653987B2 (en) | 1998-06-01 | 1998-06-01 | Selection method for defective insulation resistance of multilayer ceramic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3653987B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3859079B2 (en) * | 2003-09-25 | 2006-12-20 | Tdk株式会社 | Screening method for multilayer ceramic capacitors |
JP2008016561A (en) * | 2006-07-04 | 2008-01-24 | Produce:Kk | Rapid discharging method by dropping voltage of capacitor |
-
1998
- 1998-06-01 JP JP15172698A patent/JP3653987B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11345738A (en) | 1999-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7173432B2 (en) | Method and machine for repetitive testing of an electrical component | |
KR101195226B1 (en) | Semiconductor wafer analysis system | |
DE112018001534T5 (en) | METHODS AND SYSTEMS FOR AVERAGE INLINE TESTING OF COMPONENTS AND LATENT RELIABILITY OF DEFECTIVE DETECTION | |
TW201915770A (en) | Method of classifying defects in a semiconductor specimen and system thereof | |
DE102009026462A1 (en) | accelerometer | |
US6544802B1 (en) | Wafer inspection system and method for selectively inspecting conductive pattern defects | |
JP3653987B2 (en) | Selection method for defective insulation resistance of multilayer ceramic capacitors | |
EP0991934B1 (en) | Method for focusing during imaging of structured surfaces of disc-shaped objects | |
AU7051098A (en) | Method for examining an unwinding strip surface by pre-classification of detected surface defect | |
JP4080087B2 (en) | Analysis method, analysis system, and analysis apparatus | |
JP4085640B2 (en) | Screening method for multilayer ceramic capacitors | |
CN106093819B (en) | Method for manufacturing full-waveband contrast crystal grains and method for correcting chip tester | |
JP2009258099A (en) | Method for inspecting insulation property of capacitor | |
JP2001144253A (en) | Checking pattern for semiconductor device | |
JP2000164471A (en) | Selecting method of laminated ceramic capacitor | |
KR100350181B1 (en) | Sorting method of monolithic ceramic capacitors | |
JP2904049B2 (en) | Test method for semiconductor device | |
JP2003329715A (en) | Measuring method for electrode resistance of capacitor and loss of dielectric | |
CN114461457A (en) | Detection method and detection device for wafer tester | |
JP3144224B2 (en) | Screening method for ceramic capacitors | |
JP2578440B2 (en) | Work inspection classification method | |
JP2000150329A (en) | Screening method for laminated ceramic capacitor | |
JPS63193278A (en) | Inspecting method for mark printing state | |
JP2003249424A (en) | Selecting method of laminated capacitor | |
JP2003059784A (en) | Method for sorting multilayer ceramic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040423 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050221 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |