JP3653690B2 - Conveyance method for conveying objects and structure for reducing friction on the bottom of the object - Google Patents

Conveyance method for conveying objects and structure for reducing friction on the bottom of the object Download PDF

Info

Publication number
JP3653690B2
JP3653690B2 JP23768898A JP23768898A JP3653690B2 JP 3653690 B2 JP3653690 B2 JP 3653690B2 JP 23768898 A JP23768898 A JP 23768898A JP 23768898 A JP23768898 A JP 23768898A JP 3653690 B2 JP3653690 B2 JP 3653690B2
Authority
JP
Japan
Prior art keywords
fluid
conveyed product
seal
friction
fluid filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23768898A
Other languages
Japanese (ja)
Other versions
JP2000062922A (en
Inventor
正光 内藤
博 森本
覚 長瀬
俊英 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP23768898A priority Critical patent/JP3653690B2/en
Publication of JP2000062922A publication Critical patent/JP2000062922A/en
Application granted granted Critical
Publication of JP3653690B2 publication Critical patent/JP3653690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重量物の搬送物の搬送方法と、その搬送物を支承体上を横移動させる際に、搬送物底面と支承体との摩擦を低減するための搬送物底面の摩擦低減構造に関するものである。
【0002】
【発明が解決しようとする課題】
重量物を搬送する装置として、車輪、コロ、エア−キャスタ−、ウォ−タ−キャスタ−などが公知である。車輪やコロは、点または線で荷重を支えるため車輪本体やコロ本体はもちろん、搬送物そのものの剛性や搬送床面の強度を大きくしなければならず、その上荷重を均等に分散させるためには接触面の平坦性および平滑性を要求される。また、1箇所当たりの分担荷重をあまり大きくすることができないために、荷重を分散させなければならず、使用する数を増やす必要があり、維持、管理が容易でない。
【0003】
エア−キャスタ−やウォ−タ−キャスタ−は搬送物の下部に取り付けられ、空気または水の圧力で重量を支える構造になっている。面で荷重を受けるため、搬送物にとっても搬送床面にとっても集中荷重が働かないため構造的に有利である。しかし、空気の膜や水の膜を形成して、言わば完全に浮上した状態で使用するため、少しの傾斜でも低い方向に移動してしまう。従って、その進行方向の制御や向きの制御は容易でない。
【0004】
【課題を解決するための手段】
上記課題を解決するための手段として、本発明は請求項1として、搬送物底面と搬送路床面との間に流体充填空間を設け、この流体充填空間内に、周面に開口を有するエンドレスな撓性ホースよりなる環状のシールを設置し、このシール内に流体を充填してシールを膨張させて給水空間の側壁を作ると共にシールを搬送物底面に密着させ、シール開口より環状の側壁内に流体を加圧充填し、搬送物底面が搬送路面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減した状態で、搬送物を支承体上を移動させて搬送するよう構成した、搬送物の搬送方法を提供する。
【0005】
【課題を解決するための手段】
請求項2として、搬送物底面と搬送路床面との間に流体充填空間を設け、この流体充填空間内に、周面に開口を有するエンドレスな撓性ホースよりなる環状のシールを設置し、このシール内に流体を充填してシールを膨張させて給水空間の側壁を作ると共にシールを搬送物底面に密着させ、シール開口より環状の側壁内に流体を加圧充填し、搬送物底面が搬送路面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減するよう構成した、搬送物底面の摩擦低減構造を提供する。
【0008】
請求項として、搬送物底面と搬送路床面との間に流体充填空間を設け、この流体充填空間内に流体を加圧充填し、搬送物底面が搬送路床面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減するよう構成した、搬送物底面の摩擦低減構造において、流体充填空間内の搬送路床面に環状の溝を設け、この溝の上部を開口を有する環状の撓性板で閉塞してシールを構成し、溝内に流体を充填して撓性板を膨出させて搬送物底面に密着させると共に、撓性板の開口より環状内に流体を加圧充填することによって、流体が流体充填空間の外に漏出するのを防止できるよう構成した、搬送物底面の摩擦低減構造を提供する。
【0009】
請求項として、上記請求項2又は3のいずれかに記載の搬送物底面の摩擦低減構造において、流体物充填空間内に液体を加圧充填する供給管と連結させて立ち上がり部を立設し、液体を加圧充填するポンプの駆動力を調整すると共に、この立ち上がり部の高さを調整することによって、流体充填空間内に充填する液圧の調整を行えるよう構成した、搬送物底面の摩擦低減構造を提供する。
【0010】
請求項として、上記請求項に記載の搬送物底面の摩擦低減構造において、流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、立ち上がり部を、各流体充填空間の高さに対応させて階段状にずらして複数設け、これらの立ち上がり部を一体構造として構成した、搬送物底面の摩擦低減構造を提供する。
【0011】
請求項として、上記請求項に記載の搬送物底面の摩擦低減構造において、流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、立ち上がり部を、各流体充填空間の高さに対応させて階段状にずらして複数設け、これらの立ち上がり部を一体構造とし、最上部の立ち上がり部に液体を供給し、順次下部にオバーフローさせて最下部の立ち上がり部まで液体を供給するよう構成した、搬送物底面の摩擦低減構造を提供する。
【0012】
請求項として、上記請求項に記載の搬送物底面の摩擦低減構造において、流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、各流体充填空間の高さに対応させて形成した複数の環状の立ち上がり部を、テレスコープ状にずらして一体構造とし、最上部の立ち上がり部に液体を供給し、順次下部にオバーフローさせて最下部の立ち上がり部まで液体を供給するよう構成した、搬送物底面の摩擦低減構造を提供する。
【0013】
請求項として、上記請求項乃至のいずれかに記載の搬送物底面の摩擦低減構造において、立ち上がり部の高さを調整する手段として、立ち上がり部を昇降させて液面の高さを調整する昇降装置を設けて構成した、搬送物底面の摩擦低減構造を提供する。
【0014】
請求項として、上記請求乃至のいずれかに記載の搬送物底面の摩擦低減構造において、立ち上り部の高さを調整する手段として、立ち上がり部を斜面上を移動させて液面の高さを調整する移動装置を設けて構成した、搬送物底面の摩擦低減構造を提供する。
【0015】
以下、図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態においては、水底トンネルの押出工法を例に揚げ、搬送対象物を連続するトンネル函体とし、加圧充填する流体には水を用いた場合について説明する。
【0016】
水底トンネル押出工法は、陸上部でトンネル函体を製作し、函体の後続部分を製作が完了した函体と一体化して製作しながら順次押し出していく工法である。この工法では、函体の底部が連続であるため、函体の下部に摩擦低減装置を取り付けた場合、その盛り換えが不可能である。そのため、摩擦低減装置を搬送路床面側に配置する場合について説明する。
【0017】
なお、流体としては、水の他、その他の液体や空気などの気体を利用することもできる。また、搬送対象によっては、搬送物側に摩擦低減装置を配備する場合もある。
【0018】
【発明の実施の形態1】
本発明の摩擦低減構造は以下の構成要素よりなる。
<イ>流体充填空間
図1〜3に示すように、搬送路床面100 上に支承体101 を適宜間隔をおいて搬送方向と直交する方向に突設し、この支承体101 上に搬送物110 を載置することによって、搬送物底面111 と搬送路床面100 との間に流体充填空間である給水空間120 を設ける。なお、搬送物底面111 は平坦かつ平滑で摩擦係数の小さい材料で構成し、支承体101 の上面も摩擦係数の小さい材料で構成することが望ましい。また、支承体101 は搬送方向と平行方向でも点状に散在していてもよい。
【0019】
<ロ>シ−ル部材
シ−ル部材130 はゴム製などのエンドレスな撓性ホ−スにより環状に形成されており、給水空間120 内の搬送路床面100 上に、接着などの方法で確実に密着させて敷設する。図1に示すように、支承体101 間の幅と搬送物110 の幅一杯に環状に敷設し、支承体101 によって区画された状態となる。シ−ル部材130 の周面には、環状の内側に向けて開口131 を開設してある。
【0020】
また、シ−ル部材130 は内部に水圧が掛からない場合は、図2に示すように萎んで支承体101 の上面より低くなり、水圧が掛かった場合は膨張して支承体101 の上面より膨出し、搬送物底面111 に密着するよう構成する。また開口131 の開口面積は、開口131 から水がシ−ル部材130 の環状の内側に流出した場合でも、シ−ル部材130 の十分な膨張を維持できる程度とする。
【0021】
<ハ>流体充填装置
流体充填装置は流体充填空間内に液体や気体などの流体を加圧充填するための装置であり、本実施の形態では給水装置について説明する。図6に示すように、シ−ル部材130 の内部空間とポンプ140 との間は給水管141 で連通されている。ポンプ140 は搬送物底面111 に掛ける水圧よりも十分能力の高いものを使用する。
【0022】
そして、給水管141 の途上に連通させて、分岐管状の立ち上り部142 を立設する。この立ち上り部142 の高さを調整することによって、給水空間120 内に充填する水圧の調整を行うことができる。
【0023】
水面の高さ調整は、立ち上り部142 自体を上下移動させてその先端の高さを変えることによって行える。立ち上り部142 の先端からオ−バ−フロ−水が流出している限り、給水空間120 内と立ち上り部142 の水頭で生じる水圧は同じになる。
【0024】
立ち上り部142 を上下移動させる手段としては、例えば、ラックとピニオンや電動スクリュ−ジャッキなどの公知の手段を組み合わせることによって対応できる。これらの公知の装置でミリメ−トル単位で位置調整できるため、数mmAqの圧力制御が容易に実現できる。
【0025】
なお、水圧の制御は、ポンプ140 の回転数制御やバルブの開閉制御などによっても行うことができる。また、給気装置の場合は、シ−ル部材130 内とコンプレッサ−やブロアを連通して構成する。
【0026】
【作用】
図4〜6に示すように、ポンプ140 を作動させてシ−ル部材130 内に水150 を充填し、シ−ル部材130 を膨張させて搬送物底面111 に密着させると共に、シ−ル部材130 の開口131 より環状内に水150 を加圧充填する。このとき環状内の水150 はシ−ル部材130 でシ−ルされるため外に漏出するのを防止できる。なお、シ−ル部材130 は、搬送物底面111 がシ−ル部材130 の一区画を完全に覆った後に水を充填するように、搬送物110 の位置を検出して制御する機構を設ける。
【0027】
環状内に水150 が充満すると、[給水圧力]×[シ−ル130 で囲まれた面積]が搬送物110 の荷重を部分的に支えていることになる。この状態で支承体101 に掛かる重量は、全体の重量からその分減少する。
【0028】
この場合の牽引力Fとしては、[支承体101 に掛かる荷重W]×[搬送物110 と支承体101 間の摩擦係数μ]+[シ−ル部材130 に掛かる内圧]×[シ−ル部材130 の接触面積]×[搬送物110 とシ−ル部材130 間の摩擦係数]+[シ−ル部材130 で囲まれた部分の水のせん断力]になるが、[支承体101 に掛かる荷重W]×[搬送物110 と支承体101 間の摩擦係数μ]以外は非常に小さい。
【0029】
しかし、[支承体101 に掛かる荷重W]は、[給水圧力]を増加させて[シ−ル部材130 で囲まれた部分の水圧で分担する荷重]を大きくすることによって大幅に減少させることができる。従って、牽引力Fも大幅に低減することができる。
【0030】
以上のように本発明は、シ−ル部材130 で囲まれた部分を完全浮上状態より低い水圧に制御する方法である。すなわち、搬送物底面111 が支承体101 から離れない(上下移動しない)大きさの水圧を搬送物底面111 に作用させて、搬送物底面111 と支承体101 との摩擦を低減するよう構成した。そのため、搬送物110 が滑り出さない程度の摩擦力を残すことができ、意図しない方向に搬送物110 が滑り出すといった不測の事態をなくすことができる。
【0031】
上記のごとく、牽引力Fは、[支承体101 に掛かる荷重W]×[搬送物110 と支承体101 間の摩擦係数μ]にほぼ等しくなる。従って、支承体101 に掛かる荷重を減少させることによって牽引力Fも小さくすることができる。
【0032】
搬送手順として、先ず、一定の牽引力Fで搬送物110 を牽引する。摩擦力の方が牽引力Fよりも大きい場合は搬送物110 は移動しない。そこで、立ち上り部142 をオ−バ−フロ−した状態で徐々に高くして行くと、シ−ル部材130 で囲まれた部分の水圧が立ち上り部142 の上昇と共に大きくなり、結果として、支承体101 に掛かる重量が減少する。
【0033】
重量の減少に伴って摩擦力が小さくなり、牽引力Fが静止摩擦力に打ち勝った時点で移動が始まる。その時点で立ち上り部142 の上昇を停止すると、内圧は、その圧力を保持する。動き出した時点から静摩擦が動摩擦に変化するので、より小さな牽引力Fでそのまま移動することができる。
【0034】
換言すれば、シ−ル部材130 で囲まれた部分の水圧を制御するだけで、牽引装置の能力に合った牽引力で重量物を移動できることになる。立ち上り部142 の上端より水がオバ−フロ−している限り、シ−ル部材142 内の水圧と立ち上り部142 上端の水頭で生じる水圧は同じであるので、シ−ル部材130 内の水圧はオバ−フロ−水を管理するだけで容易に行える。
【0035】
なお、牽引速度は、牽引装置の油圧ジャッキの伸縮速度やウインチの巻取速度などで制御する。但し、牽引装置の牽引力は最低限、完全浮上の場合に動かせるだけの能力が必要である。
【0036】
【発明の実施の形態2】
上記実施の形態1は、エンドレスなチュ−ブ状のシ−ル部材を使用したが、搬送路床面100 に図9に示すような環状のシ−ル機構200 を埋設する場合も考えられる。
【0037】
シ−ル機構200 は、図10〜12に示すように、搬送路床面100 に環状の溝201 を設け、この溝201 の上部を開口211 を有する環状のゴムなどの撓性板210 で閉塞して構成するものである。溝201 には樋材202 を取り付け、撓性板210 は下方に撓んだ状態で装着し、支圧板203 とボルト204 で固定する。
【0038】
シ−ル機構200 の配置は、図7、8に示すように、搬送方向に沿って複数区画して配置すると共に、搬送方向に対して直角方向に偏荷重が予測される場合は、搬送方向と直角方向にも複数区画して配置する。これにより独立した圧力で搬送物110 の荷重を分担する方法も作用できるが、基本的には支承体101 から持ち上がらない限り、偏荷重があっても全体の重量が同じ場合は牽引力は一定である。
【0039】
その他の給水管220 、ポンプ230 、図示しない立ち上り部などの構成は上記実施の形態1と同様である。搬送時は、図12に示すように、溝201 内に水150 を加圧充填して撓性板210 を膨出させて搬送物底面111 に密着させると共に、撓性板210 の開口211 より給水空間210 内に水150 を加圧充填し、搬送物底面111 に水圧を作用させる。
【0040】
なお、シ−ル部材としては、Oリングのような中実な弾性体を用いる場合もある。また、支承体101 と搬送物底面111 の馴染みが良く、隙間をほとんど発生させない場合は、支承体101 自体をシ−ル部材として兼用してもよい。
【0041】
【発明の実施の形態3】
図13に示すように、各シ−ルユニットが搬送路床面100 に沿って区分して複数形成され、かつ搬送路床面100 が傾斜している場合においては、立ち上り部300 を各シ−ルユニットの高さに対応させて階段状にずらして複数設け、これらの立ち上り部300 を一体構造として構成する場合が考えられる。
【0042】
具体的には、各シ−ルユニットに連通する給水管310 の端部に立ち上げ管320 を立設し、その上端にタンク330 を設ける。タンク330 は各シ−ルユニットの高さに対応させて階段状にずらして配置され、一体構造であり、堰331 を設けて上部タンクから下部タンクにオ−バ−フロ−水が流下するよう構成されている。最上部のタンク330 にはポンプ340 により水が供給される。
【0043】
このような構造の場合、複数の立ち上げ管320 及びタンク330 を同時に昇降できるため、各シ−ルユニットの内部水圧を任意の値に一括して制御でき、給水装置は全ユニットに必要な容量で計画すれば、1台で済む。また、一番下のタンク330 のオバ−フロ−水の管理をするだけで、全体の給水量が間に合っているか否かが容易に判断できる。図14は、複数のタンク330 を一体構造として昇降装置350 上に搭載した場合を示している。
【0044】
【発明の実施の形態4】
図15に示す実施の形態は、タンク400 内に各シ−ルユニットの高さに対応させて階段状にずらした複数の立ち上げ管410 を立設し、それらの下部には水中ポンプ420 を装備する。タンク400 は昇降装置430 により昇降自在となり、タンク400 内にはメインポンプ440 により水が供給される。タンク400 内の水は水中ポンプ420 により立ち上げ管410 に吸い上げてその上端よりオバ−フロ−させ、複数の給水管450 により各シ−ルユニットに給水される。
【0045】
【発明の実施の形態5】
図16、17は、各流体充填空間の高さに対応させて形成した複数の環状の立ち上り部を、テレスコ−プ状にずらして一体構造とし、最上部の立ち上り部に液体を供給し、順次下部にオバ−フロ−させて最下部の立ち上り部まで液体を供給するよう構成した実施の形態である。
【0046】
具体的には、各シ−ルユニットの高さに対応させて複数の環状の貯水部501 を設け、これらの貯水部501 を順次下方に行くに従って寸法が小さくなるテレスコ−プ状に形成した多段式タンク500 が採用できる。水は最上部の貯水部501 より供給され、順次下部にオバ−フロ−させて最下部の貯水部501 まで供給される。各貯水部501 からは給水管502 により各シ−ルユニットまで加圧充填される。本実施の形態の場合、テレスコ−プ型であるため装置の平面積が小さくて済む。また、各貯水部501 の貯水量も少なくて済むため軽量化が図れる。
【0047】
【発明の実施の形態6】
図18は、立ち上り部の高さを調整する手段として、立ち上り部を斜面上を移動させて水面の高さを調整する移動装置を設けた実施例である。すなわち、複数のタンク600 及び給水管610 を台車620 に一体に搭載し、ワイヤ630 を介してウインチ640 により斜面上を移動可能に構成したものである。斜面の勾配を利用して、移動距離を移動高さに置き換えてタンク600 上端の高さを上下させることにより、シ−ル内の水圧を調整することができる。
【0048】
【発明の効果】
本発明は以上説明したようになるため、次のような効果を得ることができる。<イ>搬送物底面のほぼ全面積に流体圧を作用させて重量を支持するため、搬送物および搬送床面に集中荷重が働かず構造的に有利であると共に、搬送物を浮上させず支承体上に設置した状態で移動させるため、進行方向の制御や向きの制御が容易である。
【0049】
<ロ>搬送物底面のほぼ全面積に流体圧を作用させて重量を支持するため、低い圧力で搬送物を支持でき、高圧の流体供給装置が不要である。
【0050】
<ハ>搬送物を浮上させず支承体上に設置した状態で移動させるため、搬送物を上下移動させる必要がなく、トンネルなどの連続した搬送物の搬送に適している。
【0051】
<ニ>簡単なシ−ルと流体供給装置からのみなるため安価である。
【0052】
<ホ>搬送物を浮上させないため流体の漏出がほとんどなく、エネルギ−損失が少ない。
【0053】
<へ>流体圧の制御は、立ち上り部の高さを変えるだけで容易に行えるため、水圧測定や、ポンプの回転数やバルブの開閉を制御する煩雑な作業が不要である。
【図面の簡単な説明】
【図1】 本発明の実施の形態1の説明図
【図2】 本発明の実施の形態1の説明図
【図3】 本発明の実施の形態1の説明図
【図4】 本発明の実施の形態1の説明図
【図5】 本発明の実施の形態1の説明図
【図6】 本発明の実施の形態1の説明図
【図7】 本発明の実施の形態2の説明図
【図8】 本発明の実施の形態2の説明図
【図9】 本発明の実施の形態2の説明図
【図10】 本発明の実施の形態2の説明図
【図11】 本発明の実施の形態2の説明図
【図12】 本発明の実施の形態2の説明図
【図13】 本発明の実施の形態3の説明図
【図14】 本発明の実施の形態3の説明図
【図15】 本発明の実施の形態4の説明図
【図16】 本発明の実施の形態5の説明図
【図17】 本発明の実施の形態5の説明図
【図18】 本発明の実施の形態6の説明図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for conveying a heavy object and a structure for reducing friction on the bottom surface of the conveyed object for reducing friction between the bottom surface of the conveyed object and the support body when the conveyed object is moved laterally on the support body. Is.
[0002]
[Problems to be solved by the invention]
Wheels, rollers, air casters, water casters and the like are known as devices for conveying heavy objects. Since the wheels and rollers support the load with points or lines, it is necessary to increase the rigidity of the conveyed object itself and the strength of the conveyed floor as well as the wheel body and roller body, and to distribute the load evenly. Requires flatness and smoothness of the contact surface. In addition, since the shared load per location cannot be increased so much, the load must be dispersed, and the number to be used needs to be increased, so that maintenance and management are not easy.
[0003]
An air caster or a water caster is attached to the lower part of the conveyed product, and has a structure for supporting the weight by the pressure of air or water. Since the load is received on the surface, the concentrated load does not act on the transported object and the transport floor surface, which is structurally advantageous. However, since an air film or a water film is formed and used in a state of being completely lifted, it moves in a lower direction even with a slight inclination. Therefore, it is not easy to control the traveling direction and the direction.
[0004]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention provides, as claim 1 , an endless structure in which a fluid filling space is provided between a bottom surface of a conveyed product and a floor surface of a conveying path , and an opening is formed in the peripheral surface in the fluid filling space. An annular seal composed of a flexible hose is installed, and the seal is filled with a fluid to expand the seal to create the side wall of the water supply space, and the seal is brought into close contact with the bottom of the conveyed product. state fluid was pressure filled, the fluid pressure of a magnitude conveyed bottom is not separated from the bearing body provided on the conveying road surface to act on conveyed bottom, with reduced friction between the conveyed object bottom surface and the bearing body Thus, a method for transporting a transported object configured to transport the transported object on a support is provided.
[0005]
[Means for Solving the Problems]
As a second aspect, a fluid filling space is provided between the bottom surface of the conveyed product and the floor surface of the conveying path, and an annular seal made of an endless flexible hose having an opening on the peripheral surface is installed in the fluid filling space . The seal is filled with fluid to expand the seal to create the side wall of the water supply space, and the seal is brought into close contact with the bottom of the conveyed product. The fluid is pressurized and filled into the annular side wall from the seal opening , and the bottom of the conveyed product is conveyed. Provided is a friction reducing structure for the bottom surface of a transported object, which is configured to reduce the friction between the bottom surface of the transported object and the support body by applying a fluid pressure that does not separate from the support body provided on the road surface to the bottom surface of the transported object. .
[0008]
According to a third aspect of the present invention, there is provided a support body in which a fluid filling space is provided between the bottom surface of the transport object and the transport path floor surface, the fluid is pressurized and filled in the fluid filling space, and the bottom surface of the transport object is provided on the transport path floor surface. In the friction reducing structure for the bottom surface of the transported object, the transport road bed in the fluid filling space is configured to reduce the friction between the bottom surface of the transported object and the support body by applying a fluid pressure of a size that does not separate from the transported object bottom surface. An annular groove is provided on the surface, and the upper part of the groove is closed with an annular flexible plate having an opening to form a seal. Provided is a friction reducing structure for a bottom surface of an object to be conveyed, which is configured to prevent fluid from leaking out of a fluid filling space by pressurizing and filling a fluid into an annular shape from an opening of a flexible plate. .
[0009]
As a fourth aspect of the present invention, in the friction reducing structure for the bottom surface of the conveyed product according to any one of the second or third aspect , the rising portion is erected by being connected to a supply pipe for pressurizing and filling the liquid in the fluid filling space. In addition to adjusting the driving force of the pump that pressurizes and fills the liquid, and adjusting the height of the rising part, the fluid pressure that fills the fluid filling space can be adjusted. Provide a reduced structure.
[0010]
As a fifth aspect , in the friction reducing structure for the bottom surface of the conveyed product according to the fourth aspect, when the fluid filling space is divided and formed along the conveying road floor surface, and the conveying road floor surface is inclined. , A plurality of rising portions are provided in a staircase pattern corresponding to the height of each fluid filling space, and a structure for reducing friction on the bottom surface of the conveyed product is provided in which these rising portions are configured as an integrated structure.
[0011]
As a sixth aspect , in the friction reducing structure of the bottom surface of the conveyed product according to the fourth aspect, when the fluid filling space is divided and formed along the conveying road floor surface, and the conveying road floor surface is inclined. , A plurality of rising portions are provided in a staircase pattern corresponding to the height of each fluid filling space, and these rising portions are integrated, supplying liquid to the uppermost rising portion, and overflowing sequentially downward. In addition, a friction reducing structure for the bottom surface of the conveyed product is provided, which is configured to supply liquid up to the lowest rising portion.
[0012]
As a seventh aspect , in the friction reducing structure of the bottom surface of the conveyed product according to the fourth aspect, when the fluid filling space is divided and formed along the conveying road floor surface, and the conveying road floor surface is inclined. The plurality of annular rising parts formed corresponding to the height of each fluid filling space are shifted into a telescope-like structure to supply a liquid to the uppermost rising part, and then overflow to the lower part sequentially. Provided is a friction-reducing structure for the bottom surface of a conveyed product, which is configured to supply liquid up to the lowest rising portion.
[0013]
As an eighth aspect , in the friction reducing structure of the bottom surface of the conveyed product according to any one of the fourth to seventh aspects, as the means for adjusting the height of the rising portion, the rising portion is raised and lowered to adjust the height of the liquid level. Provided is a friction-reducing structure for the bottom surface of a conveyed product, which is configured by providing a lifting device.
[0014]
As a ninth aspect , in the friction reducing structure for the bottom surface of the conveyed product according to any one of the fourth to seventh aspects, as the means for adjusting the height of the rising portion, the rising portion is moved on the slope to adjust the height of the liquid level. Provided is a friction-reducing structure for the bottom surface of a conveyed product, which is configured by providing a moving device that adjusts the angle.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, a case where a bottom tunnel is extruded will be described as an example, and a case where a transport object is a continuous tunnel box and water is used as a fluid to be pressurized and filled will be described.
[0016]
The submarine tunnel extrusion method is a method in which a tunnel box is manufactured on land, and the subsequent parts of the box are sequentially extruded while being integrated with the box that has been manufactured. In this construction method, since the bottom of the box is continuous, it is impossible to change the case when a friction reducing device is attached to the lower part of the box. Therefore, the case where a friction reduction apparatus is arrange | positioned at the conveyance road floor surface side is demonstrated.
[0017]
In addition to water, other fluids and gases such as air can be used as the fluid. Further, depending on the object to be transported, a friction reducing device may be provided on the transported object side.
[0018]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
The friction reducing structure of the present invention comprises the following components.
<A> Fluid-filling space As shown in FIGS. 1 to 3, a support body 101 is provided on the transporting road floor surface 100 so as to protrude in a direction orthogonal to the transporting direction at an appropriate interval. By placing 110, a water supply space 120, which is a fluid-filled space, is provided between the bottom surface 111 of the transport object and the floor surface 100 of the transport path. The bottom surface 111 of the conveyed product is preferably made of a material that is flat and smooth and has a small coefficient of friction, and the top surface of the support 101 is also made of a material that has a small coefficient of friction. Further, the support bodies 101 may be scattered in a dot shape in a direction parallel to the transport direction.
[0019]
<Ro> Seal member The seal member 130 is formed in an annular shape by an endless flexible hose made of rubber or the like, and is adhered to the conveying path floor surface 100 in the water supply space 120 by a method such as adhesion. Lay it in close contact. As shown in FIG. 1, the width between the support bodies 101 and the width of the transported object 110 are laid in a ring shape and are partitioned by the support bodies 101. An opening 131 is formed on the circumferential surface of the seal member 130 toward the inner side of the annular shape.
[0020]
Further, when no water pressure is applied to the inside of the seal member 130, the seal member 130 is deflated and lowered from the upper surface of the support body 101 as shown in FIG. 2. When the water pressure is applied, the seal member 130 expands and expands from the upper surface of the support body 101. It is configured so as to be in close contact with the bottom surface 111 of the conveyed product. Further, the opening area of the opening 131 is set such that sufficient expansion of the seal member 130 can be maintained even when water flows out of the opening 131 into the annular inside of the seal member 130.
[0021]
<C> Fluid Filling Device The fluid filling device is a device for pressurizing and filling a fluid such as liquid or gas into the fluid filling space. In the present embodiment, a water supply device will be described. As shown in FIG. 6, the interior space of the seal member 130 and the pump 140 are communicated with each other through a water supply pipe 141. The pump 140 has a capacity sufficiently higher than the water pressure applied to the bottom surface 111 of the conveyed product.
[0022]
Then, the branch tubular rising portion 142 is erected in communication with the water supply pipe 141. By adjusting the height of the rising portion 142, the water pressure filled in the water supply space 120 can be adjusted.
[0023]
The height of the water surface can be adjusted by moving the rising portion 142 itself up and down to change the height of its tip. As long as the overflow water flows out from the tip of the rising portion 142, the water pressure generated in the water supply space 120 and the head of the rising portion 142 is the same.
[0024]
As means for moving the rising portion 142 up and down, for example, a known means such as a rack and a pinion or an electric screw jack can be combined. Since the position can be adjusted in units of millimeters with these known devices, pressure control of several mmAq can be easily realized.
[0025]
The water pressure can also be controlled by controlling the number of revolutions of the pump 140 or controlling the opening / closing of the valve. In the case of an air supply device, the inside of the seal member 130 is communicated with a compressor and a blower.
[0026]
[Action]
As shown in FIGS. 4 to 6, the pump 140 is operated to fill the seal member 130 with water 150, and the seal member 130 is expanded and brought into close contact with the bottom surface 111 of the conveyed product. Water 150 is pressurized and filled into the ring from the opening 131 of 130. At this time, since the water 150 in the ring is sealed by the seal member 130, it can be prevented from leaking outside. The seal member 130 is provided with a mechanism for detecting and controlling the position of the transported object 110 so that water is filled after the bottom surface 111 of the transported object completely covers one section of the seal member 130.
[0027]
When the water 150 is filled in the annular shape, the [water supply pressure] × [the area surrounded by the seal 130] partially supports the load of the conveyed object 110. In this state, the weight applied to the support body 101 is reduced correspondingly from the total weight.
[0028]
In this case, as the traction force F, [the load W applied to the support body 101] × [the friction coefficient μ between the conveyed object 110 and the support body 101] + [internal pressure applied to the seal member 130] × [seal member 130] Contact area] × [coefficient of friction between the conveyed object 110 and the seal member 130] + [shearing force of water surrounded by the seal member 130], but [load W applied to the support body 101] ] × [Friction coefficient μ between transport object 110 and support body 101] is very small.
[0029]
However, the [load W applied to the support body 101] can be significantly reduced by increasing the [water supply pressure] and increasing the [load shared by the water pressure surrounded by the seal member 130]. it can. Accordingly, the traction force F can be significantly reduced.
[0030]
As described above, the present invention is a method for controlling the water pressure lower than that in the completely floating state in the portion surrounded by the seal member 130. That is, it is configured to reduce the friction between the bottom surface 111 of the transport object and the support body 101 by applying a water pressure of a magnitude that does not separate the support bottom surface 111 from the support body 101 (does not move up and down) to the bottom surface 111 of the transport object. Therefore, it is possible to leave a frictional force that does not cause the conveyed object 110 to slide out, and to eliminate an unexpected situation where the conveyed object 110 starts to slide in an unintended direction.
[0031]
As described above, the traction force F is substantially equal to [the load W applied to the support body 101] × [the friction coefficient μ between the conveyed object 110 and the support body 101]. Therefore, the traction force F can be reduced by reducing the load applied to the support body 101.
[0032]
As a transfer procedure, first, the transfer object 110 is pulled with a constant pulling force F. When the frictional force is larger than the traction force F, the conveyed object 110 does not move. Therefore, when the rising portion 142 is gradually raised in the overflowed state, the water pressure in the portion surrounded by the seal member 130 increases with the rising of the rising portion 142, and as a result, the support body. The weight on 101 is reduced.
[0033]
As the weight decreases, the frictional force decreases, and the movement starts when the traction force F overcomes the static frictional force. When the rising of the rising portion 142 is stopped at that time, the internal pressure maintains that pressure. Since the static friction changes to dynamic friction from the moment of movement, it can be moved as it is with a smaller traction force F.
[0034]
In other words, a heavy object can be moved with a traction force that matches the ability of the traction device by simply controlling the water pressure in the portion surrounded by the seal member 130. As long as the water overflows from the upper end of the rising portion 142, the water pressure in the seal member 142 and the water pressure generated at the head of the rising portion 142 are the same, so the water pressure in the seal member 130 is It can be done easily just by managing the overflow water.
[0035]
The traction speed is controlled by the expansion / contraction speed of the hydraulic jack of the traction device, the winding speed of the winch, or the like. However, the traction force of the traction device must be at least capable of being moved when completely ascending.
[0036]
Second Embodiment of the Invention
In the first embodiment, an endless tube-shaped seal member is used. However, an annular seal mechanism 200 as shown in FIG.
[0037]
As shown in FIGS. 10 to 12, the seal mechanism 200 is provided with an annular groove 201 on the conveyance path floor surface 100, and the upper portion of the groove 201 is closed with a flexible plate 210 such as an annular rubber having an opening 211. Is configured. A saddle member 202 is attached to the groove 201, and the flexible plate 210 is mounted in a state of being bent downward, and is fixed by a bearing plate 203 and a bolt 204.
[0038]
As shown in FIGS. 7 and 8, the seal mechanism 200 is arranged in a plurality of sections along the transport direction, and when an offset load is expected in a direction perpendicular to the transport direction, A plurality of sections are also arranged in a perpendicular direction. As a result, a method of sharing the load of the conveyed object 110 with independent pressure can also work, but basically, unless it lifts from the support body 101, the traction force is constant if the entire weight is the same even if there is an offset load. .
[0039]
Other configurations such as the water supply pipe 220, the pump 230, and a rising portion (not shown) are the same as those in the first embodiment. At the time of conveyance, as shown in FIG. 12, water 150 is pressurized and filled in the groove 201 to bulge the flexible plate 210 and adhere to the bottom surface 111 of the conveyed product, and water is supplied from the opening 211 of the flexible plate 210. Water 150 is pressurized and filled in the space 210, and water pressure is applied to the bottom surface 111 of the conveyed product.
[0040]
A solid elastic body such as an O-ring may be used as the seal member. Further, when the support body 101 and the conveyed object bottom surface 111 are well-familiar and almost no gap is generated, the support body 101 itself may be used as a seal member.
[0041]
Embodiment 3 of the Invention
As shown in FIG. 13, when each seal unit is divided and formed along the conveying road floor surface 100 and the conveying road floor surface 100 is inclined, the rising portion 300 is connected to each seal unit. It is conceivable that a plurality of the staircases 300 are provided in a staircase pattern so as to correspond to the height of each of them, and the rising portions 300 are configured as an integral structure.
[0042]
Specifically, a rising pipe 320 is erected at the end of a water supply pipe 310 communicating with each seal unit, and a tank 330 is provided at the upper end thereof. The tank 330 is arranged in a step-like manner in correspondence with the height of each seal unit, and is an integral structure. A weir 331 is provided so that overflow water flows from the upper tank to the lower tank. Has been. Water is supplied to the uppermost tank 330 by a pump 340.
[0043]
In such a structure, a plurality of riser pipes 320 and tanks 330 can be moved up and down simultaneously, so that the internal water pressure of each seal unit can be controlled to an arbitrary value, and the water supply device has a capacity required for all units. If you plan, just one. Further, it is possible to easily determine whether or not the entire water supply amount is in time just by managing the overflow water in the lowermost tank 330. FIG. 14 shows a case where a plurality of tanks 330 are mounted on an elevating device 350 as an integral structure.
[0044]
Embodiment 4 of the Invention
In the embodiment shown in FIG. 15, a plurality of rising pipes 410 are installed in a tank 400 in a staircase pattern corresponding to the height of each seal unit, and a submersible pump 420 is provided below them. To do. The tank 400 can be raised and lowered by a lifting device 430, and water is supplied into the tank 400 by a main pump 440. The water in the tank 400 is sucked into the rising pipe 410 by the submersible pump 420 and overflowed from the upper end thereof, and water is supplied to each seal unit through the plurality of water supply pipes 450.
[0045]
Embodiment 5 of the Invention
16 and 17, a plurality of annular rising portions formed corresponding to the height of each fluid filling space are shifted in a telescope shape to form an integrated structure, and liquid is supplied to the uppermost rising portion, sequentially. In this embodiment, the liquid is supplied to the rising part at the bottom by overflowing the lower part.
[0046]
Specifically, a plurality of annular water storage portions 501 are provided corresponding to the height of each seal unit, and these water storage portions 501 are formed in a telescopic shape whose dimensions are gradually reduced downward. Tank 500 can be used. Water is supplied from the uppermost water storage unit 501, and is sequentially supplied to the lowermost water storage unit 501 by overflowing to the lower part. Each water storage unit 501 is pressurized and filled up to each seal unit through a water supply pipe 502. In the case of this embodiment, since it is a telescopic type, the plane area of the apparatus can be small. Further, since the amount of water stored in each water storage unit 501 is small, the weight can be reduced.
[0047]
Embodiment 6 of the Invention
FIG. 18 shows an embodiment in which a moving device for adjusting the height of the water surface by moving the rising portion on the slope is provided as means for adjusting the height of the rising portion. That is, a plurality of tanks 600 and water supply pipes 610 are integrally mounted on a carriage 620 and configured to be movable on a slope by a winch 640 via a wire 630. Using the slope of the slope, the water pressure in the seal can be adjusted by replacing the moving distance with the moving height and raising and lowering the height of the upper end of the tank 600.
[0048]
【The invention's effect】
Since the present invention has been described above, the following effects can be obtained. <A> Since fluid pressure is applied to almost the entire area of the bottom of the conveyed product to support the weight, it is structurally advantageous because no concentrated load is applied to the conveyed item and the conveying floor surface, and it is supported without causing the conveyed item to float. Since it is moved while installed on the body, it is easy to control the direction of travel and the direction.
[0049]
<B> Since the fluid pressure is applied to almost the entire area of the bottom of the conveyed product to support the weight, the conveyed item can be supported at a low pressure, and a high-pressure fluid supply device is not required.
[0050]
<C> Since the transported object is moved in a state of being installed on the support body without being lifted, it is not necessary to move the transported object up and down, and is suitable for transporting a continuous transported object such as a tunnel.
[0051]
<D> Since it consists only of a simple seal and fluid supply device, it is inexpensive.
[0052]
<E> Since the conveyed product is not lifted, there is almost no fluid leakage and there is little energy loss.
[0053]
<F> Since fluid pressure can be easily controlled by simply changing the height of the rising portion, there is no need for complicated work for measuring the water pressure and controlling the number of revolutions of the pump and the opening / closing of the valve.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a first embodiment of the present invention. FIG. 2 is an explanatory diagram of a first embodiment of the present invention. FIG. 3 is an explanatory diagram of a first embodiment of the present invention. FIG. 5 is an explanatory diagram of the first embodiment of the present invention. FIG. 6 is an explanatory diagram of the first embodiment of the present invention. FIG. 7 is an explanatory diagram of the second embodiment of the present invention. 8 is an explanatory diagram of the second embodiment of the present invention. FIG. 9 is an explanatory diagram of the second embodiment of the present invention. FIG. 10 is an explanatory diagram of the second embodiment of the present invention. FIG. 12 is an explanatory diagram of the second embodiment of the present invention. FIG. 13 is an explanatory diagram of the third embodiment of the present invention. FIG. 14 is an explanatory diagram of the third embodiment of the present invention. FIG. 16 is an explanatory diagram of a fifth embodiment of the present invention. FIG. 17 is an explanatory diagram of a fifth embodiment of the present invention. FIG. 18 is an embodiment of the present invention. 6 illustration of

Claims (9)

搬送物底面と搬送路床面との間に流体充填空間を設け、
この流体充填空間内に、周面に開口を有するエンドレスな撓性ホースよりなる環状のシールを設置し、
このシール内に流体を充填してシールを膨張させて給水空間の側壁を作ると共にシールを搬送物底面に密着させ
シール開口より環状の側壁内に流体を加圧充填し、
搬送物底面が搬送路面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減した状態で、搬送物を支承体上を移動させて搬送するよう構成した、
搬送物の搬送方法。
A fluid filling space is provided between the bottom surface of the transported object and the floor surface of the transport path,
In this fluid filling space, an annular seal made of an endless flexible hose having an opening on the peripheral surface is installed,
Filling the seal with fluid and expanding the seal to create the side wall of the water supply space and closely contacting the seal to the bottom of the conveyed product ,
Pressurize and fill the fluid into the annular side wall from the seal opening ,
The bottom surface of the transported object is applied to the bottom surface of the transport object by applying a fluid pressure that does not separate from the support body provided on the transport path surface to reduce the friction between the bottom surface of the transported object and the support body. Configured to move and transport,
Transport method for transported items.
搬送物底面と搬送路床面との間に流体充填空間を設け、
この流体充填空間内に、周面に開口を有するエンドレスな撓性ホースよりなる環状のシールを設置し、
このシール内に流体を充填してシールを膨張させて給水空間の側壁を作ると共にシールを搬送物底面に密着させ
シール開口より環状の側壁内に流体を加圧充填し、
搬送物底面が搬送路面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減するよう構成した、
搬送物底面の摩擦低減構造。
A fluid filling space is provided between the bottom surface of the transported object and the floor surface of the transport path,
In this fluid filling space, an annular seal made of an endless flexible hose having an opening on the peripheral surface is installed,
Filling the seal with fluid and expanding the seal to create the side wall of the water supply space and closely contacting the seal to the bottom of the conveyed product ,
Pressurize and fill the fluid into the annular side wall from the seal opening ,
The bottom surface of the transported object is configured to reduce the friction between the bottom surface of the transported object and the support body by applying a fluid pressure of a size that does not separate from the support body provided on the transport path surface to the bottom surface of the transported object.
Friction reduction structure on the bottom of the conveyed product.
搬送物底面と搬送路床面との間に流体充填空間を設け、
この流体充填空間内に流体を加圧充填し、
搬送物底面が搬送路床面上に設けた支承体から離れない大きさの流体圧を搬送物底面に作用させて、搬送物底面と支承体との摩擦を低減するよう構成した、
搬送物底面の摩擦低減構造において、
流体充填空間内の搬送路床面に環状の溝を設け、この溝の上部を開口を有する環状の撓性板で閉塞してシールを構成し、
溝内に流体を充填して撓性板を膨出させて搬送物底面に密着させると共に、
撓性板の開口より環状内に流体を加圧充填することによって、流体が流体充填空間の外に漏出するのを防止できるよう構成した、
搬送物底面の摩擦低減構造。
A fluid filling space is provided between the bottom surface of the transported object and the floor surface of the transport path,
The fluid filling space is pressurized and filled with fluid,
The bottom surface of the transported object is configured to reduce the friction between the bottom surface of the transported object and the support body by applying a fluid pressure of a size that does not separate from the support body provided on the transport path floor surface to the bottom surface of the transported object.
In the friction reducing structure on the bottom of the conveyed product,
An annular groove is provided on the floor surface of the conveyance path in the fluid filling space, and an upper part of the groove is closed with an annular flexible plate having an opening to constitute a seal.
Fill the groove with fluid and bulge the flexible plate to adhere to the bottom of the conveyed product,
It was configured to prevent fluid from leaking out of the fluid filling space by pressurizing and filling the fluid into the ring from the opening of the flexible plate.
Friction reduction structure on the bottom of the conveyed product.
請求項2又は3のいずれかに記載の搬送物底面の摩擦低減構造において、
流体物充填空間内に液体を加圧充填する供給管と連結させて立ち上がり部を立設し、
液体を加圧充填するポンプの駆動力を調整すると共に、
この立ち上がり部の高さを調整することによって、流体充填空間内に充填する液圧の調整を行えるよう構成した。
搬送物底面の摩擦低減構造。
In the friction reducing structure of the bottom of the conveyed product according to claim 2 or 3 ,
Connected to a supply pipe that pressurizes and fills liquid in the fluid filling space, and a rising portion is erected,
While adjusting the driving force of the pump that pressurizes and fills the liquid,
By adjusting the height of the rising portion, the fluid pressure filled in the fluid filling space can be adjusted.
Friction reduction structure on the bottom of the conveyed product.
請求項に記載の搬送物底面の摩擦低減構造において、
流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、
立ち上がり部を、各流体充填空間の高さに対応させて階段状にずらして複数設け、これらの立ち上がり部を一体構造として構成した、
搬送物底面の摩擦低減構造。
In the friction reducing structure of the bottom of the conveyed product according to claim 4 ,
In the case where a plurality of fluid filling spaces are formed along the conveying road floor, and the conveying road floor is inclined,
A plurality of rising portions were provided in a staircase pattern corresponding to the height of each fluid filling space, and these rising portions were configured as an integral structure.
Friction reduction structure on the bottom of the conveyed product.
請求項に記載の搬送物底面の摩擦低減構造において、
流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、立ち上がり部を、各流体充填空間の高さに対応させて階段状にずらして複数設け、
これらの立ち上がり部を一体構造とし、最上部の立ち上がり部に液体を供給し、順次下部にオバーフローさせて最下部の立ち上がり部まで液体を供給するよう構成した、
搬送物底面の摩擦低減構造。
In the friction reducing structure of the bottom of the conveyed product according to claim 4 ,
In the case where a plurality of fluid filling spaces are formed along the transfer road floor and the transfer road floor is inclined, the rising portion is shifted stepwise to correspond to the height of each fluid filling space. Multiple
These rising parts have an integrated structure, and liquid is supplied to the uppermost rising part, and the liquid is supplied to the lowermost rising part by sequentially overflowing the lower part.
Friction reduction structure on the bottom of the conveyed product.
請求項に記載の搬送物底面の摩擦低減構造において、
流体充填空間が搬送路床面に沿って区分して複数形成され、かつ搬送路床面が傾斜している場合において、
各流体充填空間の高さに対応させて形成した複数の環状の立ち上がり部を、テレスコープ状にずらして一体構造とし、
最上部の立ち上がり部に液体を供給し、順次下部にオバーフローさせて最下部の立ち上がり部まで液体を供給するよう構成した、
搬送物底面の摩擦低減構造。
In the friction reducing structure of the bottom of the conveyed product according to claim 4 ,
In the case where a plurality of fluid filling spaces are formed along the conveying road floor, and the conveying road floor is inclined,
A plurality of annular rising parts formed corresponding to the height of each fluid filling space are shifted in a telescope shape to form an integrated structure,
The liquid is supplied to the uppermost rising part, and the liquid is supplied to the lowermost rising part by sequentially overflowing the lower part.
Friction reduction structure on the bottom of the conveyed product.
請求項4乃至7のいずれかに記載の搬送物底面の摩擦低減構造において、
立ち上がり部の高さを調整する手段として、立ち上がり部を昇降させて液面の高さを調整する昇降装置を設けて構成した、
搬送物底面の摩擦低減構造。
In the friction reduction structure of the bottom of the conveyed product according to any one of claims 4 to 7 ,
As a means for adjusting the height of the rising portion, it is configured by providing a lifting device that lifts and lowers the rising portion to adjust the height of the liquid level.
Friction reduction structure on the bottom of the conveyed product.
請求項4乃至7のいずれかに記載の搬送物底面の摩擦低減構造において、
立ち上り部の高さを調整する手段として、立ち上がり部を斜面上を移動させて液面の高さを調整する移動装置を設けて構成した、
搬送物底面の摩擦低減構造。
In the friction reduction structure of the bottom of the conveyed product according to any one of claims 4 to 7 ,
As a means for adjusting the height of the rising portion, a moving device that adjusts the height of the liquid surface by moving the rising portion on the slope is provided.
Friction reduction structure on the bottom of the conveyed product.
JP23768898A 1998-08-24 1998-08-24 Conveyance method for conveying objects and structure for reducing friction on the bottom of the object Expired - Fee Related JP3653690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23768898A JP3653690B2 (en) 1998-08-24 1998-08-24 Conveyance method for conveying objects and structure for reducing friction on the bottom of the object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23768898A JP3653690B2 (en) 1998-08-24 1998-08-24 Conveyance method for conveying objects and structure for reducing friction on the bottom of the object

Publications (2)

Publication Number Publication Date
JP2000062922A JP2000062922A (en) 2000-02-29
JP3653690B2 true JP3653690B2 (en) 2005-06-02

Family

ID=17019046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23768898A Expired - Fee Related JP3653690B2 (en) 1998-08-24 1998-08-24 Conveyance method for conveying objects and structure for reducing friction on the bottom of the object

Country Status (1)

Country Link
JP (1) JP3653690B2 (en)

Also Published As

Publication number Publication date
JP2000062922A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
USRE24272E (en) Land vehicle or load-moving device comprising
KR100866843B1 (en) Transferring system using aero-levitation style and transferring device using aero-levitation style
RU2405102C2 (en) System and method of large-length objects transfer
WO2019227965A1 (en) Offshore platform embarkation apparatus and offshore platform
JP5915991B2 (en) Article conveying apparatus and conveying method
JP3653690B2 (en) Conveyance method for conveying objects and structure for reducing friction on the bottom of the object
KR101710031B1 (en) A rack module loading lifter and a method for loading it in the transport truck therewith
US4558543A (en) Moving apparatus for a pneumatically supported membrane structure
KR100628695B1 (en) horizontally transport equipment of high load goods
JP3263049B2 (en) Caisson manufacturing and transporting apparatus and method
US5178509A (en) Equalized module mover with self adjusting track units
US3468393A (en) Air cushion transporting system for heavy duty pallet
JP2011111836A (en) Train car lifting device
CN105781155A (en) Lifting platform in pool
CN210485276U (en) Remove air feed sled convenient to installation
CN113548161A (en) Half-ship sea-crossing whole ship jacking method
KR200377397Y1 (en) horizontally transport equipment of high load goods
JPH0252812A (en) Conveyor
JPH066441B2 (en) Method and apparatus for transporting heavy structures
JP3676634B2 (en) Moving method in step of heavy structure
JP3950236B2 (en) Pressurized oil tank for supplying lubricating oil to tong rail and floor plate sliding surface
JP2949103B1 (en) Heavy object moving device
CN213393845U (en) Bridge type pipe penetrating device
JP5333709B2 (en) Lifting conveyor
CN108755416B (en) Bridge packaging technology

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees