JP3651509B2 - Oxide film etching method and thin film transistor manufacturing method - Google Patents

Oxide film etching method and thin film transistor manufacturing method Download PDF

Info

Publication number
JP3651509B2
JP3651509B2 JP01608496A JP1608496A JP3651509B2 JP 3651509 B2 JP3651509 B2 JP 3651509B2 JP 01608496 A JP01608496 A JP 01608496A JP 1608496 A JP1608496 A JP 1608496A JP 3651509 B2 JP3651509 B2 JP 3651509B2
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
film
insulating film
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01608496A
Other languages
Japanese (ja)
Other versions
JPH08330272A (en
Inventor
則夫 仲山
政幸 堂城
秀雄 平山
隆俊 辻村
篤哉 ▲槙▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to JP01608496A priority Critical patent/JP3651509B2/en
Publication of JPH08330272A publication Critical patent/JPH08330272A/en
Application granted granted Critical
Publication of JP3651509B2 publication Critical patent/JP3651509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Weting (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属膜上に酸化膜が被膜され、これら酸化膜および金属膜をエッチングするエッチング方法および薄膜トランジスタの製造方法に関する。
【0002】
【従来の技術】
近年、大型の画面をもつ液晶表示装置用の薄膜トランジスタ(TFT:Thin Film Transistor)アレイが普及しつつある。
【0003】
ここで、従来の、ゲート線がガラス基板上に位置する逆スタガ型薄膜トランジスタアレイの製造方法を、図3を参照して説明する。
【0004】
まず、図3(a)に示すように、ガラス基板1上に、純アルミニウム、あるいは、数%以下の微量な不純物を含んだアルミニウム(Al)からなるゲート電極2が配線され、このゲート電極2の表面を陽極酸化などの方法によって酸化アルミニウム(Al)とし、第1のゲート絶縁膜3を形成する。
【0005】
続いて、図3(b)に示すように、これら第1のゲート絶縁膜3を含むガラス基板1上に、たとえば酸化ケイ素膜(SiO)の第2のゲート絶縁膜4を形成し、アモルファス・シリコン層からなる半導体層5を形成し、この半導体層5上にエッチング・ストッパ用の窒化ケイ素層からなるエッチングストッパ層6を形成する。
【0006】
その後、図3(c)に示すように、一方のゲート電極2に給電部を形成するための第2のゲート絶縁膜4、第1のゲート絶縁膜3およびゲート電極2の穴穿けを行なう。
【0007】
さらに、図3(d)に示すように、第2のゲート絶縁膜4上にITO(Indium Tin Oxide)からなる画素電極7を形成し、エッチングストッパ層6上に画素電極7に接続されたソース電極8およびドレイン電極9を形成して薄膜トランジスタ10を作製するとともに、穿孔されたゲート電極2、第1のゲート絶縁膜3および第2のゲート絶縁膜4には、給電部となるパッド電極11を装着し、薄膜トランジスタアレイ12が形成される。
【0008】
ここで、ゲート電極2、第1のゲート絶縁膜3および第2のゲート絶縁膜4の穴穿けの工程について考えると、SiOの第2のゲート絶縁膜4およびAlの第1のゲート絶縁膜3の穴穿けの後にゲート電極2を残す必要がある。
【0009】
ところが、第1のゲート絶縁膜3のAlと、ゲート電極2のAlとを選択的にエッチングすることは非常に困難であり、現在はフッ化水素酸を含むエッチング溶液中に浸して、第1のゲート絶縁膜3のAlを一定時間エッチングし、その後エッチングを停止するという方法で穴穿けしている。
【0010】
しかし、この方法では場所によりエッチング速度にむらがあること、エッチング速度の再現性に幅があることから、実際の工程ではエッチング時間を長くとる必要がある。したがって、この方法でエッチングを行なうとゲート電極2を均一の厚さで残すことが困難であり、ゲート電極2のAlが薄くなったり、あるいは、無くなる場合があり、ゲート電極2に給電部を形成する工程での不良発生の原因となっている。
【0011】
【発明が解決しようとする課題】
上述のように、図3に示す従来技術では、ゲート電極2に給電部を形成する工程において、ゲート電極2であるAlを均一の厚さで残すことが困難であり、パッド電極11との接触不良を引き起こす原因となるおそれがある問題を有している。
【0012】
本発明は、上記問題点に鑑みなされたもので、金属膜および酸化膜を有するもののエッチングを確実に行なう酸化膜のエッチング方法および薄膜トランジスタの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、アルミニウムを主成分とした金属膜上に、酸化アルミニウムを主成分とした酸化膜が被覆され、これら金属膜および酸化膜を除去する酸化膜のエッチング方法において、前記金属膜をこの金属膜に対向させる対向電極とともに水素イオン濃度指数(pH)が4以下のエッチング溶液中に浸し、前記金属膜および前記対向電極間に与える電位を、標準水素電極に対し−1.8Vの値よりもの電位と制御して前記酸化膜を除去し、この酸化膜除去後に前記金属膜および前記対向電極間に与える電位を変化させて前記金属膜の表面を除去する。
【0014】
そして、前記エッチング溶液は、フッ化水素酸を含む溶液であるため、確実かつ適切に金属膜をエッチングする。
【0015】
また、本発明は、アルミニウムを主成分としたゲート電極上に、酸化アルミニウムを主成分としたゲート絶縁膜が被覆され、これらゲート電極およびゲート絶縁膜を除去する薄膜トランジスタの製造方法において、前記ゲート電極をこのゲート電極に対向させる対向電極とともに水素イオン濃度指数(pH)が4以下のエッチング溶液中に浸し、前記ゲート電極および前記対向電極間に与える電位を、標準水素電極に対し−1.8Vの値よりもの電位と制御して前記ゲート絶縁膜を除去し、このゲート絶縁膜除去後に前記ゲート電極および前記対向電極間に与える電位を変化させて前記ゲート電極の表面を除去し、前記ゲート電極にゲート電極端子を設けるもので、ゲート電極が均質になる。
【0016】
【発明の実施の形態】
以下、本発明の一実施の形態について、図面に示す薄膜トランジスタの製造方法を参照して説明する。なお、図3に示す従来例と対応する部分には、同一符号を付して説明する。
【0017】
まず、図1(a)に示すように、ガラス基板1上に純アルミニウム(Al)、あるいは、数%以下の微量な不純物を含んだアルミニウム(Al)を3000オングストロームの膜厚でスパッタリングにより蒸着し、パターン化して金属膜のゲート電極2を形成し、続いてゲート電極2のAlの表面を陽極酸化により酸化アルミニウム(Al)膜としての第1のゲート絶縁膜3で被覆する。
【0018】
続いて、図1(b)に示すように、これら第1のゲート絶縁膜3を含むガラス基板1上に、たとえば酸化ケイ素膜(SiO)の第2のゲート絶縁膜4を形成し、アモルファス・シリコン(a−SiO)層の半導体層5を形成し、この半導体層5上にエッチング・ストッパ用の窒化ケイ素層であるエッチングストッパ層6を形成する。
【0019】
その後に、図1(c)に示すように、ゲート電極2に給電部を形成するために、第1のゲート絶縁膜3および第2のゲート絶縁膜4の穴穿けを行なう。
【0020】
ここで、この工程で使用する装置について、図2を参照して説明する。
【0021】
図2に示すように、第1の水槽21に49%フッ化水素酸水溶液を約20%含んだ水溶液エッチング溶液22を満たし、この水溶液エッチング溶液22中にゲート電極2、第1のゲート絶縁膜3および第2のゲート絶縁膜4が形成されたガラス基板1および対向電極23を互いに対向させて浸漬させる。なお、第1のゲート絶縁膜3および第2のゲート絶縁膜4の穴穿けを行なわない部分はフォトレジストによって覆われている。
【0022】
また、第2の水槽24にも第1の水槽21と同様に、49%フッ化水素酸水溶液を約20%含んだ水溶液エッチング溶液25を満たし、第1の水槽21および第2の水槽24を塩橋にて接続するとともに、第2の水槽24には参照電極27を浸漬する。
【0023】
そして、ガラス基板1のゲート電極2、対向電極23および参照電極27をそれぞれ電線28,29,30にてポテンショスタット31に接続し、参照電極27で計測された電位に基づき、ポテンショスタット31にて電位を制御する。なお、ゲート電極2はガラス基板1の周辺部に図示しない電極があり外部に取り出される。
【0024】
また、エッチングに際しては、ゲート電極2は標準水素電極に対し−3.0Vの電位を与えてAlを不活態の範囲におく。また、対向電極23には標準水素電極に対し0.0Vの電位を与え、この状態で約5分間保持し、SiOの第2のゲート絶縁膜4およびAlの第1のゲート絶縁膜3を続けてエッチングする。
【0025】
引き続き、今度はゲート電極2に標準水素電極に対し−1.5Vの電位を与えてゲート電極2を活性態の範囲におき、約30秒間保持し、ガラス基板1を水溶液エッチング溶液22より取り出し、純水にて約5分間洗浄し、窒素雰囲気にて乾燥させる。
【0026】
次に、図1(d)に示すように、第2のゲート絶縁膜4上にITO(Indium Tin Oxide)の画素電極7を形成し、エッチングストッパ層6上に画素電極7に接続されたソース電極8およびドレイン電極9を形成して薄膜トランジスタ10を作製するとともに、穿孔されたゲート電極2、第1のゲート絶縁膜3および第2のゲート絶縁膜4には給電部となるパッド電極11を装着し、薄膜トランジスタアレイ12が形成される。
【0027】
なお、上記実施の形態ではゲート電極2のAlを活性態の範囲におき、約30秒間保持した後に直ちに水洗したが、ゲート電極2のAlを再び不活態の範囲におくような電位、たとえば標準水素電極に対し−3.0Vの電位を与えて、一旦エッチングを停止した後に水溶液エッチング溶液22より取り出し、続いて水洗してもよい。
【0028】
ここで、上述のエッチングについて説明する。
【0029】
まず、金属元素が電解性の水溶液中で腐食されるか否かの目安としてPourbaixの電位−pH平衡図が知られている。そして、ゲート電極2に用いたAlについての平衡図を見ると、水素イオン濃度指数pHが4以下で、標準水素電極に対する電位が−1.8Vよりも(電位VがV<−1.8V)である領域では、Alがイオン化せずに安定に存在する領域(不活態)があることがわかる。そこで、第2のゲート絶縁膜4および第1のゲート絶縁膜3のエッチング工程において、表面がAlの第1のゲート絶縁膜3で覆われたAlのゲート電極2を有するガラス基板1を対向電極23とともにフッ化水素酸を含む水溶液エッチング溶液22中に置き、ゲート電極2のAlを不活態の電位に置くことで、ゲート電極2のAlの表面をエッチングされない状態に保持することができる。
【0030】
一方で、ゲート電極2のAl上の第1のゲート絶縁膜3のAlの表面の電位はAlが高抵抗の絶縁膜であるため対向電極23の電位によって決まり、対向電極23の電位をAlよりも貴の電位でAlがイオン化する領域(活性態)にすることにより、Alの表面の電位もAlが活性態の電位に置くことができる。
【0031】
また、Alが活性態の電位−pH領域では、AlはAlと同様にフッ化水素酸を含むエッチング溶液中でエッチングされることから、この状態にガラス基板1を置くことによりゲート電極2のAl上の第1のゲート絶縁膜3のAlのみを除去できる。したがって、この場合はエッチング時間を長くとっても、ゲート電極2のAlが除去されて薄くなったり、無くなったりすることはない。ただし、この場合、この状態でエッチングを終了させると、Al/Al境界、すなわちゲート電極2および第1のゲート絶縁膜3の境界にはAlに近い組成の薄膜の残渣が残る。そこで、Alの電位を活性態になるようにしてゲート電極2の表面の薄膜状の残渣の除去を行なう。
【0032】
【発明の効果】
本発明によれば、金属膜を除去しにくい状態、あるいは、金属膜の表面をエッチングされない状態に保持して酸化膜をエッチングし、対向電極の電位を変化させて金属膜が活性態の電位におくことにより、金属膜を適度にエッチングするため、製品の不良率を低下でき、歩留まりを向上できる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態の薄膜トランジスタアレイの製造工程の一部を示す断面図である。
【図2】 同上ゲート絶縁膜の穴穿け工程に用いるエッチング装置を示す説明図である。
【図3】 従来例の薄膜トランジスタアレイの製造工程の一部を示す断面図である。
【符号の説明】
2 金属膜としてのゲート電極
3 酸化膜としての第1のゲート絶縁膜
22 エッチング溶液
23 対向電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an etching method in which an oxide film is coated on a metal film, and etching the oxide film and the metal film, and a method for manufacturing a thin film transistor.
[0002]
[Prior art]
In recent years, a thin film transistor (TFT) array for a liquid crystal display device having a large screen is becoming widespread.
[0003]
Here, a conventional method for manufacturing an inverted staggered thin film transistor array in which gate lines are located on a glass substrate will be described with reference to FIG.
[0004]
First, as shown in FIG. 3A, a gate electrode 2 made of pure aluminum or aluminum (Al) containing a trace amount of impurities of several percent or less is wired on a glass substrate 1, and this gate electrode 2 The first gate insulating film 3 is formed by using aluminum oxide (Al 2 O 3 ) as a surface by anodization or the like.
[0005]
Subsequently, as shown in FIG. 3B, a second gate insulating film 4 made of, for example, a silicon oxide film (SiO x ) is formed on the glass substrate 1 including the first gate insulating film 3, and amorphous. A semiconductor layer 5 made of a silicon layer is formed, and an etching stopper layer 6 made of a silicon nitride layer for etching and stopper is formed on the semiconductor layer 5.
[0006]
Thereafter, as shown in FIG. 3C, the second gate insulating film 4, the first gate insulating film 3, and the gate electrode 2 are formed to form a power feeding portion in one gate electrode 2.
[0007]
Further, as shown in FIG. 3D, a pixel electrode 7 made of ITO (Indium Tin Oxide) is formed on the second gate insulating film 4, and the source connected to the pixel electrode 7 on the etching stopper layer 6 is formed. The thin film transistor 10 is formed by forming the electrode 8 and the drain electrode 9, and a pad electrode 11 serving as a power feeding portion is provided on the perforated gate electrode 2, the first gate insulating film 3 and the second gate insulating film 4. The thin film transistor array 12 is formed by mounting.
[0008]
Here, considering the step of drilling the gate electrode 2, the first gate insulating film 3, and the second gate insulating film 4, the second gate insulating film 4 made of SiO X and the first gate insulating film 4 made of Al 2 O 3 . It is necessary to leave the gate electrode 2 after drilling the gate insulating film 3.
[0009]
However, it is very difficult to selectively etch Al 2 O 3 of the first gate insulating film 3 and Al of the gate electrode 2, and it is currently immersed in an etching solution containing hydrofluoric acid. A hole is formed by etching Al 2 O 3 of the first gate insulating film 3 for a certain time and then stopping the etching.
[0010]
However, in this method, the etching rate varies depending on the location, and the reproducibility of the etching rate varies, so it is necessary to increase the etching time in the actual process. Therefore, when etching is performed by this method, it is difficult to leave the gate electrode 2 with a uniform thickness, and the Al of the gate electrode 2 may be thinned or eliminated. This is a cause of defects in the process.
[0011]
[Problems to be solved by the invention]
As described above, in the prior art shown in FIG. 3, it is difficult to leave Al as the gate electrode 2 with a uniform thickness in the step of forming the power feeding portion on the gate electrode 2, and contact with the pad electrode 11 is difficult. It has a problem that may cause defects.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an oxide film etching method and a thin film transistor manufacturing method for reliably etching a metal film and an oxide film.
[0013]
[Means for Solving the Problems]
The present invention relates to a method of etching an oxide film in which an oxide film mainly composed of aluminum oxide is coated on a metal film mainly composed of aluminum, and the metal film is removed from the metal film. Immersion in an etching solution having a hydrogen ion concentration index (pH) of 4 or less together with the counter electrode opposed to the film, and the potential applied between the metal film and the counter electrode is lower than a value of −1.8 V with respect to the standard hydrogen electrode. The oxide film is removed under the control of a base potential, and the surface of the metal film is removed by changing the potential applied between the metal film and the counter electrode after the oxide film is removed.
[0014]
And since the said etching solution is a solution containing hydrofluoric acid, a metal film is etched reliably and appropriately.
[0015]
The present invention also provides a method of manufacturing a thin film transistor in which a gate insulating film mainly composed of aluminum oxide is coated on a gate electrode mainly composed of aluminum, and the gate electrode and the gate insulating film are removed. Is immersed in an etching solution having a hydrogen ion concentration index (pH) of 4 or less together with a counter electrode facing the gate electrode, and a potential applied between the gate electrode and the counter electrode is −1.8 V with respect to a standard hydrogen electrode. controls less noble potential than the value by removing the gate insulating film, the applied to between the gate electrode and the counter electrode by changing the potential to remove the surface of the gate electrode after the gate insulating film is removed, the gate Since the gate electrode terminal is provided on the electrode, the gate electrode becomes uniform.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to a method for manufacturing a thin film transistor shown in the drawings. Note that portions corresponding to those of the conventional example shown in FIG.
[0017]
First, as shown in FIG. 1 (a), pure aluminum (Al) or aluminum (Al) containing a trace amount of impurities of several percent or less is deposited on a glass substrate 1 by sputtering to a thickness of 3000 angstroms. Then, the gate electrode 2 of a metal film is formed by patterning, and then the Al surface of the gate electrode 2 is covered with a first gate insulating film 3 as an aluminum oxide (Al 2 O 3 ) film by anodic oxidation.
[0018]
Subsequently, as shown in FIG. 1B, a second gate insulating film 4 made of, for example, a silicon oxide film (SiO x ) is formed on the glass substrate 1 including the first gate insulating film 3, and amorphous. A silicon (a-SiO x ) layer semiconductor layer 5 is formed, and an etching stopper layer 6, which is a silicon nitride layer for etching stopper, is formed on the semiconductor layer 5.
[0019]
Thereafter, as shown in FIG. 1C, holes are formed in the first gate insulating film 3 and the second gate insulating film 4 in order to form a power feeding portion in the gate electrode 2.
[0020]
Here, the apparatus used in this step will be described with reference to FIG.
[0021]
As shown in FIG. 2, the first water tank 21 is filled with an aqueous solution etching solution 22 containing about 20% of a 49% hydrofluoric acid aqueous solution, and the gate electrode 2 and the first gate insulating film are filled in the aqueous solution etching solution 22. The glass substrate 1 on which the third and second gate insulating films 4 are formed and the counter electrode 23 are immersed so as to face each other. Note that the portions of the first gate insulating film 3 and the second gate insulating film 4 that are not drilled are covered with a photoresist.
[0022]
Similarly to the first water tank 21, the second water tank 24 is filled with an aqueous solution etching solution 25 containing about 20% of a 49% hydrofluoric acid aqueous solution, and the first water tank 21 and the second water tank 24 are provided. While being connected by a salt bridge, a reference electrode 27 is immersed in the second water tank 24.
[0023]
Then, the gate electrode 2, the counter electrode 23 and the reference electrode 27 of the glass substrate 1 are connected to the potentiostat 31 by electric wires 28, 29 and 30, respectively, and based on the potential measured by the reference electrode 27, the potentiostat 31 Control the potential. The gate electrode 2 has an electrode (not shown) in the periphery of the glass substrate 1 and is taken out to the outside.
[0024]
In the etching, the gate electrode 2 applies a potential of −3.0 V to the standard hydrogen electrode to place Al in an inactive range. Further, a potential of 0.0 V is applied to the counter electrode 23 with respect to the standard hydrogen electrode, and this state is maintained for about 5 minutes, and the second gate insulating film 4 made of SiO X and the first gate insulating film made of Al 2 O 3 . The film 3 is subsequently etched.
[0025]
Subsequently, a potential of −1.5 V is applied to the gate electrode 2 with respect to the standard hydrogen electrode to place the gate electrode 2 in the active state and hold for about 30 seconds, and the glass substrate 1 is taken out from the aqueous solution etching solution 22. Wash with pure water for about 5 minutes and dry in a nitrogen atmosphere.
[0026]
Next, as shown in FIG. 1D, an ITO (Indium Tin Oxide) pixel electrode 7 is formed on the second gate insulating film 4, and the source connected to the pixel electrode 7 on the etching stopper layer 6 is formed. The thin film transistor 10 is formed by forming the electrode 8 and the drain electrode 9, and the pad electrode 11 serving as a power feeding portion is attached to the perforated gate electrode 2, the first gate insulating film 3 and the second gate insulating film 4. As a result, the thin film transistor array 12 is formed.
[0027]
In the above embodiment, Al in the gate electrode 2 is placed in the active state and is washed with water immediately after being held for about 30 seconds. However, a potential such that Al in the gate electrode 2 is again in the inactive range, for example, A potential of −3.0 V may be applied to the standard hydrogen electrode to stop the etching once, and then remove from the aqueous solution etching solution 22 and then wash with water.
[0028]
Here, the above-described etching will be described.
[0029]
First, as a measure of whether or not a metal element is corroded in an electrolytic aqueous solution, a potential-pH equilibrium diagram of Paulbaix is known. Then, looking at the equilibrium diagram for the Al used for the gate electrode 2, a hydrogen ion concentration index pH of 4 or less, less noble than the potential -1.8V relative to the standard hydrogen electrode (the potential V is V <-1.8V It can be seen that there is a region (inactive state) where Al does not ionize and exists stably in the region which is). Therefore, in the etching process of the second gate insulating film 4 and the first gate insulating film 3, the glass substrate 1 having the Al gate electrode 2 whose surface is covered with the first gate insulating film 3 of Al 2 O 3 . Is placed in an aqueous solution etching solution 22 containing hydrofluoric acid together with the counter electrode 23, and the Al surface of the gate electrode 2 is kept in an unetched state by placing the Al of the gate electrode 2 at an inactive potential. Can do.
[0030]
On the other hand, the potential of the surface of Al 2 O 3 of the first gate insulating film 3 on the Al of the gate electrode 2 is determined by the potential of the counter electrode 23 because Al 2 O 3 is a high-resistance insulating film. By setting the potential of 23 to a region (active state) in which Al is ionized at a potential nobler than Al, the surface potential of Al 2 O 3 can also be placed at the active potential of Al.
[0031]
In addition, in the potential-pH region where Al is in an active state, Al 2 O 3 is etched in an etching solution containing hydrofluoric acid like Al. Therefore, by placing the glass substrate 1 in this state, the gate electrode Only Al 2 O 3 of the first gate insulating film 3 on 2 Al can be removed. Therefore, in this case, even if the etching time is long, Al in the gate electrode 2 is not removed and does not become thin or disappear. However, in this case, if etching is terminated in this state, a thin film residue having a composition close to Al 2 O 3 is present at the Al / Al 2 O 3 boundary, that is, the boundary between the gate electrode 2 and the first gate insulating film 3. Remain. Therefore, the thin film residue on the surface of the gate electrode 2 is removed by setting the potential of Al to the active state.
[0032]
【The invention's effect】
According to the present invention, the metal film is brought into an active potential by changing the potential of the counter electrode by etching the oxide film while keeping the metal film difficult to remove or keeping the surface of the metal film unetched. In this case, the metal film is appropriately etched, so that the defect rate of the product can be reduced and the yield can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a part of a manufacturing process of a thin film transistor array according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing an etching apparatus used in the step of drilling a gate insulating film.
FIG. 3 is a cross-sectional view showing a part of a manufacturing process of a conventional thin film transistor array.
[Explanation of symbols]
2 Gate electrode as metal film 3 First gate insulating film as oxide film
22 Etching solution
23 Counter electrode

Claims (3)

アルミニウムを主成分とした金属膜上に、酸化アルミニウムを主成分とした酸化膜が被覆され、これら金属膜および酸化膜を除去する酸化膜のエッチング方法において、
前記金属膜をこの金属膜に対向させる対向電極とともに水素イオン濃度指数(pH)が4以下のエッチング溶液中に浸し、
前記金属膜および前記対向電極間に与える電位を、標準水素電極に対し−1.8Vの値よりもの電位と制御して前記酸化膜を除去し、
この酸化膜除去後に前記金属膜および前記対向電極間に与える電位を変化させて前記金属膜の表面を除去する
ことを特徴とする酸化膜のエッチング方法。
In the method of etching an oxide film in which an oxide film mainly composed of aluminum oxide is coated on a metal film mainly composed of aluminum, and the metal film and the oxide film are removed.
Immerse the metal film in an etching solution having a hydrogen ion concentration index (pH) of 4 or less together with a counter electrode facing the metal film,
Wherein the potential applied between the metal film and the counter electrode, the oxide film is removed by controlling the potential more negative than the value of -1.8V to the standard hydrogen electrode,
A method of etching an oxide film, comprising: removing the surface of the metal film by changing a potential applied between the metal film and the counter electrode after the oxide film is removed.
前記エッチング溶液は、フッ化水素酸を含む溶液である
ことを特徴とする請求項1記載の酸化膜のエッチング方法。
The method for etching an oxide film according to claim 1, wherein the etching solution is a solution containing hydrofluoric acid.
アルミニウムを主成分としたゲート電極上に、酸化アルミニウムを主成分としたゲート絶縁膜が被覆され、これらゲート電極およびゲート絶縁膜を除去する薄膜トランジスタの製造方法において、
前記ゲート電極をこのゲート電極に対向させる対向電極とともに水素イオン濃度指数(pH)が4以下のエッチング溶液中に浸し、
前記ゲート電極および前記対向電極間に与える電位を、標準水素電極に対し−1.8Vの値よりもの電位と制御して前記ゲート絶縁膜を除去し、
このゲート絶縁膜除去後に前記ゲート電極および前記対向電極間に与える電位を変化させて前記ゲート電極の表面を除去し、
前記ゲート電極にゲート電極端子を設ける
ことを特徴とする薄膜トランジスタの製造方法。
In the method of manufacturing a thin film transistor, a gate insulating film mainly composed of aluminum oxide is coated on a gate electrode mainly composed of aluminum, and the gate electrode and the gate insulating film are removed.
Immerse the gate electrode in an etching solution having a hydrogen ion concentration index (pH) of 4 or less together with a counter electrode facing the gate electrode,
Wherein the potential applied between the gate electrode and the counter electrode, to control a potential more negative than the value of -1.8V to the standard hydrogen electrode by removing the gate insulating film,
After removing the gate insulating film, the potential applied between the gate electrode and the counter electrode is changed to remove the surface of the gate electrode,
A method of manufacturing a thin film transistor, wherein a gate electrode terminal is provided on the gate electrode.
JP01608496A 1995-03-27 1996-01-31 Oxide film etching method and thin film transistor manufacturing method Expired - Fee Related JP3651509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01608496A JP3651509B2 (en) 1995-03-27 1996-01-31 Oxide film etching method and thin film transistor manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6721195 1995-03-27
JP7-67211 1995-03-27
JP01608496A JP3651509B2 (en) 1995-03-27 1996-01-31 Oxide film etching method and thin film transistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH08330272A JPH08330272A (en) 1996-12-13
JP3651509B2 true JP3651509B2 (en) 2005-05-25

Family

ID=26352339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01608496A Expired - Fee Related JP3651509B2 (en) 1995-03-27 1996-01-31 Oxide film etching method and thin film transistor manufacturing method

Country Status (1)

Country Link
JP (1) JP3651509B2 (en)

Also Published As

Publication number Publication date
JPH08330272A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US8148182B2 (en) Manufacturing method of electro line for liquid crystal display device
KR100334003B1 (en) Liquid crystal display device and method of manufacturing thin film transistor used for the same
JP3651509B2 (en) Oxide film etching method and thin film transistor manufacturing method
JP2005163070A (en) Etching solution, and etching method
KR100286461B1 (en) Manufacturing Method of Thin Film Transistor Array
JP3276573B2 (en) Liquid crystal display device and method of manufacturing thin film transistor used therein
US6496242B1 (en) Intermediate liquid crystal display device product having an end point detection window, method of fabrication and method of detecting etching end point
EP0936668B1 (en) Method of producing thin film transistor
JPH05323380A (en) Production of thin-film transistor panel
KR100590918B1 (en) Method of manufacturing LCD
JPH0334045B2 (en)
US5523187A (en) Method for the fabrication of liquid crystal display device
JPH10307303A (en) Liquid crystal display substrate, its production and liquid crystal display device
KR100737637B1 (en) Method for manufacturing thin film transistor lcd
KR100305734B1 (en) Method for manufacturing lcd
KR0167886B1 (en) Method of making thin film transistor
KR100556346B1 (en) Method For Forming A Metal Line
KR940009600B1 (en) Metal wiring method of semiconductor device
KR970005952B1 (en) Thin film transistor &amp; method of manufacturing the same
JP3131853B2 (en) Method for manufacturing thin film transistor
JP3592411B2 (en) Manufacturing method of thin film diode
JPH02130551A (en) Thin film pattern and production thereof as well as matrix circuit board formed by using this pattern and image display device
JP2002158361A (en) Manufacturing method of thin-film transistor
KR960018739A (en) Manufacturing method of thin film transistor for liquid crystal display device
JPH0651345A (en) Formation of pixel electrode for display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees