JP3649953B2 - Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material - Google Patents
Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material Download PDFInfo
- Publication number
- JP3649953B2 JP3649953B2 JP17697499A JP17697499A JP3649953B2 JP 3649953 B2 JP3649953 B2 JP 3649953B2 JP 17697499 A JP17697499 A JP 17697499A JP 17697499 A JP17697499 A JP 17697499A JP 3649953 B2 JP3649953 B2 JP 3649953B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- battery
- positive electrode
- secondary battery
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池の正極に用いて好適な活物質、その活物質を有する電極、その電極を用いた非水電解液二次電池、及び活物質の製造方法に関する。
【0002】
【従来の技術】
従来、非水電解液二次電池としては、リチウムの吸蔵、放出が可能な正極及び負極と、非水電解液とを備えたものがある。
【0003】
このような非水電解液二次電池は、正極活物質として、リチウムと、ニッケル、コバルト等の金属との複合酸化物であるリチウム含有複合酸化物を用いられており、約4Vの電圧を持ち高容量であることから、活発な研究開発が行われている。
【0004】
しかしながら、上述した従来の非水電解液二次電池では、保存時において、正極と電解液との反応により、保存特性が劣化するという問題がある。
【0005】
このような問題を解決するものとして、例えば、特開平9−245787号公報において、硫酸根(SO4)を含有した正極活物質が提案されている。
【0006】
しかしながら、このような正極活物質を用いた非水電解液二次電池においても、放電容量が低下し、保存特性は満足出来るものではない。
【0007】
【課題を解決するための手段】
本発明の活物質は、LiNiaCobMcO2(但し、0≦a<1、0≦b<1、a+b+c=1;0≦c≦0.5;Mは、Ti、Cr、Mg、Al、Cu、Gaの中か選ばれる少なくとも一種)に対し、AlX(SO 4 ) 2 (Xは、Na、K、Rb、Cs、NH 4 の中から選ばれる少なくとも一種)を1.5モル%以上、20モル%以下含有させ、80℃以上350℃以下で熱処理したことを特徴とする。
【0008】
また、本発明は、非水電解液二次電池の正極として用いた場合、前記二次電池を放置した際における放電容量の低下が少なく、二次電池の保存特性を良好にするのに適した電極を提供することを目的とするものである。
【0009】
また、本発明は、放置した際における放電容量の低下が少なく、保存特性を良好にするのに適した非水電解液二次電池を提供することを目的とするものである。
【0010】
また、本発明は、非水電解液二次電池の正極活物質として用いた場合、前記二次電池を放置した際における放電容量の低下が少なく、二次電池の保存特性を良好にするのに適した活物質の製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の活物質は、LiNiaCobMcO2(但し、a+b+c=1;0≦c≦0.5;Mは、Mn、Fe、Zn、Ti、Cr、Mg、Al、Cu、Gaの中から選ばれる少なくとも一種)に、AlX(SO4)2(Xは、Na、K、Rb、Cs、NH4の中から選ばれる少なくとも一種)を含有したことを特徴とする。
【0012】
このような構成の活物質は、非水電解液二次電池の正極活物質として用いた場合、二次電池の自己放電率が小さく、二次電池の保存特性が良くなる。尚、これは、LiNiaCobMcO2の活性部が減少し、正極活物質と電解液との反応が抑制され、正極の劣化が抑制されるためと考えられる。また、LiNiaCobMcO2のMの添加量によっては充放電容量が低下する場合があり、Mの添加量としては、0≦c≦0.5の範囲が好ましい。
【0013】
更に、本発明の活物質は、前記AlX(SO4)2の含有量が、前記LiNiaCobMcO2に対して1.5モル%以上、20モル%以下であると、非水電解液二次電池の正極活物質として用いた場合、二次電池の自己放電率は大幅に低下する。
【0014】
更に、本発明の活物質は、前記AlX(SO4)2の含有量が、前記LiNiaCobMcO2に対して3モル%以上、10モル%以下であると、非水電解液二次電池の正極活物質として用いた場合、二次電池の自己放電率はより一層大幅に低下する。
また、本発明の活物質は、前記熱処理温度が100℃以上、300℃以下である場合、二次電池の自己放電率が大幅に低下する。
【0015】
また、本発明の活物質は、前記AlX(SO4)2が前記LiNiaCobMcO2の表面を被覆するため、LiNiaCobMcO2と電解液との反応が十分に抑制される。
【0016】
また、本発明の電極は、上述の活物質を有することを特徴とする。
【0017】
このような構成の電極は、非水電解液二次電池の正極として用いた場合、二次電池の自己放電率が小さく、二次電池の保存特性が良くなる。
【0018】
また、本発明の非水電解液二次電池は、上述の電極を正極として用いたことを特徴とする。
【0019】
このような構成の非水電解液二次電池は、自己放電率が小さく、保存特性が良くなる。
【0020】
尚、本発明の非水電解液二次電池の電解液の溶質としては,LiPF6、LiBF4、LiSbF6、LiCF3SO3、LiAsF6、LiN(CF3SO2)2、LiCF3(CF2)3SO3等を使用することができるが,これに限定されるものではない。
【0021】
また、本発明の非水電解液二次電池の電化液の溶媒としては,エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、1,2−ジメトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等を使用することができるが,これに限定されるものではない。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0026】
[正極活物質の作製]
LiCoO2に対して、AlK(SO4)2・12H2Oを5モル%になるように混合し、250℃で2時間熱処理を行い、正極活物質を作製した。
【0027】
[正極の作製]
上述の正極活物質と、導電剤としてのカーボン粉末と、結着剤としてのポリテトラフルオロエチレンとを80:10:10の重量比で混合して正極合剤を得た。
【0028】
次に、この混合物を加圧成形し、100℃で2時間真空乾燥し、正極を作製した。
【0029】
[負極の作製]
リチウム−アルミニウム合金を所定寸法に打ち抜き、負極を作製した。
【0030】
[電解液の作製]
エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した溶媒に、LiPF6を1Mの割合で溶かし、電解液を作製した。
【0031】
[電池の組立]
前記の負極を断面略コ字状の負極缶の内底面に固着し、前述の体積比で調製した電解液を含浸させたセパレータを介して、前記の正極を固定した断面略コ字状の正極缶を配置し、電池A0を作製した。なお、セパレータとしては、イオン透過性のポリプロピレン製の微多孔膜を用いた。
【0032】
(実験1(参考実験))
正極活物質に含有させるAlX(SO4)2の種類について、下記の電池A1〜A4を作製して検討を行った。
【0033】
正極活物質の作製において、AlK(SO4)2・12H2O代わりに、AlNa(SO4)2・12H2Oを用いた以外は、電池A0と同様にして、電池A1を作製した。
【0034】
正極活物質の作製において、AlK(SO4)2・12H2O代わりに、AlRb(SO4)2・12H2Oを用いた以外は、電池A0と同様にして、電池A2を作製した。
【0035】
正極活物質の作製において、AlK(SO4)2・12H2O代わりに、AlCs(SO4)2・12H2Oを用いた以外は、電池A0と同様にして、電池A3を作製した。
【0036】
正極活物質の作製において、AlK(SO4)2・12H2O代わりに、Al(NH4)(SO4)2・12H2Oを用いた以外は、電池A0と同様にして、電池A4を作製した。
【0037】
正極の作製において、AlK(SO4)2・12H2Oを混合して熱処理したLiCoO2を用いる代わりに、LiCoO2を用いた以外は、電池A0と同様にして比較電池X0を作製した。
【0038】
上述の電池A0〜A4及び比較電池X0について、10mAの定電流で電池電圧4.2Vまで充電した後、放電抵抗1kΩで3.0Vに至るまで放電し、放電容量を測定した。次に、10mAの定電流で電池電圧4.2Vまで充電して、80℃の恒温槽で60日間保存した後、放電抵抗1kΩで電池電圧2.7Vまで放電して保存後の放電容量を測定し、下記の数1の式に基づいて自己放電率を算出した。その結果を下記の表1に示す。
【0039】
【数1】
【0040】
【表1】
【0041】
表1より判るように、LiCoO2に、AlK(SO4)2、AlNa(SO4)2、AlRb(SO4)2、AlCs(SO4)2、或いはAl(NH4)(SO4)2を含有させた電池A0〜A4は、比較電池X0に比べ、自己放電率が大幅に小さく、保存特性に優れている。
【0042】
(実験2)
正極活物質を作製する際のリチウム含有複合酸化物の種類について、下記の電池B2、B8〜B13、Y2、Y8〜Y13を作製して検討を行った。
【0044】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Co0.5O2を用いる以外は、電池A0と同様にして、電池B2を作製した。
【0050】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Ti0。5O2を用いる以外は、電池A0と同様にして、電池B8を作製した。
【0051】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Cr0。5O2を用いる以外は、電池A0と同様にして、電池B9を作製した。
【0052】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Mg0。5O2を用いる以外は、電池A0と同様にして、電池B10を作製した。
【0053】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Al0。5O2を用いる以外は、電池A0と同様にして、電池B11を作製した。
【0054】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Cu0。5O2を用いる以外は、電池A0と同様にして、電池B12を作製した。
【0055】
正極活物質の作製において、LiCoO2を用いる代わりにLiNi0.5Ga0。5O2を用いる以外は、電池A0と同様にして、電池B13を作製した。
【0056】
正極活物質の作製において、リチウム含有複合酸化物に対して、AlX(SO4)2を含有させない以外は、電池B2、B8〜B13と同様にして、比較電池Y2、Y8〜Y13を夫々作製した。
【0057】
上述の電池B2、B8〜B13及び比較電池Y2、Y8〜Y13について、自己放電率を算出した。その結果を表2に示す。尚、自己放電率の算出方法は、実験1と同じである。
【0058】
【表2】
【0059】
表2より判るように、電池B2、B8〜B13は、比較電池Y2、Y8〜Y13に比べ、自己放電率が小さく、保存特性に優れている。即ち、LiNiaCobMcO2(但し、0≦a<1、0≦b<1、a+b+c=1;0≦c≦0.5;Mは、Ti、Cr、Mg、Al、Cu、Gaの中か選ばれる少なくとも一種)にAlX(SO4)2を含有させた活物質を正極に用いた非水電解液二次電池は、自己放電率が小さく、保存特性に優れていることが判る。
【0060】
即ち、表1及び表2より、LiNiaCobMcO2(但し、0≦a<1、0≦b<1、a+b+c=1;0≦c≦0.5;Mは、Ti、Cr、Mg、Al、Cu、Gaの中か選ばれる少なくとも一種)に、AlK(SO4)2、AlNa(SO4)2、AlRb(SO4)2、AlCs(SO4)2、或いはAl(NH4)(SO4)2を含有させた活物質を、非水電解液二次電池の正極に用いた場合、その非水電解液二次電池は、自己放電率が小さくなり、保存特性が向上することが明らかである。
【0061】
(実験3(参考実験))
正極活物質におけるAlX(SO4)2の含有量について、下記の電池C1〜C10を作製して検討を行った。
【0062】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに1.2モル%混合する以外は、電池A0と同様にして、電池C1を作製した。
【0063】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに1.5モル%混合する以外は、電池A0と同様にして、電池C2を作製した。
【0064】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに2.5モル%混合する以外は、電池A0と同様にして、電池C3を作製した。
【0065】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに3.0モル%混合する以外は、電池A0と同様にして、電池C4を作製した。
【0066】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに7モル%混合する以外は、電池A0と同様にして、電池C5を作製した。
【0067】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに10モル%混合する以外は、電池A0と同様にして、電池C6を作製した。
【0068】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに12モル%混合する以外は、電池A0と同様にして、電池C7を作製した。
【0069】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに15モル%混合する以外は、電池A0と同様にして、電池C8を作製した。
【0070】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに20モル%混合する以外は、電池A0と同様にして、電池C9を作製した。
【0071】
正極活物質の作製において、AlK(SO4)2・12H2Oを5モル%混合する代わりに22モル%混合する以外は、電池A0と同様にして、電池C10を作製した。
【0072】
正極活物質の作製において、硫酸コバルト水溶液と重炭酸ナトリウム水溶液を反応させ、沈殿を濾過、水洗、乾燥して得た塩基性炭酸コバルトを、400℃で熱処理し、四三酸化コバルトを得た。この四三酸化コバルトを、炭酸リチウムと所定比で混合し、900℃で反応させ、LiCoO2(硫酸根0.8モル%含有;(SO4)2では0.4モル%に相当)を作製した。この正極活物質の作製以外は、電池A0と同様にして、比較電池Z1を作製した。尚、この比較電池Z1は特開平9−245787号公報に示されている電池に相当する。
【0073】
上述の電池A0、C1〜C10及び比較電池X0、Z1について、自己放電率を算出した。その結果を表3に示す。尚、自己放電率の算出方法は、実験1と同じである。
【0074】
【表3】
【0075】
表3より判るように、AlK(SO4)2の含有量が1.5モル%以上、20モル%以下の場合、自己放電率が比較電池X0、Z1と比べ急激に低下し、保存特性が良好である。特に、前述の含有量が3.0モル%以上、10モル%以下では、自己放電率は一層低くなり、保存特性は一層良好となる。尚、AlK(SO4)2の含有量が22モル%の場合、自己放電率の低下が小さいのは、AlK(SO4)2が不純物として働き、自己放電率が増加したものと考えられる。
【0076】
また、AlK(SO4)2に代えて、実験1で用いたAlNa(SO4)2、AlRb(SO4)2、AlCs(SO4)2、或いはAl(NH4)(SO4)2を用いた場合、また、LiCoO2に代えて、実験2で用いたリチウム含有複合酸化物LiNiaCobMcO2(但し、0≦a<1、0≦b<1、a+b+c=1;0≦c≦0.5;Mは、Ti、Cr、Mg、Al、Cu、Gaの中か選ばれる少なくとも一種)についても、AlX(SO4)2の含有量について検討を行った結果、上述の表3と同様の結果が得られた。
【0077】
(実験4(参考実験))
正極活物質を作製する際の熱処理温度について、下記の電池D1〜D5を作製して検討を行った。
【0078】
正極活物質の作製において、250℃で熱処理する代わりに、80℃で熱処理する以外は、電池A0と同様にして、電池D0を作製した。
【0079】
正極活物質の作製において、250℃で熱処理する代わりに、100℃で熱処理する以外は、電池A0と同様にして、電池D1を作製した。
【0080】
正極活物質の作製において、250℃で熱処理する代わりに、150℃で熱処理する以外は、電池A0と同様にして、電池D2を作製した。
【0081】
正極活物質の作製において、250℃で熱処理する代わりに、200℃で熱処理する以外は、電池A0と同様にして、電池D3を作製した。
【0082】
正極活物質の作製において、250℃で熱処理する代わりに、300℃で熱処理する以外は、電池A0と同様にして、電池D4を作製した。
【0083】
正極活物質の作製において、250℃で熱処理する代わりに、350℃で熱処理する以外は、電池A0と同様にして、電池D5を作製した。
【0084】
【表4】
【0085】
表4より判るように、熱処理温度が100℃以上、300℃以下の範囲では、自己放電率の低下が大きく、保存特性が特に優れている。尚、これはLiCoO2の表面がAlK(SO4)2により良好に被覆され、LiCoO2と電解液との反応が十分に抑制されるためと考えられる。
【0086】
【発明の効果】
本発明によれば、非水電解液二次電池の正極活物質として用いた場合、前記二次電池を放置した際における放電容量の低下が少なく、二次電池の保存特性を良好にするのに適した活物質を提供し得る。
【0087】
また、本発明によれば、非水電解液二次電池の正極として用いた場合、前記二次電池を放置した際における放電容量の低下が少なく、二次電池の保存特性を良好にするのに適した電極を提供し得る。
【0088】
また、本発明によれば、放置した際における放電容量の低下が少なく、保存特性を良好にするのに適した非水電解液二次電池を提供し得る。
【0089】
本発明によれば、非水電解液二次電池の正極活物質として用いた場合、前記二次電池を放置した際における放電容量の低下が少なく、二次電池の保存特性を良好にするのに適した活物質の製造方法を提供し得る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active material suitable for use as a positive electrode of a nonaqueous electrolyte secondary battery, an electrode having the active material, a nonaqueous electrolyte secondary battery using the electrode, and a method for producing the active material.
[0002]
[Prior art]
Conventionally, some non-aqueous electrolyte secondary batteries include a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte.
[0003]
Such a non-aqueous electrolyte secondary battery uses, as a positive electrode active material, a lithium-containing composite oxide that is a composite oxide of lithium and a metal such as nickel or cobalt, and has a voltage of about 4V. Due to its high capacity, active research and development is underway.
[0004]
However, the conventional non-aqueous electrolyte secondary battery described above has a problem that storage characteristics deteriorate due to a reaction between the positive electrode and the electrolyte during storage.
[0005]
In order to solve such a problem, for example, JP-A-9-245787 has proposed a positive electrode active material containing sulfate radical (SO 4 ).
[0006]
However, even in a non-aqueous electrolyte secondary battery using such a positive electrode active material, the discharge capacity is reduced and the storage characteristics are not satisfactory.
[0007]
[Means for Solving the Problems]
Active material of the present invention, LiNi a Co b M c O 2 ( where, 0 ≦ a <1,0 ≦ b <1, a + b + c = 1; 0 ≦ c ≦ 0.5; M is, Ti, Cr, Mg 1.5 mol of AlX (SO 4 ) 2 (X is at least one selected from Na, K, Rb, Cs, NH 4 ) with respect to at least one selected from Al, Cu, and Ga ). % Or more and 20 mol% or less, and heat-treated at 80 ° C. or more and 350 ° C. or less .
[0008]
In addition, the present invention, when used as a positive electrode of a non-aqueous electrolyte secondary battery, has a small decrease in discharge capacity when the secondary battery is left, and is suitable for improving the storage characteristics of the secondary battery. The object is to provide an electrode.
[0009]
Another object of the present invention is to provide a non-aqueous electrolyte secondary battery suitable for improving storage characteristics with little reduction in discharge capacity when left untreated.
[0010]
In addition, when the present invention is used as a positive electrode active material of a non-aqueous electrolyte secondary battery, there is little decrease in discharge capacity when the secondary battery is left, and the secondary battery has good storage characteristics. An object of the present invention is to provide a method for producing a suitable active material.
[0011]
[Means for Solving the Problems]
Active material of the present invention, LiNi a Co b M c O 2 ( where, a + b + c = 1 ; 0 ≦ c ≦ 0.5; M is, Mn, Fe, Zn, Ti , Cr, Mg, Al, Cu, Ga At least one selected from the group consisting of AlX (SO 4 ) 2 (X is at least one selected from Na, K, Rb, Cs, and NH 4 ).
[0012]
When such an active material is used as the positive electrode active material of a non-aqueous electrolyte secondary battery, the secondary battery has a low self-discharge rate and the storage characteristics of the secondary battery are improved. Note that this is, LiNi a Co b active portion of M c O 2 is reduced, the reaction between the positive electrode active material and the electrolytic solution is suppressed, is considered to be because the degradation of the positive electrode is suppressed. Further, depending on the amount of M added to LiNi a Co b M c O 2 , the charge / discharge capacity may decrease, and the amount of M added is preferably in the range of 0 ≦ c ≦ 0.5.
[0013]
Furthermore, in the active material of the present invention, when the content of the AlX (SO 4 ) 2 is 1.5 mol% or more and 20 mol% or less with respect to the LiNi a Co b M c O 2 , When used as a positive electrode active material for an electrolyte secondary battery, the self-discharge rate of the secondary battery is significantly reduced.
[0014]
Furthermore, in the active material of the present invention, the content of the AlX (SO 4 ) 2 is 3 mol% or more and 10 mol% or less with respect to the LiNi a Co b M c O 2 . When used as a positive electrode active material for a secondary battery, the self-discharge rate of the secondary battery is further greatly reduced.
Moreover, the active material of this invention WHEREIN: When the said heat processing temperature is 100 degreeC or more and 300 degrees C or less, the self-discharge rate of a secondary battery falls significantly.
[0015]
Moreover, since the AlX (SO 4 ) 2 coats the surface of the LiNi a Co b M c O 2 , the active material of the present invention has a sufficient reaction between the LiNi a Co b M c O 2 and the electrolyte. It is suppressed.
[0016]
The electrode of the present invention is characterized by having the above-described active material.
[0017]
When the electrode having such a configuration is used as a positive electrode of a non-aqueous electrolyte secondary battery, the self-discharge rate of the secondary battery is small, and the storage characteristics of the secondary battery are improved.
[0018]
The non-aqueous electrolyte secondary battery of the present invention is characterized by using the above electrode as a positive electrode.
[0019]
The non-aqueous electrolyte secondary battery having such a configuration has a small self-discharge rate and good storage characteristics.
[0020]
In addition, as a solute of the electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention, LiPF 6 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 or the like can be used, but is not limited to this.
[0021]
In addition, as a solvent for the electrification solution of the non-aqueous electrolyte secondary battery of the present invention, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, 1,2-dimethoxyethane, tetrahydrofuran, 1,3- Although dioxolane etc. can be used, it is not limited to this.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0026]
[Preparation of positive electrode active material]
AlK (SO 4 ) 2 .12H 2 O was mixed with LiCoO 2 at 5 mol% and heat-treated at 250 ° C. for 2 hours to prepare a positive electrode active material.
[0027]
[Preparation of positive electrode]
The positive electrode active material, carbon powder as a conductive agent, and polytetrafluoroethylene as a binder were mixed at a weight ratio of 80:10:10 to obtain a positive electrode mixture.
[0028]
Next, this mixture was pressure-molded and vacuum-dried at 100 ° C. for 2 hours to produce a positive electrode.
[0029]
[Preparation of negative electrode]
A lithium-aluminum alloy was punched out to a predetermined size to produce a negative electrode.
[0030]
[Preparation of electrolyte]
LiPF 6 was dissolved at a ratio of 1M in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to prepare an electrolytic solution.
[0031]
[Battery assembly]
A positive electrode having a substantially U-shaped cross section in which the negative electrode is fixed to an inner bottom surface of a negative electrode can having a substantially U-shaped cross section, and the positive electrode is fixed via a separator impregnated with an electrolyte prepared in the volume ratio described above. A can was placed to produce Battery A0. As the separator, an ion-permeable polypropylene microporous membrane was used.
[0032]
(Experiment 1 (Reference Experiment) )
The types of AlX (SO 4 ) 2 contained in the positive electrode active material were examined by producing the following batteries A1 to A4.
[0033]
In preparing the positive electrode active material, AlK (SO 4) to 2 · 12H 2 O Instead, except for using AlNa (SO 4) 2 · 12H 2 O , in the same manner as the battery A0, a battery was prepared A1.
[0034]
In preparing the positive electrode active material, AlK (SO 4) to 2 · 12H 2 O Instead, except for using AlRb (SO 4) 2 · 12H 2 O , in the same manner as the battery A0, a battery was prepared A2.
[0035]
In preparing the positive electrode active material, AlK (SO 4) to 2 · 12H 2 O Instead, except for using AlCs (SO 4) 2 · 12H 2 O , in the same manner as the battery A0, a battery was prepared A3.
[0036]
The battery A4 was prepared in the same manner as the battery A0 except that Al (NH 4 ) (SO 4 ) 2 · 12H 2 O was used instead of AlK (SO 4 ) 2 · 12H 2 O in the production of the positive electrode active material. Produced.
[0037]
In the preparation of the positive electrode, instead of using AlK (SO 4) 2 · 12H 2 LiCoO 2 which O was mixed and heat treated, except that LiCoO 2 was used was prepared comparative battery X0 in the same manner as the battery A0.
[0038]
The batteries A0 to A4 and the comparative battery X0 were charged to a battery voltage of 4.2 V with a constant current of 10 mA, then discharged to 3.0 V with a discharge resistance of 1 kΩ, and the discharge capacity was measured. Next, after charging to a battery voltage of 4.2 V at a constant current of 10 mA and storing it in a constant temperature bath at 80 ° C. for 60 days, discharging to a battery voltage of 2.7 V with a discharge resistance of 1 kΩ and measuring the discharge capacity after storage The self-discharge rate was calculated based on the following equation (1). The results are shown in Table 1 below.
[0039]
[Expression 1]
[0040]
[Table 1]
[0041]
As can be seen from Table 1, in LiCoO 2 , AlK (SO 4 ) 2 , AlNa (SO 4 ) 2 , AlRb (SO 4 ) 2 , AlCs (SO 4 ) 2 , or Al (NH 4 ) (SO 4 ) 2 In comparison with the comparative battery X0, the batteries A0 to A4 containing the battery have a significantly lower self-discharge rate and excellent storage characteristics.
[0042]
(Experiment 2)
The following batteries B2, B8 to B13 , Y2, and Y8 to Y13 were prepared and examined with respect to the types of lithium-containing composite oxides when the positive electrode active material was prepared.
[0044]
In the preparation of the positive electrode active material, except that the LiNi 0.5 Co 0.5 O 2 instead of using LiCoO 2, similarly to the battery A0, a battery was prepared B2.
[0050]
Instead of using LiCoO 2 in the production of the positive electrode active material, LiNi 0.5 Ti 0 . A battery B8 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0051]
Instead of using LiCoO 2 in the production of the positive electrode active material, LiNi 0.5 Cr 0 . A battery B9 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0052]
Instead of using LiCoO 2 in the production of the positive electrode active material, LiNi 0.5 Mg 0 . A battery B10 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0053]
Instead of using LiCoO 2 in the production of the positive electrode active material, LiNi 0.5 Al 0 . A battery B11 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0054]
Instead of using LiCoO 2 in the production of the positive electrode active material, LiNi 0.5 Cu 0 . A battery B12 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0055]
LiNi 0.5 Ga 0 instead of using LiCoO 2 in the production of the positive electrode active material. A battery B13 was produced in the same manner as the battery A0, except that 5 O 2 was used.
[0056]
Comparative batteries Y2 and Y8 to Y13 were prepared in the same manner as batteries B2 and B8 to B13, respectively , except that in the production of the positive electrode active material, AlX (SO 4 ) 2 was not contained in the lithium-containing composite oxide. .
[0057]
Self-discharge rates were calculated for the above-described batteries B2, B8 to B13 and comparative batteries Y2, Y8 to Y13 . The results are shown in Table 2. The method for calculating the self-discharge rate is the same as in Experiment 1.
[0058]
[Table 2]
[0059]
As can be seen from Table 2, the batteries B2 and B8 to B13 have a smaller self-discharge rate and excellent storage characteristics than the comparative batteries Y2 and Y8 to Y13 . That, LiNi a Co b M c O 2 ( where, 0 ≦ a <1,0 ≦ b <1, a + b + c = 1; 0 ≦ c ≦ 0.5; M is, Ti, Cr, Mg, Al , Cu, A non-aqueous electrolyte secondary battery using an active material containing AlX (SO 4 ) 2 in at least one selected from Ga ) as a positive electrode has a low self-discharge rate and excellent storage characteristics. I understand.
[0060]
That is, from Table 1 and Table 2, LiNi a Co b M c O 2 ( where, 0 ≦ a <1,0 ≦ b <1, a + b + c = 1; 0 ≦ c ≦ 0.5; M is, Ti, Cr , Mg, Al, Cu, Ga ), AlK (SO 4 ) 2 , AlNa (SO 4 ) 2 , AlRb (SO 4 ) 2 , AlCs (SO 4 ) 2 , or Al (NH 4 ) When an active material containing (SO 4 ) 2 is used for the positive electrode of a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery has a reduced self-discharge rate and improved storage characteristics. It is clear to do.
[0061]
(Experiment 3 (Reference Experiment) )
Regarding the content of AlX (SO 4 ) 2 in the positive electrode active material, the following batteries C1 to C10 were prepared and examined.
[0062]
A battery C1 was produced in the same manner as the battery A0 except that, in the production of the positive electrode active material, 1.2 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0063]
A battery C2 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 1.5 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0064]
A battery C3 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 2.5 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0065]
A battery C4 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 3.0 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0066]
A battery C5 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 7 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0067]
A battery C6 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 10 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0068]
A battery C7 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 12 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0069]
A battery C8 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 15 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0070]
A battery C9 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, 20 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0071]
A battery C10 was produced in the same manner as the battery A0, except that in the production of the positive electrode active material, 22 mol% was mixed instead of 5 mol% of AlK (SO 4 ) 2 .12H 2 O.
[0072]
In preparation of the positive electrode active material, a basic cobalt carbonate obtained by reacting a cobalt sulfate aqueous solution and a sodium bicarbonate aqueous solution, filtering the precipitate, washing with water and drying was heat-treated at 400 ° C. to obtain cobalt trioxide. This cobalt trioxide is mixed with lithium carbonate at a predetermined ratio and reacted at 900 ° C. to produce LiCoO 2 (containing 0.8 mol% sulfate radical; equivalent to 0.4 mol% in (SO 4 ) 2 ). did. A comparative battery Z1 was produced in the same manner as the battery A0 except that this positive electrode active material was produced. The comparative battery Z1 corresponds to the battery disclosed in Japanese Patent Laid-Open No. 9-245787.
[0073]
Self-discharge rates were calculated for the batteries A0 and C1 to C10 and the comparative batteries X0 and Z1. The results are shown in Table 3. The method for calculating the self-discharge rate is the same as in Experiment 1.
[0074]
[Table 3]
[0075]
As can be seen from Table 3, when the content of AlK (SO 4 ) 2 is 1.5 mol% or more and 20 mol% or less, the self-discharge rate is drastically decreased as compared with comparative batteries X0 and Z1, and the storage characteristics It is good. In particular, when the content is 3.0 mol% or more and 10 mol% or less, the self-discharge rate is further lowered and the storage characteristics are further improved. In addition, when the content of AlK (SO 4 ) 2 is 22 mol%, the decrease in the self-discharge rate is small because AlK (SO 4 ) 2 acts as an impurity and the self-discharge rate is increased.
[0076]
In place of AlK (SO 4 ) 2 , AlNa (SO 4 ) 2 , AlRb (SO 4 ) 2 , AlCs (SO 4 ) 2 , or Al (NH 4 ) (SO 4 ) 2 used in Experiment 1 is used. If used, also, in place of LiCoO 2, lithium-containing composite oxide was used in experiment 2 LiNi a Co b M c O 2 ( where, 0 ≦ a <1,0 ≦ b <1, a + b + c = 1; 0 ≦ c ≦ 0.5; M is at least one selected from Ti, Cr, Mg, Al, Cu, and Ga ). As a result of examining the content of AlX (SO 4 ) 2 , Similar results as in Table 3 were obtained.
[0077]
(Experiment 4 (Reference Experiment) )
The following battery D1-D5 was produced and examined about the heat processing temperature at the time of producing a positive electrode active material.
[0078]
A battery D0 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 80 ° C. instead of heat treatment at 250 ° C.
[0079]
A battery D1 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 100 ° C. instead of heat treatment at 250 ° C.
[0080]
A battery D2 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 150 ° C. instead of heat treatment at 250 ° C.
[0081]
A battery D3 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 200 ° C. instead of heat treatment at 250 ° C.
[0082]
A battery D4 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 300 ° C. instead of heat treatment at 250 ° C.
[0083]
A battery D5 was produced in the same manner as the battery A0 except that in the production of the positive electrode active material, heat treatment was performed at 350 ° C. instead of heat treatment at 250 ° C.
[0084]
[Table 4]
[0085]
As can be seen from Table 4, when the heat treatment temperature is in the range of 100 ° C. or higher and 300 ° C. or lower, the self-discharge rate is greatly reduced and the storage characteristics are particularly excellent. This is presumably because the surface of LiCoO 2 is satisfactorily covered with AlK (SO 4 ) 2 and the reaction between LiCoO 2 and the electrolyte is sufficiently suppressed.
[0086]
【The invention's effect】
According to the present invention, when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, there is little decrease in discharge capacity when the secondary battery is left, and the storage characteristics of the secondary battery are improved. A suitable active material can be provided.
[0087]
In addition, according to the present invention, when used as a positive electrode of a non-aqueous electrolyte secondary battery, there is little decrease in discharge capacity when the secondary battery is left, and the storage characteristics of the secondary battery are improved. A suitable electrode can be provided.
[0088]
In addition, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery suitable for improving storage characteristics with little reduction in discharge capacity when left untreated.
[0089]
According to the present invention, when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, there is little decrease in discharge capacity when the secondary battery is left, and the storage characteristics of the secondary battery are improved. A method for producing a suitable active material can be provided.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17697499A JP3649953B2 (en) | 1999-06-23 | 1999-06-23 | Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material |
US09/597,095 US6368749B1 (en) | 1999-06-23 | 2000-06-20 | Active substances, electrodes, nonaqueous electrolyte secondary cells, and a process for fabricating the active substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17697499A JP3649953B2 (en) | 1999-06-23 | 1999-06-23 | Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001006672A JP2001006672A (en) | 2001-01-12 |
JP3649953B2 true JP3649953B2 (en) | 2005-05-18 |
Family
ID=16022975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17697499A Expired - Fee Related JP3649953B2 (en) | 1999-06-23 | 1999-06-23 | Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material |
Country Status (2)
Country | Link |
---|---|
US (1) | US6368749B1 (en) |
JP (1) | JP3649953B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8241791B2 (en) | 2001-04-27 | 2012-08-14 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
KR20160033003A (en) * | 2014-09-17 | 2016-03-25 | 주식회사 엘지화학 | Cathode active material, and a lithium secondary battery comprising the same |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4995382B2 (en) * | 2001-07-05 | 2012-08-08 | 日本化学工業株式会社 | Lithium cobalt complex oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery |
JP4635386B2 (en) * | 2001-07-13 | 2011-02-23 | 株式会社Gsユアサ | Positive electrode active material and non-aqueous electrolyte secondary battery using the same |
US20030108793A1 (en) * | 2001-08-07 | 2003-06-12 | 3M Innovative Properties Company | Cathode compositions for lithium ion batteries |
WO2003038931A1 (en) * | 2001-10-29 | 2003-05-08 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery |
US20040121234A1 (en) * | 2002-12-23 | 2004-06-24 | 3M Innovative Properties Company | Cathode composition for rechargeable lithium battery |
DE602004017798D1 (en) * | 2003-02-21 | 2009-01-02 | Toyota Motor Co Ltd | Active material for the positive electrode of a nonaqueous electrolyte secondary battery |
US7211237B2 (en) * | 2003-11-26 | 2007-05-01 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
WO2011125722A1 (en) | 2010-04-01 | 2011-10-13 | 三菱化学株式会社 | Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery |
JP5152246B2 (en) * | 2010-04-23 | 2013-02-27 | 株式会社豊田自動織機 | Cathode active material for lithium ion secondary battery and lithium ion secondary battery |
CA2916900C (en) | 2013-07-09 | 2018-12-11 | Dow Global Technologies Llc | Mixed positive active material comprising lithium metal oxide and lithium metal phosphate |
JP2017500685A (en) | 2013-10-24 | 2017-01-05 | ダウ グローバル テクノロジーズ エルエルシー | Improved lithium metal oxide cathode materials and methods for making them |
JP6835593B2 (en) | 2014-05-27 | 2021-02-24 | ダウ グローバル テクノロジーズ エルエルシー | Improved Lithium Metal Oxide Cathode Materials and Their Fabrication Methods |
CN107004856B (en) | 2014-12-18 | 2021-06-04 | 陶氏环球技术有限责任公司 | Lithium ion battery with improved thermal stability |
CN110707298B (en) * | 2018-07-10 | 2021-11-12 | 比亚迪股份有限公司 | Cathode material, preparation method thereof, lithium ion battery and vehicle |
CN110707296B (en) * | 2018-07-10 | 2021-05-14 | 比亚迪股份有限公司 | Cathode material, preparation method thereof, lithium ion battery and vehicle |
CN110707297B (en) * | 2018-07-10 | 2021-05-14 | 比亚迪股份有限公司 | Cathode material, preparation method thereof, lithium ion battery and vehicle |
FI3994749T3 (en) * | 2019-07-03 | 2023-06-28 | Umicore Nv | Lithium nickel manganese cobalt composite oxide as a positive electrode active material for rechargeable lithium ion batteries |
JP7477539B2 (en) * | 2019-07-03 | 2024-05-01 | ユミコア | Lithium nickel manganese cobalt composite oxide as a positive electrode active material for rechargeable lithium-ion batteries |
TWI747735B (en) | 2021-02-08 | 2021-11-21 | 台灣立凱電能科技股份有限公司 | Particle structure of cathode material and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5034291A (en) * | 1989-08-16 | 1991-07-23 | Rayovac Corporation | Aluminum compound additives to reduce zinc corrosion in anodes of electrochemical cells |
JP3192945B2 (en) | 1995-10-13 | 2001-07-30 | 三洋電機株式会社 | Lithium secondary battery |
JPH09245787A (en) | 1996-03-07 | 1997-09-19 | Kansai Shokubai Kagaku Kk | Positive electrode active material for lithium secondary battery |
-
1999
- 1999-06-23 JP JP17697499A patent/JP3649953B2/en not_active Expired - Fee Related
-
2000
- 2000-06-20 US US09/597,095 patent/US6368749B1/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8241791B2 (en) | 2001-04-27 | 2012-08-14 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
US8685565B2 (en) | 2001-04-27 | 2014-04-01 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
KR20160033003A (en) * | 2014-09-17 | 2016-03-25 | 주식회사 엘지화학 | Cathode active material, and a lithium secondary battery comprising the same |
KR101868663B1 (en) * | 2014-09-17 | 2018-06-18 | 주식회사 엘지화학 | Cathode active material, and a lithium secondary battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
US6368749B1 (en) | 2002-04-09 |
JP2001006672A (en) | 2001-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3649953B2 (en) | Active material, electrode, non-aqueous electrolyte secondary battery, and method for producing active material | |
JP5430920B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4020565B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4660164B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4721729B2 (en) | Nonaqueous electrolyte secondary battery | |
CN100454652C (en) | Nonaqueous electrolyte secondary battery and producing method thereof | |
JP4841133B2 (en) | Nonaqueous electrolyte secondary battery | |
US20050266316A1 (en) | Non-aqueous electrolyte secondary battery | |
CN106663805A (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
KR20160138048A (en) | Precursor of positive electrode active material for nonaqueous electrolyte secondary cell, method of producing said precursor, positive electrode active material for nonaqueous electrolyte secondary cell, and method for manufacturing said material | |
KR20060042201A (en) | Lithium secondary battery | |
KR101255853B1 (en) | Nonaqueous electrolyte secondary battery | |
JPH09330720A (en) | Lithium battery | |
CN107819155A (en) | The manufacture method and nonaqueous electrolytic solution secondary battery of nonaqueous electrolytic solution secondary battery | |
CN106663804A (en) | Positive-electrode active material for nonaqueous-electrolyte secondary battery | |
JPH10289731A (en) | Nonaqueous electrolytic battery | |
JP3649996B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery | |
JP4297709B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3349399B2 (en) | Lithium secondary battery | |
JP4259900B2 (en) | Lithium secondary battery | |
CN106104860A (en) | Positive electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery | |
JP3723444B2 (en) | Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JPH1173999A (en) | Nonaqueous secondary battery | |
JP3625679B2 (en) | Lithium secondary battery | |
JP3408152B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |