JP3649598B2 - 濃縮オゾン発生装置 - Google Patents

濃縮オゾン発生装置 Download PDF

Info

Publication number
JP3649598B2
JP3649598B2 JP24121098A JP24121098A JP3649598B2 JP 3649598 B2 JP3649598 B2 JP 3649598B2 JP 24121098 A JP24121098 A JP 24121098A JP 24121098 A JP24121098 A JP 24121098A JP 3649598 B2 JP3649598 B2 JP 3649598B2
Authority
JP
Japan
Prior art keywords
ozone
hydrogen
separator
electrolytic cell
side separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24121098A
Other languages
English (en)
Other versions
JP2000073194A (ja
Inventor
香 和田
徳一 峰尾
順 泉
昭典 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24121098A priority Critical patent/JP3649598B2/ja
Publication of JP2000073194A publication Critical patent/JP2000073194A/ja
Application granted granted Critical
Publication of JP3649598B2 publication Critical patent/JP3649598B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水を電気分解してオゾンを発生させる濃縮オゾン発生装置に関する。
【0002】
【従来の技術】
水を電気分解して高濃度のオゾンを発生させる従来の濃縮オゾン発生装置の一例の概略構成を図4に示す。
【0003】
図4に示すように、原料水1を電気分解して酸素2やオゾン3を発生させる電解槽110の原料水1の受入口には、送給ポンプ121が配管122を介して連結されている。未反応の原料水1や酸素2およびオゾン3を送出する電解槽110の送出口には、当該原料水1と酸素2およびオゾン3とを分離する気液分離容器125が配管123を介して連結されている。原料水1の電解により発生した水素4を送出する電解槽110の送出口には、図示しない水素回収装置が配管124を介して連結されている。
【0004】
前記気液分離容器125の下部には、分離した原料水1を配管122に再び送給する配管126が連結されている。配管126には、保圧バルブ147が設けられている。気液分離容器125の上部には、分離した酸素2およびオゾン3を高圧(約10kg/cm2 )で送給する高圧ポンプ128が配管127を介して連結されている。高圧ポンプ128の送出口には、配管129の一端が連結されている。配管129の他端には、バルブ132,133を有する配管130,131の一端がそれぞれ連結されている。
【0005】
配管130,131の基端には、酸素2を吸着することなく通過させる一方、オゾン3を所定量吸着したら放出する吸着剤を内部に充填した吸着剤槽134,135がそれぞれ連結されている。吸着剤槽134,135の送出口には、バルブ138,139配管136,137の一端がそれぞれ連結されている。これら配管136,137の他端は、配管140に連結されている。これら配管136,137の上記バルブ138,139の上流側部分には、バルブ143,144および保圧バルブ145,146を有するを有する配管141,142の一端がそれぞれ連結されている。
【0006】
このような濃縮オゾン発生装置の作用を次に説明する。
バルブ132,143を開けると共に、バルブ133,138,139,144を閉じ、送給ポンプ121および高圧ポンプ128を作動すると、原料水1が電解槽110に送給されて酸素2およびオゾン3と水素4とに電解され、水素4が配管124を介して前記水素回収装置に回収され、未反応の原料水1と酸素2およびオゾン3が配管123を介して気液分離容器125内に流入して原料水1と酸素2およびオゾン3とに分離され、当該原料水1が配管126、保圧バルブ147を介して送給ポンプ121により電解槽110内に再び送給される。
【0007】
一方、酸素2およびオゾン3は、配管127を流通して高圧ポンプ128により高圧(約10kg/cm2 )で送給され、配管129,130、バルブ132を介して吸着剤槽134内に高圧状態で流入すると、オゾン3が吸着剤槽134内の上記吸着剤に吸着される一方、酸素2が当該吸着剤に吸着されることなく吸着剤槽134を通過し、配管141、保圧バルブ145、バルブ143を介して大気圧下に放出される。
【0008】
このようにして前記吸着剤にオゾン3が所定量以上吸着されたら、バルブ133,138,144を開けると共に、バルブ132,139,143を閉じることにより、高圧ポンプ128からの酸素2およびオゾン3が配管129,131、バルブ133を介して吸着剤槽135内に高圧状態で流入し、上述と同様にして、オゾン3が吸着剤槽135内の上記吸着剤に吸着される一方、酸素2が当該吸着剤に吸着されることなく吸着剤槽135を通過し、配管142、保圧バルブ146、バルブ144を介して大気圧下に放出される。
【0009】
また、前記吸着剤槽134内の前記吸着剤に吸着されていたオゾン3は、上記バルブ138の開放に伴って当該吸着剤から離脱して吸着剤槽134から高濃度で送出され、配管136、バルブ138、配管140を介して外部に濃縮状態(オゾン濃度:20〜80%、通常40%程度)で送出される。
【0010】
このようにして上記吸着剤槽134内からオゾン3を濃縮して送出すると共に、上記吸着剤槽135内でオゾン3を吸着保持したら、バルブ132,143,144を開けると共に、バルブ133,138,139を閉じることにより、吸着剤槽134でオゾン3を吸着保持する一方、吸着剤槽135からオゾン3を高濃度で放出する。
【0011】
以上の操作を繰り返すことにより、オゾン3を濃縮して連続的に送出することができる。
【0012】
【発明が解決しようとする課題】
前述したような濃縮オゾン発生装置では、原料水1を電解槽110に送給ポンプ121で送給し、当該電解槽110で発生した酸素2およびオゾン3を高圧ポンプ128でさらに送給する必要があるため、運転にかかるコストが高くなってしまっていた。
【0013】
このようなことから、本発明は、運転コストを抑えることができる濃縮オゾン発生装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
前述した課題を解決する本発明による濃縮オゾン発生装置は、円盤状のイオン交換膜を円盤状のオゾン極および円盤状の水素極で挟んだ電解セルを円盤状のオゾン側セパレータおよび円盤状の水素側セパレータで挟んでなり、前記オゾン側セパレータと前記水素側セパレータとの周縁側の対向面間にOリングが配設されると共に、前記オゾン側セパレータと前記水素側セパレータとの周縁側の隙間にシール剤が充填され、前記電解セルの前記イオン交換膜の周縁側が前記オゾン側セパレータまたは前記水素側セパレータに融着剤を介して融着している電解槽と、前記電解槽に原料水を高圧で送給する高圧ポンプと、前記電解槽から送出された未反応の前記原料水と酸素およびオゾンとを高圧状態下で分離する気液分離手段と、高圧状態で送給された前記オゾンを吸着保持する一方、前記酸素を通過させ、圧力開放することにより、吸着保持した当該オゾンを離脱させて放出する高シリカペンタシルゼオライト、脱アルミニウムフォージャサイト、メソポーラスシリケートのうちのいずれかからなる吸着剤を備えたオゾン濃縮手段とを備えてなることを特徴とする。
【0018】
上述した濃縮オゾン発生装置において、前記電解槽の前記イオン交換膜の融着する前記オゾン側セパレータまたは前記水素側セパレータの面に窪が形成されていることを特徴とする。
【0019】
上述した濃縮オゾン発生装置において、前記融着剤がフッ素樹脂、水ガラス、前記イオン交換膜の液状物のうちのいずれかであることを特徴とする。
【0021】
【発明の実施の形態】
本発明による濃縮オゾン発生装置の実施の形態を図1〜3を用いて説明する。なお、図1は、濃縮オゾン発生装置の概略構成図、図2は、図1の電解槽の要部の構造を表す断面図、図3は、図2の矢線 III部の抽出拡大図である。
【0022】
図1に示すように、原料水1を電気分解して酸素2やオゾン3を発生させる電解槽10の原料水1の受入口には、原料水1を高圧(約10kg/cm2 )で送給する高圧ポンプ21が配管22を介して連結しており、当該電解槽10は、図2,3に示すような構造をなしている。
【0023】
図2に示すように、円盤状をなすイオン交換膜11は、当該イオン交換膜11よりも小径の円盤状をなす多孔質性のオゾン極12および水素極13で挟まれている。このようなイオン交換膜11、オゾン極12、水素極13などにより、本実施の形態では電解セルが構成されている。
【0024】
上記電解セルは、オゾン極12側が、円盤状をなすオゾン側セパレータ15で挟まれ、水素極13側が、円盤状をなす水素側セパレータ16で挟まれている。水素極13と水素側セパレータ16との間には円盤状をなすスペーサ14が介在している。
【0025】
前記水素側セパレータ16には、水素極13と外部とを連通する流通路16aが形成されている。図2,3に示すように、水素側セパレータ16の水素極13との当接面の周縁沿いには、溝16bが周方向にわたって形成されている。この水素側セパレータ16の当該溝16b内には、NBRなどの合成ゴムなどからなるOリング17が嵌め込まれている。すなわち、Oリング17は、イオン交換膜11の周縁寄りをオゾン側セパレータ15側に押し付けるようにオゾン側セパレータ15と水素側セパレータとの周縁側の対向面間に配設されてるのである。
【0026】
一方、前記オゾン側セパレータ15には、オゾン極12と外部とを連通する流通路15a(前記高圧ポンプ21の連結部分)が形成されている。オゾン側セパレータ15の水素側セパレータ16との対向面の周縁沿いには、凹状をなす窪15bが当該周縁に沿って複数形成されている。このオゾン側セパレータ15の上記窪15b部分とイオン交換膜11の周縁側との間には、フッ素樹脂からなる融着剤18が介在しており、オゾン側セパレータ15の周縁側とイオン交換膜11の周縁側とは、当該融着剤18により融着されている。
【0027】
また、前記水素側セパレータ16の周縁端のオゾン側セパレータ15側には、スリーブ16cが形成されており、当該スリーブ16c内に上記オゾン側セパレータ15の当該水素側セパレータ16側が差し込まれている。当該スリーブ16cの内周面とオゾン側セパレータ15の外周面との隙間には、フッ素樹脂ペーストなどのようなシール剤19が充填されている。すなわち、シール剤19は、オゾン側セパレータ15と水素側セパレータ16との周縁側の隙間を密閉しているのである。これらオゾン側セパレータ15と水素側セパレータ16とは、周方向に沿って一定間隔ごとに図示しないボルト等により締結固定されると共に、図示しない電源に電気的に接続されている。
【0028】
よって、前記電源を作動すると共に、高圧ポンプ21から電解槽10のオゾン側セパレータ15の流通路15a内に原料水1を高圧で送給すると、電解槽10は、原料水1を電解して、オゾン極12側から酸素2およびオゾン3を発生させて未反応の原料水1と共に流通路15aから高圧で送出させると共に、水素極13側から水素4を発生させて水素側セパレータ16の流通路16aから高圧で送出させることが十分にできるのである。
【0029】
なぜなら、電解槽10は、▲1▼円盤状をなすと共に周方向に沿って一定間隔ごとに締結固定されているためオゾン側セパレータ15と水素側セパレータ16との間の面圧が四角形の場合と比べてムラなく均等になる▲2▼周縁端がOリング17でシールされているためガスケット等と比べて面圧が高くシール性が高い▲3▼イオン交換膜11の周縁側がオゾン側セパレータ15の周縁側に融着剤18を介して融着しているため高気密性を維持できる▲4▼オゾン側セパレータ15の周縁寄りに窪15bが形成されているため融着剤18のオゾン側セパレータ15に対する融着性が高く高気密性を維持できる▲5▼オゾン側セパレータ15と水素側セパレータ16との周縁側の隙間にシール剤19が充填されているため当該隙間の気密性が高いからである。
【0030】
また、図1に示すように、未反応の原料水1や酸素2およびオゾン3を送出する電解槽10の送出口(前記オゾン側セパレータ15の流通路15a部分)には、当該原料水1と酸素2およびオゾン3とを分離する気液分離手段である気液分離容器25が配管23を介して連結されている。原料水1の電解により発生した水素4を送出する電解槽10の送出口(前記水素側セパレータ16の流通路16a部分)には、調圧弁24aを有する配管24を介して図示しない水素回収装置が連結されている。
【0031】
気液分離容器25の下部には、分離した原料水1を配管22に再び送給する配管26が連結されている。配管26には、保圧バルブ47が設けられている。気液分離容器25の上部には、分離した酸素2およびオゾン3を送給する配管27の一端が連結されている。配管27の他端には、バルブ32,33を有する配管30,31の一端がそれぞれ連結されている。
【0032】
配管30,31の基端には、オゾン3を吸着保持する一方、酸素2を吸着することなく通過させる吸着剤を内部に充填した吸着剤槽34,35がそれぞれ連結されている。この吸着剤槽34,35に充填される吸着剤としては、シリカゲル、高シリカペンタシルゼオライト(シリカライトまたはSiO2 /Al2 3 比が高いZSM−5)、脱アルミニウムフォージャサイト(超安定Y型ゼオライト:USY)、メソポーラスシリケート(MCM−41、FSM−16、テトラエトキシシランをシリカ源とする低温酸性合成メソポーラスシリケート▲1▼、低分子珪酸をシリカ源とする低温酸性合成メソポーラスシリケート▲2▼など)等の高シリカ吸着剤が挙げられる。
【0033】
これらの高シリカ吸着剤のうち、シリカゲルは、オゾン3の吸着能力が比較的低く、水に対する耐性も低いが、高シリカペンタシルゼオライトや脱アルミニウムフォージャサイトやメソポーラスシリケートなどは、オゾンの吸着能力が比較的高く、水に対する耐性も高いため、非常に好ましい。
【0034】
なお、高シリカペンタシルゼオライトは、シリカ源として珪酸ナトリウムやヒュームドシリカを用い、有機テンプレートとしてテトラプロピルアンモニウムブロミドを用い、150〜180℃程度で水熱合成を行うことにより得られる(SiO2 /Al2 3 比:10〜1000程度)。
【0035】
また、脱アルミニウムフォージャサイトは、Na−Y型ゼオライト(SiO2 /Al2 3 比:5程度)をアンモニア水で処理し、ゼオライトの骨格をなすAlの大半を除去することにより得られる(SiO2 /Al2 3 比:10〜400)。
【0036】
また、メソポーラスシリケートは、10〜1000Åのメソ孔を有するシリカ系多孔質体であって、その製造条件等により、SiO2 /Al2 3 比が10程度から、実質的にSiO2 のみのタイプまで得ることができる。
【0037】
例えば、MCM−41は、モービル社により開発されたものであり、シリカ源として水ガラスや珪酸ナトリウムなどを用い、有機テンプレートとしてカチオン系界面活性剤(炭素数8以上)を用い、温度140℃、pH13.5で製造することにより得られる(比表面積:1600m2 /g程度,SiO2 /Al2 3 比:1000程度)。
【0038】
FMS−16は、黒田、稲垣等により開発され、カネマイトにカチオン系界面活性剤をインターカレーションすることによりMCM−41と類似した構造をなすものが得られる(SiO2 /Al2 3 比:1000程度)。
【0039】
低温酸性合成メソポーラスシリケート▲1▼は、stucky等により提唱された方法、すなわち、シリカ源としてテトラエトキシシラン(TEOS)を用い、有機テンプレートとしてカチオン系界面活性剤を用い、室温下、pH1以下で合成することにより得られ、その合成条件等により、SiO2 /Al2 3 比を10程度から実質的にSiO2 のみにまで調整可能である。
【0040】
低温酸性合成メソポーラスシリケート▲2▼は、本発明者等により開発された方法、すなわち、縮重合したシリカを含まない珪酸をシリカ源として用い、カチオン系界面活性剤を有機テンプレートとして用い、室温下、pH1以下で合成することにより得られ、その合成条件等により、SiO2 /Al2 3 比を10程度から実質的にSiO2 のみにまで調整可能である。
【0041】
図1に示すように、吸着剤槽34,35の送出口には、バルブ38,39を有する配管36,37の一端がそれぞれ連結されている。これら配管36,37の他端は、配管40に連結されている。これら配管36,37の上記バルブ38,39の上流側部分には、バルブ43,44および保圧バルブ45,46を有する配管41,42の一端がそれぞれ連結されている。
【0042】
なお、本実施の形態では、配管30,31,36,37,40,41,42、バルブ32,33,38,39,43,44、吸着剤槽34,35、保圧バルブ45,46などによりオゾン濃縮手段を構成している。
【0043】
このような濃縮オゾン発生装置の作用を次に説明する。
バルブ32,43を開けると共に、バルブ33,38,39,44を閉じ、前記電源および高圧ポンプ21を作動すると、原料水1が電解槽10に高圧(約10kg/cm2 )で送給され、先に説明したように、電解槽10内で高圧環境下で酸素2およびオゾン3と水素4とに電解されて、水素4が配管24を介して大気圧下で前記水素回収装置に回収される一方、未反応の原料水1と酸素2およびオゾン3が配管23を介して気液分離容器25内に高圧で流入して原料水1と酸素2およびオゾン3とに分離され、当該原料水1が配管26、保圧バルブ47を介して高圧ポンプ21により電解槽10内に再び送給される。
【0044】
一方、酸素2およびオゾン3は、高圧で配管27を流通して送給され、配管30、バルブ32を介して吸着剤槽34内に高圧状態で流入すると、オゾン3が吸着剤槽34内の上記吸着剤に吸着される一方、酸素2が当該吸着剤に吸着されることなく吸着剤槽34を通過し、配管41、保圧バルブ45、バルブ43を介して大気圧下に放出される。
【0045】
このようにして前記吸着剤がオゾン3を所定量吸着したら、バルブ33,38,44を開けると共に、バルブ32,39,43を閉じることにより、気液分離容器25からの酸素2およびオゾン3が配管27,31、バルブ33を介して吸着剤槽35内に高圧状態で流入し、上述と同様にして、オゾン3が吸着剤槽35内の上記吸着剤に吸着される一方、酸素2が当該吸着剤に吸着されることなく吸着剤槽35を通過し、配管42、保圧バルブ46、バルブ44を介して大気圧下に放出される。
【0046】
また、前記吸着剤槽34内の前記吸着剤に吸着されていたオゾン3は、上記バルブ43の開放に伴って当該吸着剤から離脱して吸着剤槽34から高濃度(オゾン濃度:20〜80%、通常40%程度)で放出され、配管36、バルブ38、配管40を介して外部に濃縮された状態で送出される。
【0047】
このようにして上記吸着剤槽34内からオゾン3を濃縮して送出すると共に、上記吸着剤槽35内でオゾン3を所定量吸着保持したら、バルブ32,43,44を開けると共に、バルブ33,38,39を閉じることにより、吸着剤槽34でオゾン3を吸着保持する一方、吸着剤槽35からオゾン3を高濃縮で放出する。
【0048】
以上の操作を繰り返すことにより、オゾン3を連続的に濃縮して送出することができる。
【0049】
つまり、先に説明したように、電解槽10内に原料水1を高圧で送給できるようにしたことにより、高圧ポンプ21だけで済ませることができるようにしたのである。
【0050】
したがって、使用するポンプの数を減らすことができるので、運転にかかるコストを抑えることができる。
【0051】
なお、本実施の形態では、融着剤18としてフッ素樹脂製のものを適用したが、これに限らず、例えば、水ガラスや、イオン交換膜11(例えばデュポン社製ナフィオン(商品名))の液状物(ナフィオン液)を適用することも可能である。
【0052】
また、本実施の形態では、イオン交換膜11のオゾン側セパレータ15側を融着剤18で融着し、イオン交換膜11の水素側セパレータ16側にOリング17を配設したが、イオン交換膜11の水素側セパレータ16側を融着剤18で融着し、イオン交換膜11のオゾン側セパレータ16側にOリング17を配設することも可能である。ただし、この場合には、Oリング17の耐オゾン性および融着剤18の耐水素性を予め検討しておく必要がある。
【0053】
【発明の効果】
本発明による濃縮オゾン発生装置は、電解槽が、円盤状のイオン交換膜を円盤状のオゾン極および円盤状の水素極で挟んだ電解セルを円盤状のオゾン側セパレータおよび円盤状の水素側セパレータで挟んでなるので、周方向に沿って一定間隔で締結固定することにより、四角形の場合と比べて面圧を全体にわたって均一にすることができる。このため、電解槽の内部に原料水が高圧で送給されても十分に耐え得ることができる。
【0054】
また、前記電解槽の前記オゾン側セパレータと前記水素側セパレータとの周縁側の対向面間にOリングが配設されているので、ガスケット等と比べて高い面圧でシールすることができる。このため、電解槽の内部に原料水が高圧で送給されても十分に耐え得ることができる。
【0055】
また、前記電解槽の前記オゾン側セパレータと前記水素側セパレータとの周縁側の隙間にシール剤が充填されているので、当該間の気密性を高めることができる。このため、電解槽の内部に原料水が高圧で送給されても十分に耐え得ることができる。
【0056】
また、前記電解槽の前記電解セルの前記イオン交換膜の周縁側が前記オゾン側セパレータまたは前記水素側セパレータに融着剤を介して融着しているので、前記オゾン側セパレータまたは前記水素側セパレータとイオン交換膜の周縁側との間の気密性を高めることができる。このため、電解槽の内部に原料水が高圧で送給されても十分に耐え得ることができる。
【0057】
また、前記電解槽の前記イオン交換膜の融着する前記オゾン側セパレータまたは前記水素側セパレータの面に窪が形成されているので、オゾン側セパレータまたは水素側セパレータに対して融着剤を高密着させることができ、高気密性を維持することができる。このため、電解槽の内部に原料水が高圧で送給されても十分に耐え得ることができる。
【0058】
また、前記融着剤がフッ素樹脂、水ガラス、前記イオン交換膜の液状物のうちのいずれかであれば、上述した効果を確実に得ることができる。
【0059】
また、送給系を高圧ポンプだけで済ませることができる、すなわち、使用するポンプの数を減らすことができるので、運転にかかるコストを抑えることができる。
【図面の簡単な説明】
【図1】本発明による濃縮オゾン発生装置の実施の形態の概略構成図である。
【図2】 図1の電解槽要部の構造を表わす断面図である。
【図3】図2の矢線 III部の抽出拡大図である。
【図4】従来の濃縮オゾン発生装置の一例の概略構成図である。
【符号の説明】
1 原料水
2 酸素
3 オゾン
4 水素
10 電解槽
11 イオン交換膜
12 オゾン極
13 水素極
14 スペーサ
15 オゾン側セパレータ
15a 流通路
15b 窪
16 水素側セパレータ
16a 流通路
16b 溝
16c スリーブ
17 Oリング
18 融着剤
19 シール剤
21 高圧ポンプ
22〜24 配管
25 気液分離容器
26,27 配管
30,31 配管
32,33 バルブ
34,35 吸着剤槽
36,37 配管
38,39 バルブ
40〜42 配管
43,44 バルブ
45〜47 保圧バルブ

Claims (3)

  1. 円盤状のイオン交換膜を円盤状のオゾン極および円盤状の水素極で挟んだ電解セルを円盤状のオゾン側セパレータおよび円盤状の水素側セパレータで挟んでなり、前記オゾン側セパレータと前記水素側セパレータとの周縁側の対向面間にOリングが配設されると共に、前記オゾン側セパレータと前記水素側セパレータとの周縁側の隙間にシール剤が充填され、前記電解セルの前記イオン交換膜の周縁側が前記オゾン側セパレータまたは前記水素側セパレータに融着剤を介して融着している電解槽と、
    前記電解槽に原料水を高圧で送給する高圧ポンプと、
    前記電解槽から送出された未反応の前記原料水と酸素およびオゾンとを高圧状態下で分離する気液分離手段と、
    高圧状態で送給された前記オゾンを吸着保持する一方、前記酸素を通過させ、圧力開放することにより、吸着保持した当該オゾンを離脱させて放出する高シリカペンタシルゼオライト、脱アルミニウムフォージャサイト、メソポーラスシリケートのうちのいずれかからなる吸着剤を備えたオゾン濃縮手段と
    を備えてなることを特徴とする濃縮オゾン発生装置。
  2. 請求項において、
    前記電解槽の前記イオン交換膜の融着する前記オゾン側セパレータまたは前記水素側セパレータの面に窪が形成されている
    ことを特徴とする濃縮オゾン発生装置
  3. 請求項において、
    前記融着剤がフッ素樹脂、水ガラス、前記イオン交換膜の液状物のうちのいずれかである
    ことを特徴とする濃縮オゾン発生装置
JP24121098A 1998-08-27 1998-08-27 濃縮オゾン発生装置 Expired - Fee Related JP3649598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24121098A JP3649598B2 (ja) 1998-08-27 1998-08-27 濃縮オゾン発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24121098A JP3649598B2 (ja) 1998-08-27 1998-08-27 濃縮オゾン発生装置

Publications (2)

Publication Number Publication Date
JP2000073194A JP2000073194A (ja) 2000-03-07
JP3649598B2 true JP3649598B2 (ja) 2005-05-18

Family

ID=17070847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24121098A Expired - Fee Related JP3649598B2 (ja) 1998-08-27 1998-08-27 濃縮オゾン発生装置

Country Status (1)

Country Link
JP (1) JP3649598B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991147B2 (ja) * 2001-02-19 2007-10-17 日立造船株式会社 固体高分子型水電解槽

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120891A (ja) * 1973-03-22 1974-11-19
JPS6241972Y2 (ja) * 1981-02-17 1987-10-27
JPS63172067A (ja) * 1986-12-30 1988-07-15 Mitsui Eng & Shipbuild Co Ltd 浸透気化膜モジユ−ルにおけるシ−ル構造
JP3219610B2 (ja) * 1993-10-05 2001-10-15 三菱電機株式会社 電気化学素子
JP3002101B2 (ja) * 1994-09-21 2000-01-24 株式会社ササクラ 電解式オゾン発生装置
JPH10159981A (ja) * 1996-11-27 1998-06-16 Three Bond Co Ltd 複合体のシール構造
JP3469021B2 (ja) * 1996-12-12 2003-11-25 関西電力株式会社 セルシール構造

Also Published As

Publication number Publication date
JP2000073194A (ja) 2000-03-07

Similar Documents

Publication Publication Date Title
CN100450937C (zh) 液体处理模块
JP6473221B2 (ja) 圧縮された湿潤水素を乾燥させるための吸収ベッドを再生するためのシステムおよび方法
JP3479950B1 (ja) 環境浄化循環型水電解装置
KR100307344B1 (ko) 고농도 오존 가스의 제조 방법 및 그 장치
US8167988B2 (en) High output concentrator
US8652315B2 (en) Electrodeionization method and device with hydrodynamic flow splitting
CN105858606B (zh) 一种超纯氢的全温程变压吸附纯化方法
JP3715371B2 (ja) 過酸化水素水の精製方法
CN104607000A (zh) 一种炼厂干气中c2、c3组分、轻烃组分及氢气的回收方法
JP3649598B2 (ja) 濃縮オゾン発生装置
EP1647531A1 (en) Method for concentrating methane from sewage sludge and methane storage equipment
CN102583646B (zh) 氢氧气体直接外排的无膜电去离子方法与系统
US9675924B2 (en) Apparatus for the recovery of halogenated hydrocarbons
EP3199195B1 (en) Oxygen concentration device
CN104085955A (zh) 海水淡化水的两级床去离子方法和装置
CN206444410U (zh) 变压回收氢气吸附塔
JP4833819B2 (ja) 車両用水素供給システム
JP3439128B2 (ja) オゾン発生装置
CN103342623A (zh) 一种中空纤维膜接触器分离纯化等离子体裂解煤混合气中乙炔的方法及系统
CN210030040U (zh) 一种新型甲醇制氢设备
WO2019070049A1 (ja) 熱源装置、及び銀ゼオライトの使用方法
JP5982314B2 (ja) 水素酸素発生装置及び水素酸素発生装置の操作方法
JP7441369B1 (ja) 重水素の製造設備
CN205288007U (zh) 一种分子筛吸附塔
CN211688670U (zh) 一种银耳多糖生产用水纯化装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees