JP3649471B2 - Granulation dephosphorization equipment - Google Patents

Granulation dephosphorization equipment Download PDF

Info

Publication number
JP3649471B2
JP3649471B2 JP14440495A JP14440495A JP3649471B2 JP 3649471 B2 JP3649471 B2 JP 3649471B2 JP 14440495 A JP14440495 A JP 14440495A JP 14440495 A JP14440495 A JP 14440495A JP 3649471 B2 JP3649471 B2 JP 3649471B2
Authority
JP
Japan
Prior art keywords
granulation tower
granulation
magnesium
ammonium phosphate
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14440495A
Other languages
Japanese (ja)
Other versions
JPH08337407A (en
Inventor
中村  剛
正博 藤井
忠俊 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14440495A priority Critical patent/JP3649471B2/en
Publication of JPH08337407A publication Critical patent/JPH08337407A/en
Application granted granted Critical
Publication of JP3649471B2 publication Critical patent/JP3649471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Glanulating (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、廃水中のリン酸を除去し、リン酸マグネシウムアンモニウムを造粒するための造粒脱リン装置に関するものであり、特に、造粒塔内の壁面をフッ素樹脂で被覆することにより、造粒塔内の壁面におけるリン酸マグネシウムアンモニウムのスケールの付着を防止することのできる造粒脱リン装置に関するものである。
【0002】
【従来の技術】
近年、閉鎖性水域で特に問題となっている富栄養化の一因子であるリンの除去技術には、アルミニウム塩や鉄塩等の金属塩とリンを反応させる凝集分離法、リン鉱石や骨炭等の種晶にヒドロキシアパタイトの形でリンを析出させる晶析法(接触脱リン法)、微生物のリン過剰摂取作用を利用した生物学的脱リン法、例えば嫌気・好気法などがある。
しかし、これらの処理プロセスから発生するリン化合物を含有した2次生成物の処分及び安定化が問題となっている。
【0003】
このような状況に鑑み、近年、アンモニウムイオン及びリン酸イオンを含む廃水に、マグネシウム化合物を添加するとともにpHを8以上に調整し、廃水中のリン酸イオンをリン酸マグネシウムアンモニウムの固体粒子として除去し、生成されたリン酸マグネシウムアンモニウムの固体粒子を有効利用する技術が開発された。すなわち、特開平1−119392号公報には、アンモニウムイオン及びリン酸イオンを含む原水に、マグネシウム化合物を添加するとともにpHを8以上に調整し、通気によって廃水を撹拌し、リン酸マグネシウムアンモニウムの微細結晶を生成させ、廃水中の浮遊物質と前記リン酸マグネシウムアンモニウムの微細結晶とを分離して浮遊物質を系外に排出し、さらに前記リン酸マグネシウムアンモニウムの微細結晶を含む廃水を通気によって撹拌しながら連続的に廃水を供給し、前記リン酸マグネシウムアンモニウムの微細結晶を核としてリン酸マグネシウムアンモニウムの固体粒子を形成し、これを除去する装置及び方法が記載されている。
【0004】
【発明が解決しようとする課題】
上記の装置及び方法によって、水中のリンをリン酸マグネシウムアンモニウムの固体粒子として回収する際、リン酸マグネシウムアンモニウムの固体粒子を造粒する造粒塔内の壁面にリン酸マグネシウムアンモニウムのスケールが付着し、付着したスケールの除去作業には多大な労力が必要であった。
本発明は、リン酸マグネシウムアンモニウムのスケールが造粒塔内の壁面に付着することなく、水中のリンをリン酸マグネシウムアンモニウムの固体粒子として回収することができるリン酸マグネシウムアンモニウムの造粒脱リン装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために鋭意検討の結果、造粒脱リン装置の造粒塔内の壁面をフッ素樹脂で被覆することにより、造粒塔内の壁面におけるリン酸マグネシウムアンモニウムのスケールの付着を防止することができるという事実を見出し、本発明に到達した。
【0006】
すなわち、本発明は、リン酸マグネシウムアンモニウムを造粒するための造粒塔を備え、この造粒塔の内部にアンモニウムイオン及びリン酸イオンを含む廃水を注入するための廃水注入管と、同じく造粒塔の内部にマグネシウム化合物を注入するためのマグネシウム化合物注入管と、同じく造粒塔の内部にアルカリ剤を注入するためのアルカリ剤注入管をそれぞれ設け、前記造粒塔の底部に攪拌用気体吹き込み管と、固体粒子と廃水とを前記造粒塔の外に引き抜くための固体粒子払い出し管とを設け、さらに前記造粒塔の上部に処理水を流出させるための処理水流出管を備えたリン酸マグネシウムアンモニウムの造粒脱リン装置において、前記造粒塔内の壁面がフッ素樹脂で被覆されてなることを特徴とする造粒脱リン装置を要旨とするものである。
【0007】
以下、図面を参照しつつ、本発明を具体的に説明する。
図1は、本発明の造粒脱リン装置の一例を示す概略図である。図1において、リン酸マグネシウムアンモニウムを造粒するための造粒塔は、造粒塔直胴部1とその下部に位置する円錐部及び造粒塔沈殿部2とから構成されており、アンモニウムイオン及びリン酸イオンを含む廃水は、廃水注入管3によって造粒塔直胴部1内に注入される。また、マグネシウム化合物は、廃水中のリン酸と等モルになるようにマグネシウム化合物注入管4を通じて、造粒塔直胴部1の上部に設けられた空気捕集カバー6の内部へ注入される。なお、アルカリ剤、例えば苛性ソーダをアルカリ剤注入管5を通じて、空気捕集カバー6の内部へ注入し、造粒塔内をpH8以上に調整している。
【0008】
さらに、造粒塔の底部に連結した攪拌用気体吹き込み管7より、攪拌用気体を供給して、造粒塔内の曝気・攪拌を行うことにより、リン酸マグネシウムアンモニウムの固体粒子が生成する。すなわち、アンモニウムイオン及びリン酸イオンを含む廃水にマグネシウム化合物及びアルカリ剤を添加するとともに、pHを8以上に調整して攪拌を行うことにより、直径0.2〜0.8mmのリン酸マグネシウムアンモニウムの固体粒子を生成させることができる。
【0009】
空気捕集カバー6と造粒塔直胴部1の間には、スリット8が形成され、造粒塔沈殿部2において沈降分離されたリン酸マグネシウムアンモニウムは、スリット8を通過して、造粒塔の底部に降下して蓄積される。蓄積されたリン酸マグネシウムアンモニウムの固体粒子は1〜2週間の間隔で、造粒塔底部の固体粒子払い出し管9より払い出され、処理水は造粒塔沈殿部2の上部より処理水流出管10を通して排出される。また、造粒塔直胴部1の内部には造粒塔底部よりスリット8の上部まで及ぶ内筒11を設置し、アンモニウムイオン及びリン酸イオンを含む廃水は廃水注入管3を通して、内筒11の内側に供給される。
また、造粒塔の材質としては、ステンレス鋼(SUS304)や一般構造用圧延鋼材(SS34)が用いられる。
【0010】
本発明においては、造粒塔内の壁面、例えば、内筒11の内壁や空気捕集カバー6の内壁など、リン酸マグネシウムアンモニウムのスケールが付着し易い箇所12をフッ素樹脂で被覆することが必要であり,このようにすることによって、リン酸マグネシウムアンモニウムのスケールの付着を防止することができる。
【0011】
フッ素樹脂としては、4フッ化エチレン−6フッ化プロピレン共重合樹脂(FEP)、4フッ化エチレン樹脂(PTFE)、4フッ化エチレン−パーフロアルキルビニルエーテル共重合樹脂(PFA)、4フッ化エチレン−エチレン共重合樹脂(ETFE)、3フッ化塩化エチレン樹脂(PCTFE)、フッ化ビニリデン樹脂(PVdF)等があげられ、その中でも、4フッ化エチレン−6フッ化プロピレン共重合樹脂(FEP)が最も好ましい。
また、被覆するフッ素樹脂の膜厚としては、特に限定されるものではないが、10〜600μm程度が好ましい。
【0012】
【実施例】
次に、本発明を実施例によって具体的に説明する。
実施例1,比較例1〜3
図1に示す造粒脱リン装置の内部にテストピースを設置して、リン酸マグネシウムアンモニウムのスケール付着性を調べた。
廃水注入管3から注入させる廃水として消化汚泥脱水ろ液を用い、実効容積が10m3 の造粒塔に、6.25m3 /hrの流量で、廃水注入管3から廃水を供給した。
また、マグネシウム槽内の30%の塩化マグネシウムを、廃水中のリン酸と等モルとなるように、マグネシウム化合物注入管4から空気捕集カバー6の内部に注入し、また、アルカリ槽内の48%の苛性ソーダをアルカリ剤注入管5から空気補集カバー6の内部に注入してpHを9.0に調整し、造粒塔底部に連結した撹拌用気体吹き込み管7より空気を供給して造粒塔内部の曝気・攪拌を行った。
【0013】
テストピースとして、一般構造用圧延鋼材〔(SS34)、比較例1〕、ステンレス鋼〔(SUS304)、比較例2〕、塩化ビニル樹脂〔(硬質PVC)、比較例3〕、フッ素樹脂〔(4フッ化エチレン−6フッ化プロピレン共重合樹脂:FEP)、実施例1〕をそれぞれ200mm×65mm×5mmに加工して、これらのテストピースを空気捕集カバ−6の内部の水面下1mの位置に設置した。61日経過後の各テストピースへのリン酸マグネシウムアンモニウムのスケールの付着量を表1に示す。
【0014】
【表1】

Figure 0003649471
【0015】
表1より明らかなように、本発明に用いられるフッ素樹脂(4フッ化エチレン−6フッ化プロピレン共重合樹脂:FEP)へのリン酸マグネシウムアンモニウムのスケール付着量は、従来、使用されていたステンレス鋼(SUS304)や、他の材質と比べて僅かであった。
【0016】
実施例2
図1に示す造粒脱リン装置を用いて、廃水の処理を行った。
廃水注入管5から注入させる廃水として消化汚泥脱水ろ液を用い、実効容積10m3 造粒塔に、6.25m3 /hrの流量で、廃水注入管3から廃水を供給した。
また、マグネシウム槽内の30%の塩化マグネシウムを、廃水中のリン酸と等モルとなるように、マグネシウム化合物注入管4から空気捕集カバー6の内部に注入し、また、アルカリ槽内の48%の苛性ソーダをアルカリ剤注入管5から空気補集カバー6の内部に注入してpHを9.0に調整し、造粒塔底部に連結した撹拌用気体吹き込み管7より空気を供給して造粒塔内部の曝気・攪拌を行った。
【0017】
これによって、水中のリン酸態リンの96%、アンモニア態窒素の18%が除去され、直径が0.2〜0.8mmのリン酸マグネシウムアンモニウムの固体粒子が生成し、造粒塔直胴部1の底部にリン酸マグネシウムアンモニウムの固体粒子が蓄積される1〜2週間の間隔で、固体粒子払い出し管9よりリン酸マグネシウムアンモニウムの引き抜きを行った。
造粒塔直胴部1の直径は960mmであり、その内部に直径が500mmで、下端は造粒塔直胴部1とその下部の円錐部との繋ぎ目付近に、上端はスリット8の500mm上部に位置する、全長1400mmの内筒を設置した。
【0018】
造粒塔直胴部1、空気捕集カバー6、内筒11の材質はステンレス鋼(SUS304)であり、造粒塔内の壁面でリン酸マグネシウムアンモニウムのスケールが付着し易い箇所12をフッ素樹脂(4フッ化エチレン−6フッ化プロピレン共重合樹脂:FEP)で、膜厚40μmで被覆した場合には、リン酸マグネシウムアンモニウムのスケールの付着はほとんど見られなかった。
一方、造粒塔内の壁面にフッ素樹脂で被覆しない場合には、588日の連続運転で、空気捕集カバー6の内壁や内筒11の内壁全面、内筒11の外壁の上端から200mm付近までのリン酸マグネシウムアンモニウムのスケールが付着し易い箇所12に30〜70mmの厚さのスケールが付着していた。
【0019】
【発明の効果】
本発明の造粒脱リン装置は、廃水中のリンを効率よく除去することができるだけでなく、造粒塔内の壁面へのリン酸マグネシウムアンモニウムのスケールの付着も防止することができる。そのため、スケールの除去作業が軽減でき、維持管理性を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の造粒脱リン装置の一例を示す概略図である。
【符号の説明】
1 造粒塔直胴部
2 造粒塔沈殿部
3 廃水注入管
4 マグネシウム化合物注入管
5 アルカリ剤注入管
6 空気捕集カバー
7 攪拌用気体吹き込み管
8 スリット
9 固体粒子払い出し管
10 処理水流出管
11 内筒
12 リン酸マグネシウムアンモニウムのスケールが付着し易い箇所[0001]
[Industrial application fields]
The present invention relates to a granulation dephosphorization apparatus for removing phosphoric acid in waste water and granulating magnesium ammonium phosphate, and in particular, by coating the wall surface in the granulation tower with a fluororesin, The present invention relates to a granulation dephosphorization apparatus capable of preventing adhesion of magnesium ammonium phosphate scale on a wall surface in a granulation tower.
[0002]
[Prior art]
In recent years, phosphorus removal technology, which is one of the eutrophication factors that are particularly problematic in closed waters, includes a coagulation separation method in which metal salts such as aluminum salts and iron salts react with phosphorus, phosphorus ore, bone charcoal, etc. There are a crystallization method (catalytic dephosphorization method) in which phosphorus is precipitated in the form of hydroxyapatite, and a biological dephosphorization method utilizing the excessive intake of microorganisms such as anaerobic and aerobic methods.
However, disposal and stabilization of secondary products containing phosphorus compounds generated from these treatment processes are problematic.
[0003]
In view of such circumstances, in recent years, magnesium compounds are added to waste water containing ammonium ions and phosphate ions, and the pH is adjusted to 8 or more, and phosphate ions in the waste water are removed as solid particles of magnesium ammonium phosphate. Then, a technology for effectively using the produced solid particles of magnesium ammonium phosphate has been developed. That is, in JP-A-1-119392, a magnesium compound is added to raw water containing ammonium ions and phosphate ions, the pH is adjusted to 8 or more, the waste water is stirred by aeration, and the fineness of magnesium ammonium phosphate is reduced. Crystals are generated, the suspended solids in the waste water and the fine crystals of magnesium ammonium phosphate are separated and discharged from the system, and the waste water containing the fine crystals of magnesium ammonium phosphate is stirred by aeration. An apparatus and method for supplying waste water continuously, forming solid particles of magnesium ammonium phosphate using the fine crystals of magnesium ammonium phosphate as nuclei, and removing the particles are described.
[0004]
[Problems to be solved by the invention]
When recovering phosphorus in water as solid particles of magnesium ammonium phosphate by the above apparatus and method, the scale of magnesium ammonium phosphate adheres to the wall surface in the granulation tower for granulating the solid particles of magnesium ammonium phosphate. Therefore, a great deal of labor was required to remove the attached scale.
The present invention relates to an apparatus for granulating and dephosphorizing magnesium ammonium phosphate capable of recovering phosphorus in water as solid particles of magnesium ammonium phosphate without the scale of magnesium ammonium phosphate adhering to the wall surface in the granulation tower. Is intended to provide.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have coated phosphoric acid on the wall surface in the granulation tower by coating the wall surface in the granulation tower of the granulation dephosphorization apparatus with a fluororesin. The present inventors have found the fact that it is possible to prevent the deposition of magnesium ammonium scale, and the present invention has been reached.
[0006]
That is, the present invention includes a granulation tower for granulating magnesium ammonium phosphate, and a waste water injection pipe for injecting waste water containing ammonium ions and phosphate ions into the granulation tower. A magnesium compound injection tube for injecting a magnesium compound into the inside of the granulation tower and an alkali agent injection tube for injecting an alkali agent into the inside of the granulation tower are provided, respectively, and a stirring gas is provided at the bottom of the granulation tower. A blow-in pipe, a solid particle discharge pipe for drawing solid particles and waste water out of the granulation tower, and a treated water outflow pipe for discharging the treated water to the upper part of the granulation tower were provided. A granulation dephosphorization apparatus for magnesium ammonium phosphate, characterized in that the granulation dephosphorization apparatus is characterized in that a wall surface in the granulation tower is coated with a fluororesin. A.
[0007]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a schematic view showing an example of the granulation dephosphorization apparatus of the present invention. In FIG. 1, a granulation tower for granulating magnesium ammonium phosphate is composed of a granulation tower straight body part 1, a conical part located in the lower part thereof, and a granulation tower precipitation part 2, and ammonium ions The waste water containing phosphate ions is injected into the granulation tower straight body 1 through the waste water injection pipe 3. Further, the magnesium compound is injected into the air collection cover 6 provided at the upper part of the granulation tower straight body portion 1 through the magnesium compound injection pipe 4 so as to be equimolar with the phosphoric acid in the waste water. An alkali agent such as caustic soda is injected into the air collection cover 6 through the alkali agent injection pipe 5 to adjust the inside of the granulation tower to pH 8 or more.
[0008]
Further, the stirring gas is supplied from the stirring gas blowing tube 7 connected to the bottom of the granulation tower, and aeration / stirring in the granulation tower is performed to produce solid particles of magnesium ammonium phosphate. That is, while adding a magnesium compound and an alkaline agent to waste water containing ammonium ions and phosphate ions, and adjusting the pH to 8 or more and stirring, the magnesium ammonium phosphate having a diameter of 0.2 to 0.8 mm Solid particles can be generated.
[0009]
A slit 8 is formed between the air collection cover 6 and the granulation tower straight body portion 1, and the magnesium ammonium phosphate settled and separated in the granulation tower precipitation portion 2 passes through the slit 8 and is granulated. Accumulated down to the bottom of the tower. The accumulated magnesium ammonium phosphate solid particles are discharged from the solid particle discharge pipe 9 at the bottom of the granulation tower at intervals of 1 to 2 weeks, and the treated water is discharged from the upper part of the granulation tower precipitation section 2 to the treated water outflow pipe. 10 is discharged. Further, an inner cylinder 11 extending from the bottom of the granulation tower to the upper portion of the slit 8 is installed inside the granulation tower straight body section 1, and waste water containing ammonium ions and phosphate ions passes through the waste water injection pipe 3 and the inner cylinder 11. Supplied inside.
As the material for the granulation tower, stainless steel (SUS304) or rolled steel for general structure (SS34) is used.
[0010]
In this invention, it is necessary to coat | cover the location 12 where the scale of magnesium ammonium phosphate tends to adhere, such as the wall surface in a granulation tower, for example, the inner wall of the inner cylinder 11, and the inner wall of the air collection cover 6, with a fluororesin. By doing so, adhesion of the magnesium ammonium phosphate scale can be prevented.
[0011]
As fluororesin, tetrafluoroethylene-6 fluoropropylene copolymer resin (FEP), tetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), tetrafluoroethylene- Examples include ethylene copolymer resin (ETFE), trifluorochloroethylene resin (PCTFE), and vinylidene fluoride resin (PVdF). Among them, tetrafluoroethylene-6fluoropropylene copolymer resin (FEP) is the most. preferable.
The film thickness of the fluororesin to be coated is not particularly limited, but is preferably about 10 to 600 μm.
[0012]
【Example】
Next, the present invention will be specifically described with reference to examples.
Example 1, Comparative Examples 1-3
A test piece was placed inside the granulation dephosphorization apparatus shown in FIG. 1 to examine the scale adhesion of magnesium ammonium phosphate.
Digested sludge dehydrated filtrate was used as waste water to be injected from the waste water injection pipe 3, and waste water was supplied from the waste water injection pipe 3 to a granulation tower having an effective volume of 10 m 3 at a flow rate of 6.25 m 3 / hr.
Further, 30% magnesium chloride in the magnesium tank is injected into the air collecting cover 6 from the magnesium compound injection pipe 4 so as to be equimolar with phosphoric acid in the wastewater, and 48% in the alkali tank. % Caustic soda is injected from the alkali agent injection pipe 5 into the air collecting cover 6 to adjust the pH to 9.0, and air is supplied from the stirring gas blowing pipe 7 connected to the bottom of the granulation tower. Aeration and agitation were performed inside the granule tower.
[0013]
As test pieces, rolled steel for general structure [(SS34), comparative example 1], stainless steel [(SUS304), comparative example 2], vinyl chloride resin [(hard PVC), comparative example 3], fluororesin [(4 Example 1] was processed into 200 mm × 65 mm × 5 mm, respectively, and these test pieces were positioned 1 m below the water surface inside the air collecting cover 6. Installed. Table 1 shows the adhesion amount of magnesium ammonium phosphate to each test piece after 61 days.
[0014]
[Table 1]
Figure 0003649471
[0015]
As is clear from Table 1, the scale adhesion amount of magnesium ammonium phosphate to the fluororesin (tetrafluoroethylene-6 fluoropropylene copolymer resin: FEP) used in the present invention is the conventionally used stainless steel. It was a little compared with steel (SUS304) and other materials.
[0016]
Example 2
Wastewater was treated using the granulation dephosphorization apparatus shown in FIG.
Digested sludge dehydrated filtrate was used as waste water to be injected from the waste water injection pipe 5, and waste water was supplied from the waste water injection pipe 3 to an effective volume of 10 m 3 granulation tower at a flow rate of 6.25 m 3 / hr.
Further, 30% magnesium chloride in the magnesium tank is injected into the air collecting cover 6 from the magnesium compound injection pipe 4 so as to be equimolar with phosphoric acid in the wastewater, and 48% in the alkali tank. % Caustic soda is injected from the alkali agent injection pipe 5 into the air collecting cover 6 to adjust the pH to 9.0, and air is supplied from the stirring gas blowing pipe 7 connected to the bottom of the granulation tower. Aeration and agitation were performed inside the granule tower.
[0017]
As a result, 96% of the phosphorous phosphorus in the water and 18% of the ammonia nitrogen are removed to produce solid particles of magnesium ammonium phosphate having a diameter of 0.2 to 0.8 mm. The magnesium ammonium phosphate was extracted from the solid particle discharge tube 9 at intervals of 1 to 2 weeks when solid particles of magnesium ammonium phosphate were accumulated at the bottom of 1.
The diameter of the granulation tower straight body part 1 is 960 mm, the diameter is 500 mm inside, the lower end is near the joint between the granulation tower straight body part 1 and the lower cone part, and the upper end is 500 mm of the slit 8. An inner cylinder with a total length of 1400 mm located at the top was installed.
[0018]
The material of the granulation tower straight body part 1, the air collecting cover 6 and the inner cylinder 11 is stainless steel (SUS304), and the portion 12 where the scale of magnesium ammonium phosphate is likely to adhere to the wall surface in the granulation tower is fluorinated. In the case of coating with a film thickness of 40 μm with (tetrafluoroethylene-6fluoropropylene copolymer resin: FEP), adhesion of magnesium ammonium phosphate was hardly observed.
On the other hand, when the wall surface in the granulation tower is not covered with the fluororesin, it is about 200 mm from the upper end of the inner wall of the air collecting cover 6, the entire inner wall of the inner cylinder 11, and the outer wall of the inner cylinder 11 in 588 days of continuous operation. A scale having a thickness of 30 to 70 mm was attached to the portion 12 where the magnesium ammonium phosphate scale was easily attached.
[0019]
【The invention's effect】
The granulation dephosphorization apparatus of the present invention can not only efficiently remove phosphorus in wastewater, but also prevent adhesion of magnesium ammonium phosphate scale to the wall surface in the granulation tower. Therefore, the scale removal work can be reduced, and the maintenance can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a granulation dephosphorization apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Granulation tower straight part 2 Granulation tower sedimentation part 3 Waste water injection pipe 4 Magnesium compound injection pipe 5 Alkaline agent injection pipe 6 Air collection cover 7 Stirring gas blowing pipe 8 Slit 9 Solid particle discharge pipe
10 treated water outflow pipe
11 Inner cylinder
12 Places where scales of magnesium ammonium phosphate are likely to adhere

Claims (1)

リン酸マグネシウムアンモニウムを造粒するための造粒塔を備え、この造粒塔の内部にアンモニウムイオン及びリン酸イオンを含む廃水を注入するための廃水注入管と、同じく造粒塔の内部にマグネシウム化合物を注入するためのマグネシウム化合物注入管と、同じく造粒塔の内部にアルカリ剤を注入するためのアルカリ剤注入管をそれぞれ設け、前記造粒塔の底部に攪拌用気体吹き込み管と、固体粒子と廃水とを前記造粒塔の外に引き抜くための固体粒子払い出し管とを設け、さらに前記造粒塔の上部に処理水を流出させるための処理水流出管を備えたリン酸マグネシウムアンモニウムの造粒脱リン装置において、前記造粒塔内の壁面がフッ素樹脂で被覆されてなることを特徴とする造粒脱リン装置。A granulation tower for granulating magnesium ammonium phosphate is provided, a waste water injection pipe for injecting waste water containing ammonium ions and phosphate ions into the granulation tower, and magnesium inside the granulation tower. A magnesium compound injection tube for injecting the compound, an alkali agent injection tube for injecting an alkali agent into the granulation tower, and a stirring gas blowing tube at the bottom of the granulation tower, and solid particles And a solid particle discharge pipe for drawing out the waste water out of the granulation tower, and further, a structure of magnesium ammonium phosphate provided with a treated water outflow pipe for draining the treated water to the upper part of the granulation tower. A granulation dephosphorization apparatus, wherein a wall surface in the granulation tower is coated with a fluororesin.
JP14440495A 1995-06-12 1995-06-12 Granulation dephosphorization equipment Expired - Fee Related JP3649471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14440495A JP3649471B2 (en) 1995-06-12 1995-06-12 Granulation dephosphorization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14440495A JP3649471B2 (en) 1995-06-12 1995-06-12 Granulation dephosphorization equipment

Publications (2)

Publication Number Publication Date
JPH08337407A JPH08337407A (en) 1996-12-24
JP3649471B2 true JP3649471B2 (en) 2005-05-18

Family

ID=15361391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14440495A Expired - Fee Related JP3649471B2 (en) 1995-06-12 1995-06-12 Granulation dephosphorization equipment

Country Status (1)

Country Link
JP (1) JP3649471B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036945A (en) * 2012-08-20 2014-02-27 Daiki Ataka Engineering Co Ltd Phosphorous removal-recovery device and phosphorous removal-recovery method
US11220445B2 (en) 2020-03-27 2022-01-11 Sergey Lobanov Process and apparatus for sized nutrient recovery from wastewater by elutriation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071076A (en) * 2011-09-28 2013-04-22 Sumitomo Heavy Industries Environment Co Ltd Water treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036945A (en) * 2012-08-20 2014-02-27 Daiki Ataka Engineering Co Ltd Phosphorous removal-recovery device and phosphorous removal-recovery method
US11220445B2 (en) 2020-03-27 2022-01-11 Sergey Lobanov Process and apparatus for sized nutrient recovery from wastewater by elutriation

Also Published As

Publication number Publication date
JPH08337407A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
JPWO2006078012A1 (en) Wastewater and sludge treatment equipment
JP3649471B2 (en) Granulation dephosphorization equipment
JP3681073B2 (en) Granulation dephosphorization equipment
JP3362276B2 (en) Wastewater treatment equipment
CN209442776U (en) A kind of secondary clarifier effluent canal and secondary settling tank and sewage disposal system
JP3883222B2 (en) Granulation dephosphorization equipment
JPH10323677A (en) Waste water treatment device
US5935448A (en) Water purification with in situ production of dispersed flocculant
JP4568391B2 (en) Fluidized bed crystallization reactor
JP2006289299A (en) Phosphorus removal method
JP2009148719A (en) Recovery method of useful substance from wastewater
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP4774619B2 (en) Crystallization dephosphorization equipment
JP2578136B2 (en) Wastewater treatment method and apparatus
JP2002177967A (en) Granulating dephosphorization equipment
JP3589911B2 (en) Sludge scale removal equipment
JP3846562B2 (en) Organic wastewater treatment method
JP3537495B2 (en) Granulation dephosphorization equipment
JPH0824875A (en) Granulation dephosphorization device
JP3013872B2 (en) Biological denitrification equipment
JP3351930B2 (en) Wastewater biological denitrification
JP3723601B2 (en) How to remove phosphorus
JP3230037B2 (en) Wastewater treatment equipment
JP3479566B2 (en) Phosphorus recovery device using seawater
JP2001009472A (en) Granulating and dephosphorizing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees