JP3646494B2 - Cell for measuring optical properties of liquid and method for producing the same - Google Patents

Cell for measuring optical properties of liquid and method for producing the same Download PDF

Info

Publication number
JP3646494B2
JP3646494B2 JP33121597A JP33121597A JP3646494B2 JP 3646494 B2 JP3646494 B2 JP 3646494B2 JP 33121597 A JP33121597 A JP 33121597A JP 33121597 A JP33121597 A JP 33121597A JP 3646494 B2 JP3646494 B2 JP 3646494B2
Authority
JP
Japan
Prior art keywords
plate
liquid
plate body
cell
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33121597A
Other languages
Japanese (ja)
Other versions
JPH11148896A (en
Inventor
政司 郡嶋
伸一 戸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP33121597A priority Critical patent/JP3646494B2/en
Publication of JPH11148896A publication Critical patent/JPH11148896A/en
Application granted granted Critical
Publication of JP3646494B2 publication Critical patent/JP3646494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を照射して光学特性を測定する液体を、膜状にして収容する光学特性測定用セルおよびその製造方法に関するものである。
【0002】
【従来の技術】
塗料、インキ、プラスチックなどの着色溶液の調色プロセスでは着色溶液の色彩を正確に把握することが必要であり、その1つの方法として、上記着色溶液に光を照射し、その透過光を分光分析する方法(例えば特開平8−94441号公報)が知られている。この種の測色方法では、測色用セルに着色溶液を収容して測色用セルを通じ光を透過させ、透過光をセンサで検知して着色溶液の分光透過率を測定する。
【0003】
ここで測色用セルとしては例えば図5、図6に示したようなものを用いることができる。図5は従来の測色用セルの一例を示す側面図、図6は、図5の測色用セルを構成する下部ガラス板を示す平面図である。
この測色用セル102は、図5に示したように、上部ガラス板104と下部ガラス板106とから成り、下部ガラス板106の上面には、図6に示したように、周辺部に、周方向で等間隔に4つの突起108が形成され、この突起108の高さにより上部ガラス板104と下部ガラス板106との間隔が規定される構造となっている。
【0004】
そして、測定対象の着色溶液は下部ガラス板106の中央部に滴下し、その上に上部ガラス板104を被せることで、上部ガラス板104と下部ガラス板106との間の隙間に着色溶液110が膜状に収容された状態となる。この状態で光を上部ガラス板104の上方から板面に対しほぼ垂直に入射させ、上部ガラス板104、着色溶液110、ならびに下部ガラス板106を透過した光を下部ガラス板106の下方で受光し、分光分析を行う。
【0005】
【発明が解決しようとする課題】
しかし、このような従来の測色用セル102では、着色溶液110を下部ガラス板106上に滴下して上部ガラス板104を被せるとき、余分な着色溶液110は上部ガラス板104と下部ガラス板106との隙間から流出するのみならず、突起108の上面上にも着色溶液110が乗ってしまう。そのため、突起108上面と上部ガラス板104の下面との間に着色溶液110が介在し、上部ガラス板104と下部ガラス板106との間隔が変化する結果、着色溶液層の厚みが変化し光の透過率が影響を受けて測定結果が不正確になるとうい問題が発生する。
【0006】
また、上部ガラス板104および下部ガラス板106の外周部において着色溶液110は空気に接しているため、この箇所で着色溶液110の揮発、乾燥が進み、着色溶液110の濃度が変化するため、測定精度が低下する。測色用セル102に収容されている着色溶液110は膜状となっており、極めて微量であるため、外周部での揮発、乾燥であってもその影響は大きい。
【0007】
本発明はこのような問題を解決するためになされたもので、その目的は、測定対象の液体が溢れることによる膜厚変化、および揮発、乾燥による濃度変化を防止して正確に液体の光学特性を測定できる液体の光学特性測定用セルを提供することにある。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するため、光を照射して光学特性を測定する液体を、膜状にして収容する光学特性測定用セルであって、第1の板体が第2の板体の上に載置されることで構成され、前記第1および第2の板体は少なくとも中央部が透明な材料により形成され、前記第1の板体は下面の中央部に凸部を有すると共に、該凸部の周囲の下面に下面側当接部を有し、前記第2の板体は上面の中央部に前記凸部が収容される凹部を有すると共に、該凹部の周囲の上面に上面側当接部を有し、前記凸部の先端面と凹部の底面は平坦面で形成され、前記第2の板体の上に第1の板体を、前記凸部を凹部に収容し、下面側当接部と上面側当接部を当接して載置した状態で、凸部の先端面と凹部の底面との間に均一の高さの隙間が形成されると共に、前記凸部の側面と凹部の側面との間に前記隙間に連通する空間が隙間の周囲に形成されるように構成され、前記空間は、前記凹部に前記液体が滴下された状態で前記凸部が収容されることで前記隙間から溢れた液体を貯留するように構成され、前記第2の板体の上面側当接部の上面に溝が形成されていることを特徴とする。
また、本発明は、前記凹部の側面は、上方に至るに連れて中央部から離れるように外側に傾斜して形成されていることを特徴とする。
また、本発明は、前記凸部および凹部は共に平面視円形に形成されていることを特徴とする。
【0010】
本発明の液体の光学特性測定用セルでは、第1の板体の凸部の側面と第2の板体の凹部の側面との間に空間が形成されるので、第2の板体の凹部に測定対象の液体を滴下した後、第1の板体を第2の板体上に載置した際、第1の板体の凸部と第2の板体の凹部との間の隙間から溢れた液体は上記空間内に貯留する。したがって、液体は凹部の外に溢れることがなく、従来のように溢れた液体が第1および第2の板体の当接部に介在することで上記隙間の大きさが変化し液体層の厚みが変化してしまうという問題は発生しない。
また、上記空間内には十分な量の液体を貯留させることができるので、空間部分で液体の揮発、乾燥が生じても、上記隙間に収容された液体は影響を直ぐに受けることはなく、したがって、揮発、乾燥の影響が現れる前に測定作業を終了することができる。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を実施例にもとづき図面を参照して説明する。
図1は第1の板体を第2の板体から離した状態の断面側面図、図2は第1の板体を第2の板体に載置した状態の部分拡大断面図、図3は第2の板体の平面図である。
この液体の光学特性測定用セル2は、光を照射して測色するインキ(本発明に係わる液体)を膜状にして収容するものであって、第1の板体4を第2の板体6上に載置して構成されている。
第1および第2の板体4、6はいずれも石英ガラスにより同一直径で平面視円形に形成されている。
【0012】
第1の板体4の上面は平坦面で形成され、第1の板体4は下面中央に平面視円形の凸部8を有し、凸部8の周囲に下面側当接部402を有している。凸部8の先端面12は平坦面で形成され、凸部8の側面18は円筒面で形成され、下面側当接部402は環状の平坦面で形成され、先端面12と下面側当接部402と第1の板体4の上面は平行している。
【0013】
第2の板体6の下面は平坦面で形成され、第2の板体6は上面中央に、前記凸部8が収容される平面視円形の凹部10を有し、凹部10の周囲に上面側当接部9を有している。凹部10の底面14は平坦面で形成され、凹部10の側面19は円筒面で形成され、上面側当接部9は平坦面で形成され、底面14と上面側当接部9と第2の板体6の下面は平行している。
図3に示したように、上面側当接部9には、凹部10の側面19から第2の板体6の外周面に至る4つの溝7(特許請求の範囲の空気抜き路に相当)が等間隔をおいて形成されている。
【0014】
第1の板体4の凸部8の高さA(図1)は、第2の板体6の凹部10の深さBより1μmないし500μm低い。
したがって、図2に示したように、第2の板体6の上に第1の板体4を、凸部8を凹部10に収容し、下面側当接部9と上面側当接部402を当接して載置した状態で、凸部8の先端面12と凹部10の底面14との間に1μmないし500μm程度の均一の高さの隙間16が形成される。
また、第2の板体6の凹部10の直径は、第1の板体4の凸部8の直径より十分に大きく、したがって、図2に示したように第1の板体4を第2の板体6上に載置したとき、第1の板体4の凸部8の側面18と第2の板体6の凹部10の側面19との間に前記隙間16に連通する環状の空間20が形成される。
【0015】
このような構成の光学特性測定用セル2を用いてインキの測色を行う場合は、まず、第1の板体4を第2の板体6から外した状態で、第2の板体6を水平に配置した上で第2の板体6の凹部10内に測定対象のインキを数滴、滴下する。
そして、図2に示したように、第1の板体4を、凸部8を凹部10に収容し、下面側当接部9と上面側当接部402を当接して第2の板体6の上に載置する。ここで、第1の板体4を第2の板体6上に載置するとき、凹部10内の空気は上記溝7を通じて円滑に排出される。
【0016】
これにより、インキ21は、図2に示したように、凸部8の先端面12と凹部10の底面14との間の隙間16内に膜状に収容され、一方、この隙間16の箇所から溢れたインキ21は、第1の板体4の凸部8の側面18と第2の板体6の凹部10の側面19との間に形成された空間20内に収容される。
測色は、このようにインキを収容した光学特性測定用セル2に対して、第1の板体4の上方より光を照射して液体の光学特性測定用セル2を透過させ、透過した光を第2の板体6の下方で受光検出することで行う。
【0017】
したがって、本実施例の光学特性測定用セル2では、インキは凹部10の外に溢れることがなく、従来のように溢れたインキが第1および第2の板体4、6の当接部に介在することで上記隙間16の大きさが変化しインキ層の厚みが変化してしまうという問題は発生せず、正確に測色を行うことができる。
また、上記空間20内には十分な量のインキを貯留させることができるので、空間20部分でインキの揮発、乾燥が生じても、上記隙間16に収容されたインキは影響を直ぐに受けることはなく、したがって、揮発、乾燥の影響が現れる前に測定作業を終了することができ、正確な測色が可能である。
【0018】
以上、本発明について実施例をもとに説明したが、これはあくまでも一例であり、本発明はこの例に限定されることなく種々の形態で実施することができる。例えば、第1および第2の板体4、6の表面に撥水処理を施すことで、光学特性測定用セル2を効率よく洗浄できるよう図ることも有効である。
また、第1および第2の板体4、6は石英ガラスにより形成する以外にも、例えばBK7ガラスにより形成してもよい。
さらに、第2の板体6の凹部10の側面18を、図2に2点鎖線Wで示したように、外側に傾斜させることで、凹部10内の洗浄性を高めるように図ることも可能である。
そして、図1に示した第2の板体6の上面側当接部9や溝7を含む凹部10の周辺部22をセラミック材料により形成して光学特性測定用セル2を繰り返し使用した場合の摩耗を防止し、光学特性測定用セル2の耐久性を高めることも可能である。
また、第1の板体4の凸部8の箇所においてのみ光が透過すればよいので、第1の板体4における凸部8の周辺の箇所、および第2の板体6における凹部10の周辺の箇所は不透明な材料により形成してもよい。
さらに、この液体の光学特性測定用セル2による測色は、透過方式のみならず反射方式で行うこともでき、その場合には、第2の板体6の下面側に例えば白色の反射体を配置し、第1の板体4の上方から入射した光をこの反射体で上方に反射させ、第1の板体4の上方で検出すればよい。
【0019】
このような液体の光学特性測定用セルは、本発明による液体の光学特性測定用セル2の作製方法にもとづき例えば次のような手順で簡単に作製することができる。
図4は本発明の液体の光学特性測定用セルの作製方法の一例を示す工程図であり、各段階における各材料を側方から見た状態を示している。図中、図1ないし図3と同一の要素には同一の符号が付されている。
この液体の光学特性測定用セルの作製方法では、まず、図4の(A)に示したように、石英ガラスまたはBK7ガラスから成る第3、第4、第6の板体24、26、30を用意し、また、セラミック製の第5の板体28を用意する。
第3、第4、第6の板体24、26、30はいずれも本実施例では上下面が平行な平坦面で平面視円形に形成されている。第5の板体30は上下面が平行な平坦面で円環状に形成され、その中心に孔が貫通形成され、符号18はその内周面を示している。第3、第5、第6の板体24、28、30の直径は等しく、第4の板体26は、その直径が第3、第5、第6の板体24、28、30の直径より小さい。
第5の板体28の厚みは第4の板体26の厚みより1μmないし500μm大きく、また、第5の板体30の孔の内径は第4の板体26の直径より大きく、第5の板体30の上面には周面18から外周面に至る4つの溝7が周方向で等間隔に形成されている。
【0020】
そして、図4の(B)に示したように、第3の板体24の中央に板面どうしを密着させ第4の板体26を配置して両板体24,26を接合して第1の板体4を形成する。第3および第4の板体24、26の接合は、例えば、紫外線により硬化する接着剤を用いたUV接合や、陽極接合の技術によって行うことができる。次に、図4の(C)に示したように、第6の板体30上に凹部10を形成すべく第5の板体28を配置し接合して第2の板体6を形成する。第5の板体30と第6の板体28との接合も、上記第3および第4の板体24、26の接合の場合と同様の技術により行うことができる。
このように形成した第2の板体6の上に、上記第1の板体4を、第4の板体26を下側にし第5の板体28の内側に収容させた状態で載置することで、図1、図2に示した液体の光学特性測定用セルが完成する。
【0021】
なお、液体の光学特性測定用セルの作製方法としては、ここで説明した方法以外にも、例えば、石英ガラスなどの透明材料から成る板体を研削加工することで第1および第2の板体4、6を作製することも可能である。その場合には、例えば平面視円形の板体の周辺部を研削して中央部の凸部8を形成することで第1の板体4とし、同じく例えば平面視円形の板体の中央部を研削して凹部10を形成することで第2の板体6とする。
【0022】
【発明の効果】
以上説明したように本発明の液体の光学特性測定用セルでは、第1の板体の凸部の側面と第2の板体の凹部の側面との間に空間が形成されているので、第2の板体の凹部に測定対象の液体を滴下した後、第1の板体を第2の板体上に載置した際、第1の板体の凸部と第2の板体の凹部との間の隙間から溢れた液体は上記空間内に貯留する。したがって、液体は凹部の外に溢れることがなく、従来のように溢れた液体が第1および第2の板体の当接部に介在することで上記隙間の大きさが変化し液体層の厚みが変化してしまうという問題は発生せず、液体の光学的特性を正確に測定することができる。
また、上記空間内には十分な量の液体を貯留させることができるので、空間部分で液体の揮発、乾燥が生じても、上記隙間に収容された液体は影響を直ぐに受けることはなく、したがって、揮発、乾燥の影響が現れる前に測定作業を終了することができ、液体の光学的特性を正確に測定することができる。
【図面の簡単な説明】
【図1】第1の板体を第2の板体から離した状態の断面側面図である。
【図2】第1の板体を第2の板体に載置した状態の部分拡大断面図である。
【図3】第2の板体の平面図である。
【図4】本発明の液体の光学特性測定用セルの作製方法の一例を示す工程図である。
【図5】従来の測色用セルの一例を示す側面図である。
【図6】図5の測色用セルを構成する下部ガラス板を示す平面図である。
【符号の説明】
2 液体の光学特性測定用セル
4 第1の板体
6 第2の板体
8 凸部
10 凹部
16 隙間
18、19 側面
20 空間
24 第3の板体
26 第4の板体
28 第5の板体
30 第6の板体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical property measurement cell that contains a liquid for measuring optical properties by irradiating light, and a method for manufacturing the same.
[0002]
[Prior art]
In the toning process of colored solutions such as paints, inks, and plastics, it is necessary to accurately grasp the color of the colored solution. As one method, the colored solution is irradiated with light and the transmitted light is spectroscopically analyzed. There are known methods (for example, JP-A-8-94441). In this type of color measurement method, a color solution is accommodated in a color measurement cell, light is transmitted through the color measurement cell, the transmitted light is detected by a sensor, and the spectral transmittance of the color solution is measured.
[0003]
Here, for example, the cells shown in FIGS. 5 and 6 can be used as the color measuring cells. FIG. 5 is a side view showing an example of a conventional colorimetric cell, and FIG. 6 is a plan view showing a lower glass plate constituting the colorimetric cell of FIG.
As shown in FIG. 5, the color measuring cell 102 is composed of an upper glass plate 104 and a lower glass plate 106. On the upper surface of the lower glass plate 106, as shown in FIG. Four protrusions 108 are formed at equal intervals in the circumferential direction, and the height of the protrusions 108 defines the distance between the upper glass plate 104 and the lower glass plate 106.
[0004]
Then, the colored solution to be measured is dropped on the central portion of the lower glass plate 106, and the upper glass plate 104 is placed thereon, so that the colored solution 110 is placed in the gap between the upper glass plate 104 and the lower glass plate 106. It will be in the state accommodated in the form of a film. In this state, light is incident from above the upper glass plate 104 substantially perpendicularly to the plate surface, and light transmitted through the upper glass plate 104, the coloring solution 110, and the lower glass plate 106 is received below the lower glass plate 106. Perform spectroscopic analysis.
[0005]
[Problems to be solved by the invention]
However, in such a conventional colorimetric cell 102, when the colored solution 110 is dropped onto the lower glass plate 106 and the upper glass plate 104 is covered, the excess colored solution 110 is removed from the upper glass plate 104 and the lower glass plate 106. In addition to flowing out from the gap, the colored solution 110 also gets on the upper surface of the protrusion 108. Therefore, the colored solution 110 is interposed between the upper surface of the protrusion 108 and the lower surface of the upper glass plate 104, and the distance between the upper glass plate 104 and the lower glass plate 106 is changed. A problem arises when the transmittance is affected and the measurement results are inaccurate.
[0006]
In addition, since the colored solution 110 is in contact with air at the outer peripheral portions of the upper glass plate 104 and the lower glass plate 106, volatilization and drying of the colored solution 110 proceeds at this location, and the concentration of the colored solution 110 changes. Accuracy is reduced. The coloring solution 110 accommodated in the colorimetric cell 102 is in the form of a film and is extremely small, so that even if it is volatilized or dried on the outer periphery, the influence is great.
[0007]
The present invention has been made to solve such problems, and its purpose is to prevent changes in film thickness due to overflow of the liquid to be measured, and to prevent changes in concentration due to volatilization and drying, thereby accurately measuring the optical characteristics of the liquid. An object of the present invention is to provide a cell for measuring optical properties of a liquid that can measure the above.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention is an optical property measurement cell for storing a liquid for measuring optical properties by irradiating light in the form of a film, wherein the first plate is a second plate. The first and second plate bodies are formed of a transparent material at least in the center, and the first plate body has a convex portion in the center portion of the lower surface. A lower surface side contact portion is provided on a lower surface around the convex portion, and the second plate body has a concave portion in which the convex portion is accommodated in a central portion of the upper surface, and an upper surface side on an upper surface around the concave portion. A front end surface of the convex portion and a bottom surface of the concave portion are formed as flat surfaces, the first plate body is accommodated on the second plate body, the convex portion is accommodated in the concave portion, and the lower surface. While the side contact portion and the upper surface side contact portion are in contact with each other and placed, a gap with a uniform height is formed between the tip surface of the convex portion and the bottom surface of the concave portion, A space communicating with the gap is formed between the side surface of the convex portion and the side surface of the concave portion, and the convex portion is formed in a state where the liquid is dropped into the concave portion. Is stored to store the liquid overflowing from the gap, and a groove is formed on the upper surface of the upper surface side contact portion of the second plate .
Further, the present invention is characterized in that the side surface of the concave portion is formed to be inclined outward so as to move away from the central portion as it extends upward.
Further, the present invention is characterized in that both the convex portion and the concave portion are formed in a circular shape in plan view.
[0010]
In the liquid optical characteristic measuring cell of the present invention, since a space is formed between the side surface of the convex portion of the first plate and the side surface of the concave portion of the second plate, the concave portion of the second plate After dropping the liquid to be measured on the first plate body, when the first plate body is placed on the second plate body, from the gap between the convex portion of the first plate body and the concave portion of the second plate body The overflowing liquid is stored in the space. Therefore, the liquid does not overflow outside the recess, and the overflowed liquid is interposed in the contact portion of the first and second plate bodies as in the conventional case, whereby the size of the gap changes and the thickness of the liquid layer. The problem of changing will not occur.
In addition, since a sufficient amount of liquid can be stored in the space, even if the liquid is volatilized or dried in the space portion, the liquid stored in the gap is not immediately affected. The measurement operation can be completed before the effects of volatilization and drying appear.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described based on examples with reference to the drawings.
1 is a sectional side view of the first plate separated from the second plate, FIG. 2 is a partially enlarged sectional view of the first plate placed on the second plate, FIG. These are top views of a 2nd board.
The liquid optical characteristic measuring cell 2 contains ink (liquid according to the present invention) for color measurement by irradiating light, and contains the first plate 4 as the second plate. It is configured to be placed on the body 6.
Both the first and second plate bodies 4 and 6 are formed of quartz glass with the same diameter and circular in plan view.
[0012]
The upper surface of the first plate body 4 is formed as a flat surface. The first plate body 4 has a convex portion 8 having a circular shape in plan view at the center of the lower surface, and a lower surface side contact portion 402 around the convex portion 8. doing. The front end surface 12 of the convex portion 8 is formed as a flat surface, the side surface 18 of the convex portion 8 is formed as a cylindrical surface, and the lower surface side contact portion 402 is formed as an annular flat surface. The upper surface of the part 402 and the first plate 4 is parallel.
[0013]
The lower surface of the second plate body 6 is formed as a flat surface, and the second plate body 6 has a concave portion 10 in a plan view in which the convex portion 8 is accommodated in the center of the upper surface, and the upper surface around the concave portion 10. A side contact portion 9 is provided. The bottom surface 14 of the recess 10 is formed as a flat surface, the side surface 19 of the recess 10 is formed as a cylindrical surface, the upper surface side contact portion 9 is formed as a flat surface, the bottom surface 14, the upper surface side contact portion 9 and the second surface. The lower surface of the plate body 6 is parallel.
As shown in FIG. 3, the upper surface side contact portion 9 has four grooves 7 (corresponding to the air vent path in the claims) from the side surface 19 of the recess 10 to the outer peripheral surface of the second plate 6. It is formed at equal intervals.
[0014]
The height A (FIG. 1) of the convex portion 8 of the first plate 4 is 1 μm to 500 μm lower than the depth B of the concave 10 of the second plate 6.
Therefore, as shown in FIG. 2, the first plate body 4 is accommodated on the second plate body 6, the convex portion 8 is accommodated in the concave portion 10, and the lower surface side contact portion 9 and the upper surface side contact portion 402. In a state of being placed in contact with each other, a gap 16 having a uniform height of about 1 μm to 500 μm is formed between the tip surface 12 of the convex portion 8 and the bottom surface 14 of the concave portion 10.
Further, the diameter of the concave portion 10 of the second plate body 6 is sufficiently larger than the diameter of the convex portion 8 of the first plate body 4, so that the first plate body 4 is made the second plate as shown in FIG. An annular space communicating with the gap 16 between the side surface 18 of the convex portion 8 of the first plate body 4 and the side surface 19 of the concave portion 10 of the second plate body 6 when placed on the plate body 6. 20 is formed.
[0015]
In the case of performing ink colorimetry using the optical characteristic measuring cell 2 having such a configuration, first, the second plate body 6 with the first plate body 4 removed from the second plate body 6. Are placed horizontally, and several drops of the ink to be measured are dropped into the recess 10 of the second plate 6.
Then, as shown in FIG. 2, the first plate 4 is accommodated in the convex portion 8 in the concave portion 10, and the lower surface side contact portion 9 and the upper surface side contact portion 402 are contacted to form the second plate body. 6 is placed on top. Here, when the first plate 4 is placed on the second plate 6, the air in the recess 10 is smoothly discharged through the groove 7.
[0016]
Thereby, as shown in FIG. 2, the ink 21 is accommodated in a film shape in the gap 16 between the tip surface 12 of the convex portion 8 and the bottom surface 14 of the concave portion 10. The overflowing ink 21 is accommodated in a space 20 formed between the side surface 18 of the convex portion 8 of the first plate body 4 and the side surface 19 of the concave portion 10 of the second plate body 6.
In the colorimetry, the optical characteristic measurement cell 2 containing the ink is irradiated with light from above the first plate 4 and transmitted through the liquid optical characteristic measurement cell 2, and the transmitted light. Is performed by detecting the received light below the second plate 6.
[0017]
Therefore, in the optical characteristic measuring cell 2 of the present embodiment, the ink does not overflow outside the recess 10, and the overflowed ink does not overflow to the contact portions of the first and second plate bodies 4 and 6 as in the prior art. By interposing, the problem that the size of the gap 16 changes and the thickness of the ink layer changes does not occur, and accurate color measurement can be performed.
In addition, since a sufficient amount of ink can be stored in the space 20, even if the ink is volatilized and dried in the space 20, the ink contained in the gap 16 is immediately affected. Therefore, the measurement operation can be completed before the effects of volatilization and drying appear, and accurate color measurement is possible.
[0018]
The present invention has been described based on the embodiments. However, this is merely an example, and the present invention is not limited to this embodiment and can be implemented in various forms. For example, it is also effective to efficiently clean the optical property measuring cell 2 by subjecting the surfaces of the first and second plate bodies 4 and 6 to water repellent treatment.
Further, the first and second plate bodies 4 and 6 may be formed of, for example, BK7 glass in addition to being formed of quartz glass.
Further, the side face 18 of the concave portion 10 of the second plate 6 can be inclined outward as shown by a two-dot chain line W in FIG. It is.
And when the peripheral part 22 of the recessed part 10 containing the upper surface side contact part 9 and the groove | channel 7 of the 2nd board 6 shown in FIG. 1 is formed with a ceramic material, and the cell 2 for optical characteristic measurement is used repeatedly It is also possible to prevent wear and increase the durability of the optical property measuring cell 2.
In addition, since light only needs to pass through at the location of the convex portion 8 of the first plate body 4, the location around the convex portion 8 in the first plate body 4 and the concave portion 10 of the second plate body 6. The peripheral part may be formed of an opaque material.
Furthermore, the color measurement by the liquid optical characteristic measuring cell 2 can be performed not only by the transmission method but also by the reflection method. In this case, for example, a white reflector is provided on the lower surface side of the second plate 6. The light that is disposed and reflected from above the first plate 4 may be reflected upward by this reflector and detected above the first plate 4.
[0019]
Such a liquid optical property measuring cell can be easily manufactured, for example, by the following procedure based on the manufacturing method of the liquid optical property measuring cell 2 according to the present invention.
FIG. 4 is a process diagram showing an example of a method for producing a cell for measuring optical characteristics of a liquid according to the present invention, and shows a state in which each material at each stage is viewed from the side. In the figure, the same elements as those in FIGS. 1 to 3 are denoted by the same reference numerals.
In this method of manufacturing a cell for measuring optical characteristics of liquid, first, as shown in FIG. 4A, third, fourth, and sixth plates 24, 26, and 30 made of quartz glass or BK7 glass are used. And a fifth plate 28 made of ceramic is prepared.
In the present embodiment, the third, fourth, and sixth plate bodies 24, 26, and 30 are all flat surfaces having parallel upper and lower surfaces and formed in a circular shape in plan view. The fifth plate body 30 is formed in an annular shape with flat surfaces whose upper and lower surfaces are parallel, and a hole is formed through the center thereof. Reference numeral 18 denotes an inner peripheral surface thereof. The diameters of the third, fifth, and sixth plate bodies 24, 28, and 30 are equal, and the fourth plate body 26 has a diameter of the third, fifth, and sixth plate bodies 24, 28, and 30. Smaller than.
The thickness of the fifth plate 28 is 1 μm to 500 μm larger than the thickness of the fourth plate 26, and the inner diameter of the hole of the fifth plate 30 is larger than the diameter of the fourth plate 26, Four grooves 7 extending from the circumferential surface 18 to the outer circumferential surface are formed at equal intervals in the circumferential direction on the upper surface of the plate body 30.
[0020]
Then, as shown in FIG. 4B, the plate surfaces are brought into close contact with the center of the third plate body 24, the fourth plate body 26 is arranged, and both the plate bodies 24, 26 are joined together. 1 plate body 4 is formed. The third and fourth plate bodies 24 and 26 can be joined by, for example, UV joining using an adhesive that is cured by ultraviolet rays or anodic joining. Next, as shown in FIG. 4C, the fifth plate 28 is disposed and bonded to form the second plate 6 to form the recess 10 on the sixth plate 30. . The fifth plate 30 and the sixth plate 28 can be joined by the same technique as in the case of joining the third and fourth plates 24 and 26.
The first plate body 4 is placed on the second plate body 6 thus formed in a state where the first plate body 4 is housed inside the fifth plate body 28 with the fourth plate body 26 facing down. As a result, the cell for measuring optical characteristics of the liquid shown in FIGS. 1 and 2 is completed.
[0021]
In addition to the method described here, the liquid optical property measurement cell can be produced by grinding a plate made of a transparent material such as quartz glass, for example. 4, 6 can also be produced. In that case, for example, the peripheral portion of the circular plate body in plan view is ground to form the central convex portion 8 to form the first plate body 4. The second plate 6 is formed by forming the recess 10 by grinding.
[0022]
【The invention's effect】
As described above, in the cell for measuring optical characteristics of a liquid according to the present invention, a space is formed between the side surface of the convex portion of the first plate body and the side surface of the concave portion of the second plate body. After dropping the liquid to be measured into the concave portion of the second plate body, when the first plate body is placed on the second plate body, the convex portion of the first plate body and the concave portion of the second plate body The liquid overflowing from the gap between the two is stored in the space. Therefore, the liquid does not overflow outside the recess, and the overflowed liquid is interposed in the contact portion of the first and second plate bodies as in the conventional case, whereby the size of the gap changes and the thickness of the liquid layer. Does not occur, and the optical characteristics of the liquid can be accurately measured.
In addition, since a sufficient amount of liquid can be stored in the space, even if the liquid is volatilized or dried in the space portion, the liquid stored in the gap is not immediately affected. The measurement operation can be completed before the effects of volatilization and drying appear, and the optical properties of the liquid can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional side view of a state in which a first plate is separated from a second plate.
FIG. 2 is a partially enlarged cross-sectional view of a state in which a first plate is placed on a second plate.
FIG. 3 is a plan view of a second plate.
FIG. 4 is a process diagram showing an example of a method for producing a cell for measuring optical characteristics of a liquid according to the present invention.
FIG. 5 is a side view showing an example of a conventional colorimetric cell.
6 is a plan view showing a lower glass plate constituting the color measurement cell of FIG. 5. FIG.
[Explanation of symbols]
2 Cell for measuring optical characteristics of liquid 4 First plate body 6 Second plate body 8 Convex portion 10 Concave portion 16 Clearance 18, 19 Side surface 20 Space 24 Third plate body 26 Fourth plate body 28 Fifth plate Body 30 sixth plate

Claims (3)

光を照射して光学特性を測定する液体を、膜状にして収容する光学特性測定用セルであって、
第1の板体が第2の板体の上に載置されることで構成され、
前記第1および第2の板体は少なくとも中央部が透明な材料により形成され、
前記第1の板体は下面の中央部に凸部を有すると共に、該凸部の周囲の下面に下面側当接部を有し、
前記第2の板体は上面の中央部に前記凸部が収容される凹部を有すると共に、該凹部の周囲の上面に上面側当接部を有し、
前記凸部の先端面と凹部の底面は平坦面で形成され、
前記第2の板体の上に第1の板体を、前記凸部を凹部に収容し、下面側当接部と上面側当接部を当接して載置した状態で、凸部の先端面と凹部の底面との間に均一の高さの隙間が形成されると共に、前記凸部の側面と凹部の側面との間に前記隙間に連通する空間が隙間の周囲に形成されるように構成され、
前記空間は、前記凹部に前記液体が滴下された状態で前記凸部が収容されることで前記隙間から溢れた液体を貯留するように構成され、
前記第2の板体の上面側当接部の上面に溝が形成されている、
ことを特徴とする液体の光学特性測定用セル。
A liquid for measuring optical characteristics by irradiating light and containing a liquid in a film shape,
The first plate is configured by being placed on the second plate,
The first and second plate bodies are formed of a material having at least a central portion transparent,
The first plate has a convex portion at the center of the lower surface, and has a lower surface side abutting portion on the lower surface around the convex portion,
The second plate body has a concave portion in which the convex portion is accommodated in a central portion of the upper surface, and an upper surface side contact portion on the upper surface around the concave portion,
The tip surface of the convex portion and the bottom surface of the concave portion are formed as flat surfaces,
The first plate body is placed on the second plate body, the protrusion is accommodated in the recess, and the lower end side contact portion and the upper surface side contact portion are in contact with each other, and the tip of the projection A gap having a uniform height is formed between the surface and the bottom surface of the recess, and a space communicating with the gap is formed around the gap between the side surface of the projection and the side surface of the recess. Configured,
The space is configured to store the liquid overflowing from the gap by accommodating the convex portion in a state where the liquid is dropped into the concave portion ,
A groove is formed on the upper surface of the upper surface side contact portion of the second plate body,
A cell for measuring the optical properties of a liquid.
前記凹部の側面は、上方に至るに連れて中央部から離れるように外側に傾斜して形成されていることを特徴とする請求項1記載の液体の光学特性測定用セル。2. The cell for measuring optical characteristics of a liquid according to claim 1, wherein a side surface of the concave portion is formed to be inclined outward so as to move away from the central portion as it goes upward. 前記凸部および凹部は共に平面視円形に形成されていることを特徴とする請求項1または2に記載の液体の光学特性測定用セル。The cell for measuring optical characteristics of a liquid according to claim 1, wherein both the convex part and the concave part are formed in a circular shape in plan view.
JP33121597A 1997-11-14 1997-11-14 Cell for measuring optical properties of liquid and method for producing the same Expired - Fee Related JP3646494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33121597A JP3646494B2 (en) 1997-11-14 1997-11-14 Cell for measuring optical properties of liquid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33121597A JP3646494B2 (en) 1997-11-14 1997-11-14 Cell for measuring optical properties of liquid and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11148896A JPH11148896A (en) 1999-06-02
JP3646494B2 true JP3646494B2 (en) 2005-05-11

Family

ID=18241192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33121597A Expired - Fee Related JP3646494B2 (en) 1997-11-14 1997-11-14 Cell for measuring optical properties of liquid and method for producing the same

Country Status (1)

Country Link
JP (1) JP3646494B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779237B2 (en) * 2001-06-06 2011-09-28 凸版印刷株式会社 Liquid colorimetric device with film forming mechanism
US8049884B2 (en) 2006-10-06 2011-11-01 Shimadzu Corporation Spectrophotometer
KR101627337B1 (en) * 2014-08-13 2016-06-07 국민대학교산학협력단 Sample Chamber Cartridge for Reducing Field Curvature
KR101645168B1 (en) * 2014-12-05 2016-08-03 한국표준과학연구원 liquid sample analysis device and method using optical density

Also Published As

Publication number Publication date
JPH11148896A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5039490A (en) Sensor element for determination of concentration of substances
KR100413535B1 (en) Absorbance detection system for lab-on-a-chip
US7181096B2 (en) Light waveguide and fluorescent sensor using the light waveguide
US7692795B2 (en) Optical component, optical sensor, surface plasmon sensor and fingerprint recognition device
US7283245B2 (en) Handheld device with a disposable element for chemical analysis of multiple analytes
US5786226A (en) Quantitative transmission spectroscopy using sample carriers with nets
JP5568070B2 (en) Micro cuvette assembly and method of using the same
US6710870B1 (en) Method and device for measuring luminescence
US4291981A (en) Reference scatter for use in the correction of scattering photometers
CA2116568A1 (en) Optical measurement instrument
US20140017126A1 (en) Spr sensor cell and spr sensor
WO2020125554A1 (en) Spectrophotometer inspection system and method
JP3646494B2 (en) Cell for measuring optical properties of liquid and method for producing the same
CN104145183A (en) Spr sensor cell, and spr sensor
CN104321638B (en) Spr sensor element and spr sensor
JPH0181556U (en)
US20130293887A1 (en) Solution Sample Holding Method, Sample Cell, And Circular Dichroism Measuring Apparatus
KR20090044144A (en) A sample analysis appparatus for a micro-plate
JP2007024870A (en) Sensor, and sensing device and method
US20140132959A1 (en) Spr sensor cell and spr sensor
JP2003148931A (en) Method and device for measuring inside diameter of hollow transparent body
JP2002214126A (en) Biochemical measuring device
CA2189906A1 (en) Method of optically measuring liquid in porous material
JPH08219981A (en) Measuring cell and measuring method using the cell
CN102735634B (en) Dielectric grating structure single-wavelength reflection light absorption sensor chip and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees