JP2003148931A - Method and device for measuring inside diameter of hollow transparent body - Google Patents

Method and device for measuring inside diameter of hollow transparent body

Info

Publication number
JP2003148931A
JP2003148931A JP2001351101A JP2001351101A JP2003148931A JP 2003148931 A JP2003148931 A JP 2003148931A JP 2001351101 A JP2001351101 A JP 2001351101A JP 2001351101 A JP2001351101 A JP 2001351101A JP 2003148931 A JP2003148931 A JP 2003148931A
Authority
JP
Japan
Prior art keywords
measured
light
inner diameter
transparent body
hollow transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001351101A
Other languages
Japanese (ja)
Inventor
Kimio Hatta
公夫 八田
Yoji Hasebe
洋治 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTEKKU KK
Sefa Technology Inc
Sentec Co Ltd Japan
Original Assignee
SENTEKKU KK
Sefa Technology Inc
Sentec Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTEKKU KK, Sefa Technology Inc, Sentec Co Ltd Japan filed Critical SENTEKKU KK
Priority to JP2001351101A priority Critical patent/JP2003148931A/en
Publication of JP2003148931A publication Critical patent/JP2003148931A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring inside diameter of hollow transparent body capable of measuring the inside irregularities or curve of a glass bead. SOLUTION: This method for measuring the inside shape of a glass bead a that is a hollow transparent body comprises putting a plug to the opening part of the glass bead a to seal the cavity in the glass bead a; dipping the sealed glass bead a in a liquid 1 having the same refractive index as that of the glass bead a; irradiating the glass bead a with laser beam in this state; receiving the transmitted light by a optical sensor 44 divided in two; and detecting the inside ridge of the glass bead a from the light receiving quantity of each optical sensor 44a and 44b. The glass bead a is scanned in the axial direction (the vertical direction to the surface of Fig. 1) to measure the inside irregularities or curve of the through-hole b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、中空透明体の内
径測定方法およびその装置に関し、さらに詳細には、光
ファイバの接続に用いられるガラスビーズのような中空
透明体の内径の曲がりや凹凸を測定する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the inner diameter of a hollow transparent body, and more specifically, to the inner diameter of a hollow transparent body such as glass beads used for connecting optical fibers to prevent bending or unevenness. Regarding measurement technology.

【0002】[0002]

【従来の技術】光通信を行うときの光導波路として従来
より光ファイバが知られている。この光ファイバは、周
知のように直径50ミクロン程度の石英の芯(コア)の
外側に厚さ0.1mm程度のクラッドを形成し、その外
側をウレタンやナイロンなどで被覆したものであり、こ
の光ファイバの接続には図4に示すような形状のガラス
ビーズaが用いられている。
2. Description of the Related Art An optical fiber has been conventionally known as an optical waveguide for optical communication. As is well known, this optical fiber is formed by forming a clad having a thickness of about 0.1 mm on the outside of a quartz core having a diameter of about 50 μm and coating the outside with urethane or nylon. Glass beads a having a shape as shown in FIG. 4 are used for connecting the optical fibers.

【0003】このガラスビーズaは長さ2mm程度のガ
ラス製の部品であって、その軸方向には内径0.1mm
程度の貫通穴bが形成されている。そして、光ファイバ
の接続にあたっては、光ファイバの外周に紫外線硬化樹
脂をまぶしてこれをガラスビーズaの両端に装着し、外
部から紫外線を照射して紫外線硬化樹脂を硬化させるこ
とによって光ファイバの接続がなされている。
This glass bead a is a glass part having a length of about 2 mm, and its inner diameter is 0.1 mm in the axial direction.
A through hole b of a certain degree is formed. When connecting the optical fibers, the outer circumference of the optical fibers is sprinkled with ultraviolet curable resin, which is attached to both ends of the glass beads a, and ultraviolet rays are externally applied to cure the ultraviolet curable resin to connect the optical fibers. Has been done.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
ガラスビーズにおいては、その内径(貫通穴の内周面)
の形状は、凹凸なく軸方向に真っ直ぐに形成されている
ことが望ましいところ、従来はこのようなガラスビーズ
の内径の形状を測定する方法は提供されていなかった。
By the way, in such a glass bead, its inner diameter (the inner peripheral surface of the through hole)
Although it is desirable that the shape of the glass beads be formed straight in the axial direction without unevenness, conventionally, no method has been provided for measuring the shape of the inner diameter of such glass beads.

【0005】すなわち、上述したようにガラスビーズの
内径は0.1mm程度と極めて小さいため、CCDカメ
ラ等の撮像手段で内径を撮影し、その撮影された画像か
ら内径の凹凸や曲がりを検出することは困難であった。
That is, since the inner diameter of the glass beads is extremely small, about 0.1 mm, as described above, the inner diameter is photographed by an image pickup means such as a CCD camera and the irregularity or bending of the inner diameter is detected from the photographed image. Was difficult.

【0006】本発明はかかる従来の問題点に鑑みてなさ
れたものであって、その目的とするところは、ガラスビ
ーズの内径の凹凸や曲がりを測定可能とする中空透明体
の内径測定方法およびその装置を提供することにある。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a method for measuring the inner diameter of a hollow transparent body capable of measuring unevenness and bending of the inner diameter of glass beads, and a method therefor. To provide a device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の中空透明体の内径測定方法は、中空透明体
からなる被測定物の内径の形状を測定する方法であっ
て、被測定物の開口部に栓をして被測定物内の空洞を密
閉し、この密閉した被測定物を該被測定物と同じ屈折率
の液体中に浸漬し、この状態で被測定物に光を照射して
被測定物の内径の形状を光学的手法で検出することを特
徴とする。
In order to achieve the above object, the method for measuring the inner diameter of a hollow transparent body of the present invention is a method for measuring the shape of the inner diameter of an object to be measured, which is made of a hollow transparent body. The opening of the object is plugged to seal the cavity inside the object to be measured, and the sealed object to be measured is immersed in a liquid having the same refractive index as the object to be measured, and light is applied to the object to be measured in this state. It is characterized by irradiating and detecting the shape of the inner diameter of the measured object by an optical method.

【0008】すなわち、本発明では被測定物の内径の形
状を測定するにあたり、被測定物の空洞を密閉した状態
で被測定物と同じ屈折率の液体中に浸漬する。被測定物
と上記液体とは屈折率が同じであるので、この状態を光
学的に捉えると、被測定物の空洞が上記液体中に浮いて
いるのと同等になる。本発明は、この状態を光学的手法
で検出することにより被測定物の空洞の内径の形状を検
出する。
That is, in the present invention, when measuring the shape of the inner diameter of the object to be measured, the cavity of the object to be measured is immersed in a liquid having the same refractive index as that of the object to be measured while the cavity of the object to be measured is sealed. Since the object to be measured and the liquid have the same refractive index, when this state is optically captured, it is equivalent to the cavity of the object to be measured floating in the liquid. The present invention detects the shape of the inner diameter of the cavity of the object to be measured by detecting this state by an optical method.

【0009】そして、本発明はその好適な実施態様とし
て、被測定物の開口部に栓をして被測定物内の空洞を密
閉し、この密閉した被測定物を該被測定物と同じ屈折率
の液体中に浸漬し、この状態で被測定物に光を照射して
その透過光を受光してその強弱から被測定物の内径の形
状を検出する。
As a preferred embodiment of the present invention, the opening of the object to be measured is plugged to seal the cavity in the object to be measured, and the sealed object to be measured is refracted in the same manner as the object to be measured. The sample is dipped in a liquid of a certain ratio, and in this state, the object to be measured is irradiated with light, the transmitted light is received, and the shape of the inner diameter of the object to be measured is detected from its strength.

【0010】また、他の好適な実施態様として、被測定
物の開口部に栓をして被測定物内の空洞を密閉し、この
密閉した被測定物を該被測定物と同じ屈折率の液体中に
浸漬し、この状態で被測定物に光を照射し、照射された
光が前記被測定物の空洞の稜線(つまり被測定物の内周
面)で反射した反射光を受光してその強弱から被測定物
の内径の形状を検出する
As another preferred embodiment, the opening in the measured object is plugged to seal the cavity in the measured object, and the sealed measured object has the same refractive index as that of the measured object. By immersing it in a liquid and irradiating the measured object with light in this state, the irradiated light receives reflected light reflected by the ridge line of the cavity of the measured object (that is, the inner peripheral surface of the measured object). Detect the shape of the inner diameter of the measured object from its strength

【0011】すなわち、本発明では、被測定物と同じ屈
折率の液体中に被測定物を浸漬して、被測定物の空洞を
光学的に浮き上がらせ、そこに光を照射して得られる透
過光や反射光の強弱から被測定物の内径の曲がりや凹凸
を測定する。
That is, according to the present invention, the object to be measured is immersed in a liquid having the same refractive index as that of the object to be measured, the cavity of the object to be measured is optically raised, and light is transmitted therethrough to obtain a transmission. Bending and unevenness of the inner diameter of the object to be measured are measured based on the intensity of light and reflected light.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】実施形態1 図1は本発明に係る中空透明体の内径測定装置の概略構
成の一例を示す正面図であり、図2はその側面図であ
る。
Embodiment 1 FIG. 1 is a front view showing an example of a schematic structure of a hollow transparent body inner diameter measuring apparatus according to the present invention, and FIG. 2 is a side view thereof.

【0014】この装置は、具体的には図4に示すような
中空透明体のガラスビーズ(被測定物)aの内径形状を
測定するものであって、液体1を収容する容器2と、投
光手段3と、受光手段4と、検出手段5と、駆動手段6
と、制御手段7とを主要部として備えている。
Specifically, this device measures the inner diameter shape of glass beads (measurement object) a of a hollow transparent body as shown in FIG. Light means 3, light receiving means 4, detecting means 5, and driving means 6
And a control means 7 as a main part.

【0015】液体1は、後述するようにガラスビーズa
を浸漬するための液体であって、この液体1にはガラス
ビーズaと同じ屈折率の液体が用いられる。つまり、こ
の液体1はガラスビーズaの材質であるガラスと同じ屈
折率をもった液体が用いられている。
The liquid 1 is a glass bead a as described later.
The liquid for dipping the liquid is a liquid having the same refractive index as the glass beads a. That is, as the liquid 1, a liquid having the same refractive index as glass as the material of the glass beads a is used.

【0016】容器2は、上記液体1を収容するための容
体であって、ガラスビーズaの全体を液体1中に浸漬可
能な開口面積と深さ寸法を備えて構成される。また、こ
の容器2はガラスビーズaと同じ屈折率をもった材質
(ガラス)で構成される。
The container 2 is a container for accommodating the liquid 1, and has an opening area and a depth dimension capable of immersing the entire glass beads a in the liquid 1. The container 2 is made of a material (glass) having the same refractive index as the glass beads a.

【0017】投光手段3は、液体1に浸漬されたガラス
ビーズaの径方向(図中の矢符x方向)に強度分布が一
様な光を照射するためのものであって、具体的には、光
源31と凹レンズ32と平凸レンズ33とで構成され
る。
The light projecting means 3 is for irradiating the glass beads a immersed in the liquid 1 with light having a uniform intensity distribution in the radial direction (the arrow x direction in the drawing), It includes a light source 31, a concave lens 32 and a plano-convex lens 33.

【0018】光源31は、たとえばアルゴンイオンレー
ザなどのレーザ光を出力する発光源であって、この光源
31から出力されたレーザ光は、図示のように、凹レン
ズ32で拡散されるとともに平凸レンズ33でy方向
(図中の矢符y参照)に屈折させてガラスビーズaに照
射される。つまり、ガラスビーズaには上記レーザ光が
y方向に向かう平行な光束の状態で照射される。
The light source 31 is a light emitting source that outputs a laser beam such as an argon ion laser. The laser beam output from the light source 31 is diffused by the concave lens 32 and the plano-convex lens 33 as shown in the figure. The glass beads a are irradiated with the light by refracting in the y direction (see the arrow y in the figure). That is, the glass beads a are irradiated with the laser light in the state of parallel light fluxes directed in the y direction.

【0019】受光手段4は、ガラスビーズaを挟んで上
記投光手段3に対向して設けられ、ガラスビーズaを透
過した光を受光して光電変換するものであって、具体的
にはピンホール41が設けられたケース42と、凸レン
ズ43と、2分割光センサ44とを主要部として構成さ
れる。
The light receiving means 4 is provided so as to face the light projecting means 3 with the glass beads a sandwiched therebetween, and receives the light transmitted through the glass beads a and photoelectrically converts it. The case 42 provided with the hole 41, the convex lens 43, and the two-divided optical sensor 44 are mainly configured.

【0020】ケース42は、上記凸レンズ43と2分割
光センサ44とを収容するための容体であって、図示の
ようにガラスビーズaに臨んで設けられた底部42aに
はピンホール41が形成されている。また、このピンホ
ール41は、ガラスビーズaや上記液体1と同じ屈折率
の透明の部材(たとえばガラス製の部材)45でシール
されており、図示のようにケース42の先端を液体1中
に浸漬しても、ケース42内に液体1が侵入しないよう
に防水処理が施されている。
The case 42 is a container for accommodating the convex lens 43 and the two-division optical sensor 44, and a pinhole 41 is formed in the bottom portion 42a provided facing the glass beads a as shown in the figure. ing. The pinhole 41 is sealed with a glass bead a or a transparent member (for example, a glass member) 45 having the same refractive index as that of the liquid 1, and the tip of the case 42 is placed in the liquid 1 as illustrated. Even if it is soaked, it is waterproofed so that the liquid 1 does not enter the case 42.

【0021】2分割光センサ44は、周知のように一対
の光センサ44a,44bを所定間隔をもって並列に配
設してなるものであって、各光センサ44a,44bは
受光した光の光量(光の強弱)に応じて電気信号を出力
(光電変換)する。
As is well known, the two-divided photosensor 44 is composed of a pair of photosensors 44a and 44b arranged in parallel at a predetermined interval, and each photosensor 44a and 44b receives the quantity of light received ( An electric signal is output (photoelectric conversion) according to the intensity of light.

【0022】なお、この2分割光センサ44は、図示の
ように各光センサ44a,44bがガラスビーズaの径
方向(図中の矢符x方向)に並んで位置するように配設
されている。また、上記ピンホール41の中心と上記凸
レンズ43の中心とは同心位置に配されるとともに、こ
れらの中心を結ぶ線を挟んで上記各光センサ44a,4
4bが対称に配設されている。
The two-divided optical sensor 44 is arranged such that the optical sensors 44a and 44b are arranged side by side in the radial direction of the glass beads a (direction of arrow x in the figure) as shown in the figure. There is. Further, the center of the pinhole 41 and the center of the convex lens 43 are arranged concentrically, and the optical sensors 44a, 4 are sandwiched by a line connecting these centers.
4b are arranged symmetrically.

【0023】つまり、本実施形態においては、上記ピン
ホール41からケース42内に入射したレーザ光が凸レ
ンズ43で拡大され2分割光センサ44の各光センサ4
4a,44bで受光されるように構成されている。
That is, in the present embodiment, the laser light entering the case 42 through the pinhole 41 is magnified by the convex lens 43 and each optical sensor 4 of the two-division optical sensor 44.
4a and 44b are configured to receive light.

【0024】検出手段5は、上記2分割光センサ44か
ら出力される受光手段出力からガラスビーズaの空洞
(内径)の形状を検出するための演算装置であって、具
体的には、上記各光センサ44a,44bから出力され
る電気信号(図示しないA/D変換回路を経てデジタル
信号に変換された信号)から各光センサ44a,44b
で受光した光の光量を検出し、各光センサ44a,44
bで受光された光量の比較などの演算を行う。
The detecting means 5 is an arithmetic unit for detecting the shape of the cavity (inner diameter) of the glass beads a from the output of the light receiving means output from the two-division optical sensor 44. From the electric signals output from the optical sensors 44a and 44b (signals converted into digital signals through an A / D conversion circuit (not shown)), the respective optical sensors 44a and 44b
Detects the amount of light received by the optical sensor 44a, 44
Calculations such as comparing the amounts of light received at b are performed.

【0025】駆動手段6は、上記投光手段3と受光手段
4とを同期して所定のスキャン方向に移動させるアクチ
ュエータであって、このアクチュエータの動作は上記制
御手段7によって制御可能とされている。
The driving means 6 is an actuator for moving the light projecting means 3 and the light receiving means 4 in a predetermined scanning direction in synchronization, and the operation of the actuator can be controlled by the control means 7. .

【0026】具体的には、このアクチュエータは上記投
光手段3と受光手段4とがガラスビーズaの全体をスキ
ャン可能なように、これらをガラスビーズaの径方向
(x方向)と軸方向(z方向)にそれぞれ移動可能に構
成されている。
Specifically, in this actuator, the light emitting means 3 and the light receiving means 4 can scan the entire glass beads a in the radial direction (x direction) and the axial direction (x direction) of the glass beads a. Each of them is movable in the z direction).

【0027】上記制御手段7は、装置各部の動作を制御
するための制御プログラムを備えたマイクロコンピュー
タで構成され、具体的には、上記駆動手段6の動作制御
や光源31の点灯/消灯の制御、さらには上記検出手段
5での演算処理等の各種処理の実行制御を行う。
The control means 7 is composed of a microcomputer provided with a control program for controlling the operation of each part of the apparatus. Specifically, the operation control of the drive means 6 and the turning on / off of the light source 31 are controlled. Further, the execution control of various processes such as the calculation process in the detecting means 5 is performed.

【0028】しかして、以上のように構成されてなる中
空透明体の内径測定装置を用いたガラスビーズaの内径
の形状測定について説明する。
Now, the shape measurement of the inner diameter of the glass beads a using the inner diameter measuring device of the hollow transparent body configured as described above will be described.

【0029】測定にあたり、まず被測定物であるガラス
ビーズaに設けられた貫通穴bの両端開口部に貫通穴b
を密閉する密閉栓8,8を装着し(図2参照)、ガラス
ビーズa内に形成された空洞を密閉する。なお、図2に
示す例では上記密閉栓8がガラスビーズaの開口部内径
に密着状に挿入される形状である場合を示したが、この
密閉栓8はガラスビーズaの貫通穴bを密閉するもので
あれば、開口部端面に着脱可能に装着されるシールのよ
うなものであってもよく、その具体的な形状は適宜設計
変更可能である。
In the measurement, first, the through holes b are formed in the openings at both ends of the through holes b provided in the glass bead a to be measured.
The sealing plugs 8 and 8 for sealing are attached (see FIG. 2) to seal the cavity formed in the glass beads a. The example shown in FIG. 2 shows the case where the sealing plug 8 is inserted into the inner diameter of the opening of the glass bead a in a close contact manner, but the sealing plug 8 seals the through hole b of the glass bead a. If so, it may be a seal removably attached to the end surface of the opening, and the specific shape thereof can be appropriately changed in design.

【0030】そして、ガラスビーズaの貫通穴bを密閉
すると、次にこの密閉したガラスビーズaを容器2内に
満たされた液体1の中に浸漬し、この状態で光源31を
点灯しガラスビーズaにレーザ光を照射し、その透過光
を2分割光センサ44で受光する。またこれと並行して
上記駆動手段6を駆動して、上記投光手段3および受光
手段4を所定のスキャン方向(具体的にはx方向および
z方向)に移動させてスキャンニングを開始する。
When the through hole b of the glass bead a is sealed, then the sealed glass bead a is immersed in the liquid 1 filled in the container 2, and in this state, the light source 31 is turned on and the glass bead is turned on. A is irradiated with laser light, and the transmitted light is received by the two-division optical sensor 44. In parallel with this, the driving means 6 is driven to move the light projecting means 3 and the light receiving means 4 in a predetermined scanning direction (specifically, the x direction and the z direction) to start scanning.

【0031】ここで、光源31の点灯により光源31か
ら出力されたレーザ光は、図1に示すように凹レンズ3
2で拡散されるとともに、平凸レンズ33で屈折しy方
向(図中の矢符y参照)に向かう平行な光束としてガラ
スビーズaに照射される。
Here, the laser light output from the light source 31 when the light source 31 is turned on has a concave lens 3 as shown in FIG.
The glass beads a are irradiated as a parallel light flux which is diffused by 2 and refracted by the plano-convex lens 33 and headed in the y direction (see the arrow y in the figure).

【0032】一方、容器2やこの容器2に満たされた液
体1は、上述したようにガラスビーズaと屈折率が同じ
であるので、液体1とガラスビーズaの本体とは光学的
に同一視することができる。そのため、ガラスビーズa
の本体や液体1に照射されたレーザ光は図示のようにy
方向に直進する。その一方、ガラスビーズaに設けられ
た貫通穴bの部分は液体1などとは屈折率が異なるの
で、この貫通穴bで形成された空洞に入射したレーザ光
はy方向には直進せず屈折散乱する。
On the other hand, since the container 2 and the liquid 1 filled in the container 2 have the same refractive index as that of the glass beads a as described above, the liquid 1 and the body of the glass beads a are optically identified. can do. Therefore, the glass beads a
The laser light applied to the main body of the
Go straight in the direction. On the other hand, since the through hole b provided in the glass bead a has a different refractive index from the liquid 1 or the like, the laser light incident on the cavity formed by the through hole b does not go straight in the y direction and is refracted. Scatter.

【0033】本発明では、このようなガラスビーズaの
透過光を受光手段4で受光し、その受光手段出力を検出
手段5に入力することにより、検出手段5が透過光の光
量の強弱からガラスビーズaの内径の形状を測定する。
In the present invention, such transmitted light of the glass beads a is received by the light receiving means 4 and the output of the light receiving means is inputted to the detecting means 5, so that the detecting means 5 changes the intensity of the transmitted light from the glass. The shape of the inner diameter of the bead a is measured.

【0034】具体的には、上記受光手段4は、上記スリ
ット41から入射するレーザ光を凸レンズ43で拡大し
て2分割光センサ44の各光センサ44a,44bで受
光する。検出手段5は、各光センサ44a,44bで受
光した透過光の光量を比較してその比較結果(つまり、
各光センサ44a,44bの受光光量の強弱)からガラ
スビーズaの内径の形状を測定する。
Specifically, the light receiving means 4 magnifies the laser light incident from the slit 41 by the convex lens 43 and receives it by each of the optical sensors 44a and 44b of the two-divided optical sensor 44. The detection means 5 compares the light amounts of the transmitted light received by the respective optical sensors 44a and 44b, and compares the comparison results (that is,
The shape of the inner diameter of the glass bead a is measured from the intensity of received light of each of the optical sensors 44a and 44b.

【0035】すなわち、上記駆動手段6によるx方向へ
のスキャンニングの過程において、上記スリット41が
ガラスビーズaの本体と対面する位置にある場合は、投
光手段3から照射されたレーザ光は屈折することなく液
体1やガラスビーズa本体を透過してスリット41に入
射するため、各光センサ44a,44bで受光されるレ
ーザ光の光量は均一であるが、x方向へのスキャンによ
って上記スリット41がy方向から見てガラスビーズa
本体と上記空洞との境界に相当する位置(つまり、ガラ
スビーズaの内径の稜線)に対面すると、ガラスビーズ
aに入射したレーザ光は上記稜線部分で屈折するので、
各光センサ44a,44bの光量にバラツキが生じる。
That is, in the process of scanning in the x direction by the driving means 6, when the slit 41 is in a position facing the main body of the glass beads a, the laser light emitted from the light projecting means 3 is refracted. Without passing through the liquid 1 or the glass bead a main body and enter the slit 41, the amount of laser light received by each of the optical sensors 44a and 44b is uniform, but the slit 41 is scanned by scanning in the x direction. Is glass beads a when viewed from the y direction
When facing the position corresponding to the boundary between the main body and the cavity (that is, the ridgeline of the inner diameter of the glass bead a), the laser light incident on the glass bead a is refracted at the ridgeline portion,
The light amount of each optical sensor 44a, 44b varies.

【0036】検出手段5はこのような受光光量のバラツ
キから、ガラスビーズaの内径の稜線の位置を検出す
る。
The detecting means 5 detects the position of the ridgeline of the inner diameter of the glass beads a based on such variations in the amount of received light.

【0037】このように本発明の装置によれば、投光手
段3および受光手段4をガラスビーズaの径方向(矢符
x方向)にスキャンニングすることにより、ガラスビー
ズaの内径の稜線の位置を検出できるので、検出した稜
線の位置でさらにガラスビーズaの軸方向(矢符z方
向)にスキャンニングすることにより上記稜線の凹凸や
上記貫通穴bの曲がりを測定することができる。
As described above, according to the apparatus of the present invention, the light projecting means 3 and the light receiving means 4 are scanned in the radial direction of the glass beads a (direction of arrow x), so that the ridgeline of the inner diameter of the glass beads a is detected. Since the position can be detected, the unevenness of the ridge and the bending of the through hole b can be measured by further scanning at the detected position of the ridge in the axial direction of the glass beads a (arrow z direction).

【0038】また、本実施形態では特に示さなかった
が、上記駆動手段6にガラスビーズaを軸線周りに回転
させるアクチュエータを備えさせることにより、検出し
た稜線の位置でガラスビーズaを軸線周りに回転させる
ことで、貫通穴bの断面形状の歪み(凹凸)も測定する
ことができる。
Although not particularly shown in this embodiment, the driving means 6 is provided with an actuator for rotating the glass beads a around the axis, so that the glass beads a are rotated around the axis at the detected ridge line position. By doing so, the distortion (unevenness) of the cross-sectional shape of the through hole b can also be measured.

【0039】実施形態2 次に、本発明の他の実施形態について図3に基づいて説
明する。この図3に示す装置は、上述した実施形態1の
装置の改変例であって、具体的にはガラスビーズaの内
径を測定するための光学系を改変したものである。
Embodiment 2 Next, another embodiment of the present invention will be described with reference to FIG. The apparatus shown in FIG. 3 is a modified example of the apparatus of the above-described first embodiment, and specifically, an optical system for measuring the inner diameter of the glass beads a is modified.

【0040】すなわち、上記実施形態1の装置ではガラ
スビーズaの透過光から内径を測定していたが、本実施
形態ではガラスビーズaの内径の稜線で反射する反射光
を利用してガラスビーズaの内径の形状を測定する。そ
のため、本実施形態では上記実施形態1における投光手
段3、受光手段4、検出手段5、駆動手段6、制御手段
7がそれぞれ改変されている。
That is, in the apparatus of the first embodiment, the inner diameter was measured from the transmitted light of the glass beads a, but in the present embodiment, the reflected light reflected by the ridgeline of the inner diameter of the glass beads a is used to make the glass beads a. Measure the shape of the inner diameter of. Therefore, in this embodiment, the light projecting unit 3, the light receiving unit 4, the detecting unit 5, the driving unit 6, and the control unit 7 in the first embodiment are modified.

【0041】具体的には、本実施形態に示す装置では、
被測定物であるガラスビーズaと同じ屈折率の液体1
と、この液体1を収容する容器2と、上記液体1に浸漬
されたガラスビーズaに光を照射する投光手段3′と、
照射された光がガラスビーズa内の空洞の稜線で反射し
た反射光を受光して光電変換する受光手段4′と、この
受光手段出力からガラスビーズaの空洞の形状を検出す
る検出手段5′と、上記投光手段3′および受光手段
4′を同期して所定のスキャン方向に移動させる駆動手
段6′と、装置各部を制御する制御手段7と、ガラスビ
ーズaを軸線まわりに回転駆動させる回転駆動手段9と
を主要部として備えている。
Specifically, in the device shown in this embodiment,
Liquid 1 with the same refractive index as the glass beads a to be measured
A container 2 for containing the liquid 1, and a light projecting means 3'for irradiating the glass beads a immersed in the liquid 1 with light.
Light receiving means 4'for receiving and photoelectrically converting the reflected light reflected by the ridgeline of the cavity inside the glass beads a, and detecting means 5'for detecting the shape of the cavity of the glass beads a from the output of this light receiving means. A driving means 6'for synchronously moving the light projecting means 3'and the light receiving means 4'in a predetermined scan direction, a control means 7 for controlling each part of the apparatus, and a glass bead a for rotation about an axis. The rotation drive means 9 is provided as a main part.

【0042】投光手段3′は、図示のように平凸レンズ
10を介してガラスビーズaに対して上記貫通穴bの側
面から光を照射するための光源であって、具体的には上
記実施形態1と同様にアルゴンイオンレーザなどのレー
ザ光の光源で構成される。
The light projecting means 3'is a light source for irradiating the glass beads a with light from the side surface of the through hole b through the plano-convex lens 10 as shown in the figure. Similar to the first embodiment, the light source is a laser light source such as an argon ion laser.

【0043】一方、受光手段4′は、上記レーザ光がガ
ラスビーズaの内径の稜線で反射した光を上記平凸レン
ズ10および反射板11を介して受光するためのもので
あって、本実施形態ではこの受光手段4′として図示の
ような4分割光センサが用いられる。
On the other hand, the light receiving means 4'is for receiving the laser light reflected by the ridgeline of the inner diameter of the glass bead a through the plano-convex lens 10 and the reflection plate 11, and in this embodiment. Then, as the light receiving means 4 ', a four-division optical sensor as shown is used.

【0044】4分割光センサは、周知のように4個の光
センサ4a〜4dを縦横に整列配置してなるものであっ
て、各光センサ4a〜4dは受光した光の光量(光の強
弱)に応じて電気信号を出力(光電変換)するものとさ
れる。
As is well known, the four-division photosensor is composed of four photosensors 4a to 4d arranged vertically and horizontally, and each of the photosensors 4a to 4d has a quantity of light (light intensity). ), An electric signal is output (photoelectric conversion).

【0045】また、上記凸レンズ10は、図示のように
ガラスビーズaに臨んで液体1中に浸漬されており、こ
の凸レンズ10には上記投光手段3′および受光手段
4′に上記液体1が侵入しないように防水カバー12が
取り付けられている。
Further, the convex lens 10 is immersed in the liquid 1 so as to face the glass beads a as shown in the figure, and the convex lens 10 is filled with the liquid 1 on the light projecting means 3'and the light receiving means 4 '. A waterproof cover 12 is attached so as not to enter.

【0046】検出手段5′は、上記受光手段4′からの
受光手段出力に基づいてガラスビーズaの内径の測定を
行うものであって、具体的には上記4分割光センサ4′
で受光される光量分布から後述するようにしてガラスビ
ーズaの内径の形状測定を行う。なお、本実施形態にお
いてもこの検出手段5′には図示しないA/D変換回路
を経て4分割光センサ4′からデジタル信号が入力され
ている。
The detecting means 5'measures the inner diameter of the glass beads a on the basis of the light receiving means output from the light receiving means 4 ', and specifically, the four-division optical sensor 4'.
The shape of the inner diameter of the glass bead a is measured from the distribution of the amount of light received in the manner described below. Also in this embodiment, a digital signal is input to the detecting means 5'from the 4-division optical sensor 4'through an A / D conversion circuit (not shown).

【0047】駆動手段6′は、上記投光手段3′と受光
手段4′とを同期して所定のスキャン方向に移動させる
ためのアクチュエータであって、このアクチュエータの
動作は上記制御手段7′によって制御可能とされてい
る。
The driving means 6'is an actuator for synchronously moving the light projecting means 3'and the light receiving means 4'in a predetermined scanning direction, and the operation of this actuator is controlled by the control means 7 '. It is controlled.

【0048】具体的には、このアクチュエータは上記投
光手段3′と受光手段4′とがガラスビーズaの全体を
スキャン可能なように、これらをガラスビーズaの径方
向(x方向)と軸方向(z方向)に移動可能とされると
ともに、凸レンズ10の焦点を調節可能なように図3に
示すy方向にも移動可能とされている。
Specifically, this actuator is arranged so that the light projecting means 3'and the light receiving means 4'can scan the whole glass beads a in the radial direction (x direction) of the glass beads a. In addition to being movable in the direction (z direction), it is also movable in the y direction shown in FIG. 3 so that the focus of the convex lens 10 can be adjusted.

【0049】上記制御手段7′は、装置各部の動作を制
御するための制御プログラムを備えたマイクロコンピュ
ータで構成され、具体的には、上記駆動手段6′の作動
制御や投光手段3′の点灯/消灯の制御の他、上記検出
手段5′での検出処理等の各種処理を実行する。
The control means 7'is composed of a microcomputer provided with a control program for controlling the operation of each part of the apparatus. Specifically, the operation control of the drive means 6'and the projection means 3'are performed. In addition to the control of turning on / off, various processes such as the detection process in the detecting means 5'are executed.

【0050】しかして、このように構成されてなる第二
の実施形態に示す装置においては、以下のようにしてガ
ラスビーズaの内径測定が行われる。
Therefore, in the apparatus having the above-mentioned structure according to the second embodiment, the inner diameter of the glass beads a is measured as follows.

【0051】まず測定開始にあたり、被測定物であるガ
ラスビーズaの貫通穴bの両端開口部に貫通穴bを密閉
する密閉栓8,8を装着し、ガラスビーズa内に形成さ
れた空洞を密閉する点は上記実施形態1と同様である。
First, at the start of the measurement, sealing plugs 8 for sealing the through hole b are attached to the openings at both ends of the through hole b of the glass bead a to be measured, and the cavity formed in the glass bead a is attached. The point of sealing is similar to that of the first embodiment.

【0052】そして、ガラスビーズaの貫通穴bを密閉
すると、次にこの密閉したガラスビーズaを容器2内に
満たされた液体1の中に浸漬し、この状態で投光手段
3′を点灯しガラスビーズaにレーザ光を照射してその
反射光を4分割光センサ(受光手段)4′で受光する。
Then, when the through hole b of the glass bead a is sealed, then the sealed glass bead a is immersed in the liquid 1 filled in the container 2, and the light projecting means 3'is turned on in this state. Then, the glass beads a are irradiated with laser light, and the reflected light is received by a four-division optical sensor (light receiving means) 4 '.

【0053】その際、本実施形態では上記4分割光セン
サ4′の各光センサ4a〜4dの出力が平均化されるよ
うに、換言すれば、4分割光センサ4′の各光センサ4
a〜4dで受光される光量分布が均一となるように、上
記駆動手段6′の駆動制御(x,y方向の駆動制御)を
行い、その後その位置でz方向へのスキャンニングを行
う。
At this time, in the present embodiment, the outputs of the optical sensors 4a to 4d of the 4-division optical sensor 4'are averaged, in other words, the optical sensors 4 of the 4-division optical sensor 4 '.
The drive control (drive control in the x and y directions) of the drive means 6'is performed so that the light amount distribution received by a to 4d becomes uniform, and thereafter the scanning in the z direction is performed at that position.

【0054】つまり、本実施形態では、その位置でz方
向へのスキャンニングを行うことにより、ガラスビーズ
aの内径に凹凸がある場合にその凹凸によって反射光の
向きがずれることを利用して、まず上記各光センサ4a
〜4dの光量分布を均一化する位置を検出しておき、そ
の状態でz方向へのスキャンニングを行い、内径の凹凸
によって生じる反射光の向きの乱れを4分割光センサ
4′の各光センサ4a〜4dで検出することにより、ガ
ラスビーズaの内径の凹凸を測定する。
That is, in the present embodiment, by performing scanning in the z direction at that position, when the inner diameter of the glass beads a is uneven, the direction of the reflected light is deviated due to the unevenness, First, each of the above optical sensors 4a
The position where the light amount distribution of 4d is made uniform is detected, scanning is performed in the z direction in that state, and the disturbance of the direction of the reflected light caused by the unevenness of the inner diameter is detected in each of the four-division optical sensor 4 '. The unevenness of the inner diameter of the glass beads a is measured by detecting with 4a to 4d.

【0055】また、本実施形態では特に示さなかった
が、上記駆動手段6′にガラスビーズaを軸線周りに回
転させるアクチュエータ(回転駆動手段)を備えさせる
ことにより、ガラスビーズaを回転させながらz方向に
スキャンニングすることで、ガラスビーズaの内径の曲
がりの検出を行うことも可能である。
Although not particularly shown in the present embodiment, the driving means 6 ′ is provided with an actuator (rotational driving means) for rotating the glass beads a around the axis so that the glass beads a are rotated while z. It is also possible to detect the bending of the inner diameter of the glass beads a by scanning in the direction.

【0056】なお上述した実施形態はあくまでも本発明
の好適な実施態様を示すものであって、本発明はこれに
限定されることなくその範囲内で種々の設計変更が可能
である。
Note that the above-described embodiment merely shows a preferred embodiment of the present invention, and the present invention is not limited to this, and various design changes can be made within the scope.

【0057】たとえば、上記実施形態においては、スキ
ャンニングが投光手段3および受光手段4を移動させる
ことにより行われた場合を示したが、被測定物であるガ
ラスビーズaを保持具等で保持しておき、この保持具を
上記所定のスキャン方向に移動させてスキャンニングを
行うように構成してもよい。
For example, in the above-mentioned embodiment, the case where the scanning is performed by moving the light projecting means 3 and the light receiving means 4 is shown, but the glass beads a to be measured are held by a holder or the like. Alternatively, the holder may be moved in the predetermined scanning direction to perform scanning.

【0058】[0058]

【発明の効果】以上詳述したように、本発明によれば、
ガラスビーズのような中空透明体の被測定物を密閉して
該被測定物と同じ屈折率の液体中に浸漬し、この状態で
被測定物に光を照射して被測定物の内径の形状を光学的
手法で検出するので、ガラスビーズのようなサイズの小
さいものであってもその内径の凹凸や曲がりを検出でき
る。
As described in detail above, according to the present invention,
Hollow transparent object such as glass beads is hermetically sealed and immersed in a liquid having the same refractive index as the object to be measured. In this state, the object to be measured is irradiated with light to form the inner diameter of the object to be measured. Is detected by an optical method, it is possible to detect unevenness or bending of the inner diameter of glass beads such as glass beads having a small size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る中空透明体の内径測定装置の概略
構成を示す正面図である。
FIG. 1 is a front view showing a schematic configuration of an inner diameter measuring device for a hollow transparent body according to the present invention.

【図2】同内径測定装置の光学系の概略構成を示す側面
図である。
FIG. 2 is a side view showing a schematic configuration of an optical system of the same inner diameter measuring device.

【図3】本発明に係る中空透明体の内径測定装置の他の
実施形態の概略構成を示す説明図である。
FIG. 3 is an explanatory diagram showing a schematic configuration of another embodiment of the inner diameter measuring device for a hollow transparent body according to the present invention.

【図4】被測定物であるガラスビーズの外観を示す斜視
図である。
FIG. 4 is a perspective view showing an appearance of glass beads as an object to be measured.

【符号の説明】[Explanation of symbols]

1 液体(液体手段) 2 容器 3,3′ 投光手段 4,4′ 受光手段 5,5′ 検出手段 6,6′ 駆動手段 7,7′ 制御手段 8 密閉栓 10 平凸レンズ 11 反射板 12 防水カバー 31 光源 32 凹レンズ 33 平凸レンズ 41 ピンホール 42 ケース 43 凸レンズ 44 2分割光センサ 44a,44b 光センサ a ガラスビーズ(被測定物) b 貫通穴 1 liquid (liquid means) 2 containers 3,3 'Projection means 4,4 'Light receiving means 5,5 'detection means 6,6 'drive means 7,7 'control means 8 Sealing plug 10 Plano-convex lens 11 reflector 12 waterproof cover 31 light source 32 concave lens 33 Plano-convex lens 41 pinhole 42 cases 43 convex lens 44 2-split optical sensor 44a, 44b Optical sensor a Glass beads (measurement object) b Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷部 洋治 大阪府枚方市大峰元町2丁目16番1号 株 式会社センテック内 Fターム(参考) 2F065 AA01 AA12 AA13 AA20 AA46 AA49 AA60 BB08 BB22 CC23 DD03 FF41 FF49 FF65 FF67 GG05 HH03 HH15 JJ22 JJ23 LL09 LL30 MM04 MM14 MM24 MM28 PP03 PP13 QQ15 QQ25 2H036 LA00 MA06 MA07 QA13 QA17 QA18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoji Hasebe             2-16-1 Ominemoto-cho, Hirakata-shi, Osaka             In ceremony company Sentech F term (reference) 2F065 AA01 AA12 AA13 AA20 AA46                       AA49 AA60 BB08 BB22 CC23                       DD03 FF41 FF49 FF65 FF67                       GG05 HH03 HH15 JJ22 JJ23                       LL09 LL30 MM04 MM14 MM24                       MM28 PP03 PP13 QQ15 QQ25                 2H036 LA00 MA06 MA07 QA13 QA17                       QA18

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 中空透明体からなる被測定物の内径の形
状を測定する方法であって、 被測定物の開口部に栓をして被測定物内の空洞を密閉
し、この密閉した被測定物を該被測定物と同じ屈折率の
液体中に浸漬し、この状態で被測定物に光を照射して被
測定物の内径の形状を光学的手法で検出することを特徴
とする中空透明体の内径測定方法。
1. A method for measuring the shape of the inner diameter of an object to be measured, which comprises a hollow transparent body, wherein an opening of the object to be measured is closed to close a cavity in the object to be measured, and the closed object is sealed. A hollow characterized by immersing a measurement object in a liquid having the same refractive index as that of the measurement object, and irradiating the measurement object with light in this state to detect the shape of the inner diameter of the measurement object by an optical method. Measuring method of inner diameter of transparent body.
【請求項2】 中空透明体からなる被測定物の内径の形
状を測定する方法であって、 被測定物の開口部に栓をして被測定物内の空洞を密閉
し、この密閉した被測定物を該被測定物と同じ屈折率の
液体中に浸漬し、この状態で被測定物に光を照射してそ
の透過光を受光してその強弱から被測定物の内径の形状
を検出することを特徴とする中空透明体の内径測定方
法。
2. A method for measuring the shape of the inner diameter of an object to be measured, which comprises a hollow transparent body, wherein an opening of the object to be measured is capped to close a cavity inside the object to be measured, and the closed object is sealed. The object to be measured is immersed in a liquid having the same refractive index as the object to be measured, and in this state, the object to be measured is irradiated with light and the transmitted light is received to detect the shape of the inner diameter of the object to be measured from its strength. A method for measuring the inner diameter of a hollow transparent body, comprising:
【請求項3】 前記被測定物が貫通穴を有する中空透明
体である場合において、前記光を前記貫通穴の軸方向に
直交するように照射することを特徴とする請求項2に記
載の中空透明体の内径測定方法。
3. The hollow according to claim 2, wherein when the object to be measured is a hollow transparent body having a through hole, the light is irradiated so as to be orthogonal to the axial direction of the through hole. Measuring method of inner diameter of transparent body.
【請求項4】 前記透過光を受光する受光手段を被測定
物の貫通穴の径方向および軸方向にスキャンニングしな
がら透過光の受光を行うことを特徴とする請求項3に記
載の中空透明体の内径測定方法。
4. The hollow transparent body according to claim 3, wherein the transmitted light is received while scanning the light receiving means for receiving the transmitted light in the radial direction and the axial direction of the through hole of the object to be measured. How to measure the inner diameter of the body.
【請求項5】 中空透明体からなる被測定物の内径の形
状を測定する方法であって、 被測定物の開口部に栓をして被測定物内の空洞を密閉
し、この密閉した被測定物を該被測定物と同じ屈折率の
液体中に浸漬し、この状態で被測定物に光を照射し、照
射された光が前記被測定物の空洞の稜線で反射した反射
光を受光してその強弱から被測定物の内径の形状を検出
することを特徴とする中空透明体の内径測定方法。
5. A method for measuring the shape of the inner diameter of an object to be measured, which comprises a hollow transparent body, wherein an opening of the object to be measured is capped to close a cavity in the object to be measured, and the closed object is measured. The object to be measured is dipped in a liquid having the same refractive index as the object to be measured, and the object to be measured is irradiated with light in this state, and the reflected light reflected by the ridge of the cavity of the object to be measured is received. Then, the shape of the inner diameter of the object to be measured is detected from its strength and weakness, and a method for measuring the inner diameter of the hollow transparent body.
【請求項6】 前記被測定物が貫通穴を有する中空透明
体である場合において、前記光を前記貫通穴の側面から
照射することを特徴とする請求項4に記載の中空透明体
の内径測定方法。
6. The inner diameter measurement of a hollow transparent body according to claim 4, wherein when the object to be measured is a hollow transparent body having a through hole, the light is irradiated from a side surface of the through hole. Method.
【請求項7】 前記反射光を受光する受光手段を被測定
物の貫通穴の軸方向にスキャンニングしながら反射光の
受光を行うことを特徴とする請求項6に記載の中空透明
体の内径測定方法。
7. The inner diameter of the hollow transparent body according to claim 6, wherein the light receiving means for receiving the reflected light receives the reflected light while scanning in the axial direction of the through hole of the object to be measured. Measuring method.
【請求項8】 前記反射光の受光時に被測定物を貫通穴
の軸線周りに回転させながら前記反射光を受光すること
を特徴とする請求項6または請求項7に記載の中空透明
体の内径測定方法。
8. The inner diameter of the hollow transparent body according to claim 6, wherein the reflected light is received while rotating the object to be measured around the axis of the through hole when the reflected light is received. Measuring method.
【請求項9】 中空透明体からなる被測定物の内径の形
状を測定する装置であって、 前記被測定物と同じ屈折率の液体からなり、前記被測定
物が浸漬される液体手段と、 この液体手段中に浸漬された前記被測定物に光を照射す
る投光手段と、 前記被測定物を挟んで前記投光手段に対向して設けら
れ、前記被測定物を透過した光を受光して光電変換する
受光手段と、 この受光手段出力から被測定物内の空洞の形状を検出す
る検出手段と、 前記投光手段および受光手段を同期してスキャン方向に
移動させる駆動手段とを有することを特徴とする中空透
明体の内径測定装置。
9. A device for measuring the shape of the inner diameter of an object to be measured which is a hollow transparent body, and a liquid means which is made of a liquid having the same refractive index as that of the object to be measured and into which the object to be measured is immersed. A light projecting unit that irradiates the measured object immersed in the liquid means with light, and a light projecting unit that is provided so as to face the light projecting unit with the measured object interposed therebetween, and receives light that has passed through the measured object. And a photoelectric conversion means, a detecting means for detecting the shape of the cavity in the object to be measured from the output of the light receiving means, and a driving means for synchronously moving the light projecting means and the light receiving means in the scanning direction. An inner diameter measuring device for a hollow transparent body, which is characterized in that
【請求項10】 前記受光手段は一対の光センサを所定
間隔をもって並列に配設してなる2分割光センサからな
ることを特徴とする請求項9に記載の中空透明体の内径
測定装置。
10. The inner diameter measuring device for a hollow transparent body according to claim 9, wherein said light receiving means comprises a two-division optical sensor in which a pair of optical sensors are arranged in parallel at a predetermined interval.
【請求項11】 中空透明体からなる被測定物の内径の
形状を測定する装置であって、 前記被測定物と同じ屈折率の液体からなり、前記被測定
物が浸漬される液体手段と、 この液体手段中に浸漬された前記被測定物に光を照射す
る投光手段と、 照射された光が前記被測定物の空洞の稜線で反射した反
射光を受光して光電変換する受光手段と、 この受光手段出力から被測定物内の空洞の形状を検出す
る検出手段と、 前記投光手段および受光手段を同期して所定のスキャン
方向に移動させる駆動手段とを有することを特徴とする
中空透明体の内径測定装置。
11. An apparatus for measuring the shape of the inner diameter of an object to be measured which is a hollow transparent body, and a liquid means which is made of a liquid having the same refractive index as that of the object to be measured and into which the object to be measured is immersed. A light projecting means for irradiating the measured object immersed in the liquid means with light, and a light receiving means for receiving reflected light of the irradiated light reflected by the ridge of the cavity of the measured object and photoelectrically converting the reflected light. A hollow having a detecting means for detecting the shape of the cavity in the object to be measured from the output of the light receiving means, and a driving means for synchronously moving the light projecting means and the light receiving means in a predetermined scan direction. An inner diameter measuring device for transparent bodies.
【請求項12】 被測定物を回転駆動させる回転駆動手
段を備えたことを特徴とする請求項11に記載の中空透
明体の内径測定装置。
12. An inner diameter measuring device for a hollow transparent body according to claim 11, further comprising a rotation driving means for rotationally driving the object to be measured.
【請求項13】 前記受光手段は縦横に光センサを整列
配置してなる4分割光センサからなることを特徴とする
請求項11または請求項12に記載の中空透明体の内径
測定装置。
13. The inner diameter measuring device for a hollow transparent body according to claim 11 or 12, wherein said light receiving means comprises a four-division optical sensor in which optical sensors are arranged vertically and horizontally.
JP2001351101A 2001-11-16 2001-11-16 Method and device for measuring inside diameter of hollow transparent body Withdrawn JP2003148931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351101A JP2003148931A (en) 2001-11-16 2001-11-16 Method and device for measuring inside diameter of hollow transparent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351101A JP2003148931A (en) 2001-11-16 2001-11-16 Method and device for measuring inside diameter of hollow transparent body

Publications (1)

Publication Number Publication Date
JP2003148931A true JP2003148931A (en) 2003-05-21

Family

ID=19163466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351101A Withdrawn JP2003148931A (en) 2001-11-16 2001-11-16 Method and device for measuring inside diameter of hollow transparent body

Country Status (1)

Country Link
JP (1) JP2003148931A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100439A (en) * 2006-10-19 2008-05-01 Kureha Corp Method for inspecting multilayered preform, multilayered blow molded container or multilayered molded article
JP2012194085A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Edge detection apparatus
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100439A (en) * 2006-10-19 2008-05-01 Kureha Corp Method for inspecting multilayered preform, multilayered blow molded container or multilayered molded article
JP2012194085A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Edge detection apparatus
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11201109B2 (en) 2018-04-09 2021-12-14 Corning Incorporated Hermetic metallized via with improved reliability
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Similar Documents

Publication Publication Date Title
JP6676613B2 (en) Method and apparatus for microscopic inspection of a sample
JP2003148931A (en) Method and device for measuring inside diameter of hollow transparent body
ATE212711T1 (en) OPTICAL INSPECTION OF DIMENSIONAL PARAMETERS OF CONTAINERS
JPH074933A (en) Optical shape measuring apparatus
KR910021571A (en) Coating thickness measuring method and apparatus
WO1998052025A1 (en) Surface inspection instrument and surface inspection method
CN113310507A (en) Optical fiber SPR sensor for measuring displacement and angle, calibration device and method
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
Jorgenson Surface plasmon resonance-based bulk optic and fiber-optic sensors
CN210071291U (en) Chromatic aberration measuring device for optical lens
Socorro et al. Fiber-optic immunosensor based on lossy mode resonances induced by indium tin oxide thin-films
CN110542539A (en) Chromatic aberration measuring device for optical lens
EP0532291B1 (en) Measuring geometry of optical fibre coatings
JP2505230B2 (en) Method for calibrating laser beam deflection angle measuring device
JPH0326444Y2 (en)
JPH03210409A (en) Instrument for measuring configuration of optical fiber
JPH11148896A (en) Cell for optical characteristic measurement of liquid and its manufacture
JPH08219983A (en) Optical fiber and fiber-optic sensor
SU1288730A1 (en) Tactile sensor for pattern recognition equipment
JP2000221100A (en) Leakage liquid sensor
JPS603541A (en) Method for inspecting precisely defect of light transmitting pipe material
JP2762420B2 (en) Ring light floodlight
JPH01161126A (en) Shape measuring method for transparent body
JPS61204548A (en) Defect detector
JPS61163304A (en) Welding connection device of optical fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201