JP2000221100A - Leakage liquid sensor - Google Patents

Leakage liquid sensor

Info

Publication number
JP2000221100A
JP2000221100A JP11022293A JP2229399A JP2000221100A JP 2000221100 A JP2000221100 A JP 2000221100A JP 11022293 A JP11022293 A JP 11022293A JP 2229399 A JP2229399 A JP 2229399A JP 2000221100 A JP2000221100 A JP 2000221100A
Authority
JP
Japan
Prior art keywords
light
liquid leakage
boundary surface
liquid
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11022293A
Other languages
Japanese (ja)
Inventor
Kenichi Hayashida
建一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUDEN KK
Tsuden KK
Original Assignee
TSUUDEN KK
Tsuden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUDEN KK, Tsuden KK filed Critical TSUUDEN KK
Priority to JP11022293A priority Critical patent/JP2000221100A/en
Publication of JP2000221100A publication Critical patent/JP2000221100A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To early detect leakage although leak liquid is not contacted with the bottom part of a case and without using thin paper by projecting a ray from a light source to a reflection interface, computation processing output of a reflecting light receiving means to determine arrangement of a contrast pattern at every period, and searching for variation of the arranged position. SOLUTION: In this leakage sensor 20a, thin paper is not used, the bottom surface of a holder 4 is painted in grey color, the reflecting light 24 is input to a photoelecric transfer element array sensor 28 (28a-28n). By reflecting light 24 in the case of no leakage liquid 2, reflecting light 24a when leakage liquid 2 thinly permestes the bottom face 4a, reflecting light 24z when thickness of leak liquid becomes large and a case 12 submerges in the leakage liquid 2, or the like, arrangement of contrast patterns are respectively changes. Consequently, after writing output of the respective elements 28a-28n of the array sensor 28 in a double buffer memory 34 in a fixed sampling period, the peak contrast position of a received light pattern smoothed by an MPU 36 or the like is computed, and by computing the brightness distribution of reflecting light quantity and the position of a center of gravity, existence of leak liquid can be judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水、酸性溶液、
アルカリ溶液等の電気的導通を有する液体や、アルコー
ル、シンナー、ベンジン等の有機性等の絶縁性を有する
液体の漏液を検知する漏液センサの改良に関する。
The present invention relates to water, an acidic solution,
The present invention relates to an improvement in a liquid leakage sensor that detects leakage of a liquid having electrical conductivity such as an alkaline solution or a liquid having an insulating property such as organic such as alcohol, thinner, and benzene.

【0002】[0002]

【従来の技術】従来工場等の設備では配管により液体を
供給している。しかし、配管には多くの個所に接続用の
継手が設けられているため継手から液体が漏液する場合
が多い。そこで、液体の種類によっては漏液の監視を人
間が常時行なわなければならなかった。かかる従来の漏
液監視方法としては導電方式や液量方式が知られてい
る。又、特公平4-70572号公報には漏液を吸収す
ると透明になるフイルタに光源より光を照射しておき、
漏液があった時に上記フイルタからの透過光又は反射光
の変化量を検知することにより漏液を確実に検知できる
ようにした漏液センサ技術が記載されている。図1はか
かる従来の反射方式の漏液センサ20の原理を示す図で
あり、床面1に薄紙及びケースのホルダ4がその底面4
aを黒色に塗装され反射板を兼ねてネジ等の止め具6に
より固定され、その上に白色の薄紙(又は布、合成樹脂
等でも良い)8が載置されている。また、ホルダ4には
その底部12aが透明又は半透明な部材で構成されたケ
ース12が挿入され、ケース12の内部には光源手段1
4、受光手段16及びコンパレータ等を含む検知手段1
8が一体化して収容され、ケーブル26を介して外部と
接続されるようになっている。尚、ケース12は防塵、
防水用のフタを兼ねているが、漏液2が薄紙8の中央の
反射領域8bに浸透し易くし、かつ、漏液の検出時間を
短縮するため、ケースの底部12aと薄紙8との間には
空隙部10が設けられている。この空隙はほこり、ちり
等の汚れを避けると共に、外部のノイズ光を検知せず、
安定的に薄紙8からの反射光を検出するため数mm以内
が望ましい。また反射板4aとケース12とを着脱可能
な構造のフイルタとした方が薄紙8の交換や設置作業等
が容易なことが分った。更にまた、漏液の発生個所が一
般的には特定できないことから、どの方向から浸透して
来る漏液に対しても素早く応答するため、薄紙の形状は
一般的には円形が好ましいことも分った。このような構
成において通常LEDや赤外レーザー発光素子、光ファ
イバー等の光源手段14から光22が照射され、薄紙8
からの白色の反射光24が受光手段16により常時検出
されている。しかして、床面1に漏液2が生じた場合、
接触部9から漏液2が順次薄紙8の反射領域8bに浸透
していき、薄紙8の接触部9は漏液の浸透により白色か
ら透明色に変化する。しかるに、薄紙8の下側の反射板
4aは黒色であるので、薄紙8の色は接触部9では白色
から黒色に変化し、受光手段16への反射光24は反射
板4aに吸収されて大幅に減少し、検知手段18により
この反射光量の変化を検出して漏液検知が行われる。か
かる薄紙を利用した漏液センサは構造が簡単で、動作も
確実であり、止め具等で床面に固定されているのでセン
サが転倒する事故もなく、粘度の高い液体でも比較的短
時間で検知できる利点があるが、ホルダの床面設置作業
や薄紙の交換作業をできるだけ省略したい利用者からは
薄紙を使用せず、床面設置作業の不要な漏液センサが要
望されていた。
2. Description of the Related Art In a conventional facility such as a factory, a liquid is supplied by piping. However, since connecting joints are provided at many places in the pipe, liquid often leaks from the joints. Therefore, depending on the type of liquid, humans must constantly monitor the leakage. As such a conventional liquid leakage monitoring method, a conductive method and a liquid amount method are known. Also, Japanese Patent Publication No. 4-70572 discloses that a filter which becomes transparent when absorbing a liquid leak is irradiated with light from a light source.
There is described a liquid leak sensor technology that can detect a liquid leak reliably by detecting a change amount of transmitted light or reflected light from the filter when there is a liquid leak. FIG. 1 is a view showing the principle of such a conventional reflection-type liquid leakage sensor 20, in which thin paper and a case holder 4 are provided on a floor surface 1 with a bottom surface 4 thereof.
a is painted black and fixed with a stopper 6 such as a screw, which also serves as a reflection plate, and a white thin paper (or cloth, synthetic resin, or the like) 8 is placed thereon. A case 12 whose bottom 12 a is formed of a transparent or translucent member is inserted into the holder 4.
4. Detection means 1 including light receiving means 16 and comparator
8 are integrally accommodated and connected to the outside via a cable 26. The case 12 is dustproof,
Although it also serves as a water-proof lid, in order to make it easier for the leaked liquid 2 to penetrate into the reflective area 8b in the center of the thin paper 8 and to shorten the time for detecting the leaked liquid, the gap between the bottom 12a of the case and the thin paper 8 is reduced. Is provided with a void 10. This gap avoids dirt such as dust and dust, and does not detect external noise light.
In order to stably detect the reflected light from the thin paper 8, it is desirable that the distance be within several mm. In addition, it was found that the use of a filter having a structure in which the reflection plate 4a and the case 12 were detachable facilitated replacement and installation work of the thin paper 8. Furthermore, since the location where the liquid leaks cannot be generally specified, the thin paper is generally preferably circular in order to respond quickly to the liquid leaking from any direction. Was. In such a configuration, light 22 is radiated from the light source means 14 such as an LED, an infrared laser light emitting element, or an optical fiber.
Is constantly detected by the light receiving means 16. Thus, if a liquid leak 2 occurs on the floor surface 1,
The leaked liquid 2 sequentially permeates the reflection area 8b of the thin paper 8 from the contact portion 9, and the contact portion 9 of the thin paper 8 changes from white to transparent color due to the penetration of the leaked liquid. However, since the reflection plate 4a on the lower side of the thin paper 8 is black, the color of the thin paper 8 changes from white to black at the contact part 9, and the reflected light 24 to the light receiving means 16 is absorbed by the reflection plate 4a and greatly reduced. The change in the amount of reflected light is detected by the detecting means 18 to detect liquid leakage. The liquid leakage sensor using such thin paper has a simple structure, is reliable in operation, and is fixed to the floor surface with a stopper or the like. Although there is an advantage of being able to detect, a user who wants to minimize the work of installing the holder on the floor and replacing the thin paper as much as possible has demanded a liquid leakage sensor that does not use the thin paper and does not require the installation of the floor.

【0003】[0003]

【発明が解決しようとする課題】かかる薄紙を使用しな
い漏液センサとしては、上述のケース底部に光を照射
し、その反射光量の大小により漏液の有無を判定するも
のが種々考案されているが、ケース底部と床面とを密着
させると粘度の高い液体はケース底部の中央部には非常
に浸透しにくくなるので、一般には薄紙を使用した漏液
センサよりもはるかに大きい2〜4mmの空隙部を床面
とケース底部との間に設けた構造となっており,大量に
漏液が流出してケース底部が漏液と接触しないと漏液が
全く検知できない構造となっていた。また、ケース底部
が直接床面に対向して露出している構造のものでは床面
の塗装色の影響を受けやすく、漏液が浸透して来た段階
で不必要な床面からの反射光を大量に受光してしまい誤
作動する等反射光量の大小だけでは漏液の有無判定が安
定しないという問題点もあった。更に、ケースを床面に
固定せず単に置いておくだけなのでケースが床から浮き
上がったり転倒するといった事故も発生しやすかった。
よってこの発明は上述のような事情に鑑みて成されたも
のであり、この発明の目的は、ケース底部に漏液が接触
しなくても早期に漏液の検出が可能な薄紙を使用しな
い、転倒検出機能付きの漏液センサを提供することにあ
る。
As such a liquid leakage sensor which does not use thin paper, various types have been devised which irradiate the above-mentioned case with light and determine the presence or absence of liquid leakage based on the amount of reflected light. However, when the case bottom and the floor are brought into close contact with each other, a liquid having a high viscosity becomes very difficult to penetrate into the center of the case bottom. The structure was such that a gap was provided between the floor and the bottom of the case, and a large amount of liquid leaked out, and the liquid could not be detected at all unless the bottom of the case was in contact with the liquid. In the case of the structure where the bottom of the case is directly exposed to the floor surface, it is easily affected by the paint color of the floor surface, and unnecessary reflected light from the floor surface at the stage when the liquid has permeated. There is also a problem that determination of the presence / absence of liquid leakage is not stable only by the magnitude of the amount of reflected light, for example, a large amount of light is received and a malfunction occurs. In addition, since the case is simply placed on the floor without fixing it, an accident such as the case being lifted off the floor or falling over was likely to occur.
Therefore, the present invention has been made in view of the above-described circumstances, an object of the present invention is to use a thin paper that can detect a leak at an early stage even if the leak does not contact the bottom of the case, An object of the present invention is to provide a liquid leakage sensor with a fall detection function.

【0004】[0004]

【課題を解決するための手段】この発明は、漏液と接触
し得る少なくとも1つの反射境界面と、光源手段及び受
光手段から成る漏液センサに関し、この発明の上記目的
は、前記光源手段から前記反射境界面へ光を投射し、該
境界面からの反射光を複数の受光手段で受光し、これら
受光手段の出力を演算処理して前記反射光の明暗パター
ンの配置を所定の周期毎に決定し、該反射光の明暗パタ
ーンの配置位置の変動により漏液の有無を判定するよう
にしたことによって達成される。また、この発明は、漏
液と接触し得る少なくとも1つの反射境界面と、底部が
透明材又は半透明材で構成されたケースと、光を照射す
る光源手段と、この光源からの照射光を前記ケースの透
明材又は半透明材を介して前記反射境界面に照射する第
1の光伝送手段と、前記境界面からの反射光を受光して
伝送する第2の光伝送手段と、前記第2の光伝送手段か
らの光を受光する受光手段から成る漏液センサにも関
し、この発明の上記目的は、前記第1の光伝送手段の一
端及び前記第2の光伝送手段の一端で光学系路を形成す
るよう一体化して前記ケース内に納めると共に、前記第
2の光伝送手段を複数の光伝送手段で構成して反射光の
受光位置が相互に識別できるように伝送し、前記第2の
光伝送手段の他端で複数の受光手段により反射光の受光
位置が相互に識別できるように伝黄信号に変換し、これ
ら受光手段の出力を演算処理して前記反射光の明暗パタ
ーンの配置を所定の周期毎に決定し、該反射光の明暗パ
ターン位置の変動により漏液の有無を判定することによ
っても達成される。更に、この発明の上記目的は、漏液
に接触し得る少なくとも2つの反射境界面を、光の進行
方向に気体層又は漏液浸透層を介在させて形成し、少な
くとも2つの光源手段及び受光手段を前記各反射境界面
のそれぞれに対し、同一の側に配設し、前記光源手段に
最も近い第1の反射境界面に対しては臨界角以上の入射
角で第1の光源手段から光を投射し、前記第1の境界面
からの反射光を第1の受光手段で受光し、その出力を演
算処理して漏液を検知する第1の検知手段とで第1の漏
液センサを構成し、前記第1の境界面以外の反射境界面
に対しては臨界角未満の入射角で第2の光源手段から光
を投射し、前記第1の境界面以外の反射境界面からの反
射光を第2の受光手段で受光し、その出力を演算処理し
て漏液を検知する第2の検知手段とで第2の漏液センサ
を構成することによっても達成される。
SUMMARY OF THE INVENTION The present invention relates to a liquid leakage sensor comprising at least one reflecting boundary surface capable of contacting liquid leakage, a light source means and a light receiving means. The light is projected onto the reflective boundary surface, the reflected light from the boundary surface is received by a plurality of light receiving means, and the outputs of these light receiving means are arithmetically processed to arrange the arrangement of the light and dark patterns of the reflected light at predetermined intervals. This is achieved by determining and determining the presence or absence of liquid leakage based on a change in the arrangement position of the light / dark pattern of the reflected light. Further, the present invention provides at least one reflective boundary surface that can come into contact with the liquid leak, a case whose bottom is made of a transparent material or a translucent material, light source means for irradiating light, and irradiating light from this light source. A first optical transmission unit that irradiates the reflective boundary surface through a transparent material or a translucent material of the case; a second optical transmission unit that receives and transmits light reflected from the boundary surface; The above object of the present invention also relates to a liquid leakage sensor comprising light receiving means for receiving light from the second light transmitting means, wherein one end of the first light transmitting means and one end of the second light transmitting means are optically connected. The second optical transmission means is constituted by a plurality of optical transmission means and transmitted so that the light receiving positions of the reflected light can be distinguished from each other. Receiving light reflected by the plurality of light receiving means at the other end of the second light transmitting means. The positions of the reflected light are converted into yellow light signals so that the positions can be distinguished from each other, and the outputs of these light receiving means are arithmetically processed to determine the arrangement of the light / dark pattern of the reflected light at predetermined intervals. It is also achieved by determining the presence or absence of liquid leakage based on the fluctuation. Further, the object of the present invention is to form at least two reflection boundary surfaces which can come into contact with the liquid leakage with a gas layer or a liquid leakage permeable layer interposed in the light traveling direction, and at least two light source means and light receiving means Are arranged on the same side with respect to each of the reflection boundary surfaces, and light from the first light source unit is incident on the first reflection boundary surface closest to the light source unit at an incident angle equal to or greater than the critical angle. A first leak sensor is formed by projecting and receiving the reflected light from the first boundary surface by a first light receiving unit, calculating the output thereof, and detecting a leak. Then, light is projected from the second light source means at an incident angle smaller than the critical angle to a reflection boundary surface other than the first boundary surface, and reflected light from a reflection boundary surface other than the first boundary surface is reflected. Is received by the second light receiving means, and the output thereof is subjected to arithmetic processing to the second detecting means for detecting the liquid leakage. Also achieved by configuring the second liquid leakage sensor.

【0005】[0005]

【発明の実施の形態】以下、図面に基づいて、この発明
の好適な実施例について詳細に説明する。図1に対応さ
せて示す図2はこの発明の明暗パターンの配置を利用し
た漏液センサ20aの一例であり、それぞれ同一の番号
を付した装置は同一の機能を果たすと共に、薄紙8を使
用せずホルダ4の底面4aは、例えば、中間調の灰色で
塗装されており、その反射光24がCCDやMOS型ホ
トダイオード等が複数個並設された1次元又は2次元光
電変換素子アレイセンサ(以下アレイセンサと略す)2
8に入力され、その出力が所定のサンプリング周期毎に
A/D変換手段32によりデジタル信号に変換され、マ
イクロプロセッサ(MPU)36を含む制御手段30内
のダブルバッファメモリ34に順次書込まれるようにな
っている。また傾斜センサ38がケース12内に配設さ
れ、その出力は制御手段30に入力されると共に、漏液
の検知出力は外部に電気信号として出力され、更に表示
手段29にも赤色LED等により出力されるようになっ
ている。尚、ホルダ4の床面1との接触面はその外径が
ケース12の外径の1.5倍以上の大きさのものを使用
した方が、センサ20aの転倒防止の面から好ましい。
又、ケース12の底部の漏液との接触面12aとホルダ
4の底面4aとの間隔dは検知する液体の粘度に対応し
て種々のものに変更できることが好ましく、地震や重量
物の移動等により反射境界面4aと受光手段28との角
度や間隔が変化すると、誤動作の原因となるので、ホル
ダ4とケース12とは着脱可能で、かつ、間隔dが外部
の振動に対しても変化しない構造のものが好ましい。
又、ホルダ4は遮光部材により構成されているので、ケ
ース12の周囲からノイズ光が侵入したり、床面からの
不要な反射光を防止する効果がある。かかる構成におい
て、その動作を次に説明する。先ず、漏液2がない場合
には、図2(B)に示すようにホルダ底面(反射境界
面)4aからの反射光24がアレイセンサ28a〜28
nに入力され、その明暗パターンは図3(A)に示すよ
うな分布を形成する。また、漏液2が反射境界面4aに
薄く浸透した場合には、その反射光24aは図3(B)
のような明暗パターンの配置となり、更に漏液の厚さ
(深さ)が大きくなると図3(C)の明暗パターンの配
置となり、ケース12が漏液2の中に水没するとその反
射光24zは図3(D)の明暗パターンの配置に変化す
る。従って、所定のサンプリング周期でアレイセンサ2
8の各素子28a〜28nの出力をダブルバッファメモ
リ34に書込んだ後、MPU等により以下の処理を行な
うと良い。 a)各受光素子28i(i=a〜n)の感度補正を行な
った後、受光パターンを移動平均処理等により平滑化す
る。 b1)平滑化した受光パターンの明暗のピーク位置を演
算し、この位置が漏液無し範囲内にあるか否かで漏液の
有無を判定する。 b2)平滑化した受光パターンの反射光量の輝度分布の
重心XGを次式により演算し、この重心位置が漏液無し
範囲内にあるか否かで漏液の有無を判定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 corresponding to FIG. 1 shows an example of a liquid leakage sensor 20a utilizing the arrangement of the light and dark patterns of the present invention. Devices having the same numbers perform the same functions and use thin paper 8. The bottom surface 4a of the holder 4 is, for example, painted in a halftone gray, and its reflected light 24 is a one-dimensional or two-dimensional photoelectric conversion element array sensor (hereinafter, referred to as a CCD or MOS photodiode). Array sensor) 2
The output is converted into a digital signal by an A / D converter 32 at a predetermined sampling period, and is sequentially written to a double buffer memory 34 in a controller 30 including a microprocessor (MPU) 36. It has become. A tilt sensor 38 is provided in the case 12, and its output is input to the control means 30, the detection output of the liquid leakage is output as an electric signal to the outside, and further output to the display means 29 by a red LED or the like. It is supposed to be. It is preferable that the holder 4 has a contact surface with the floor surface 1 whose outer diameter is at least 1.5 times the outer diameter of the case 12 from the viewpoint of preventing the sensor 20a from tipping over.
The distance d between the contact surface 12a of the bottom of the case 12 and the bottom surface 4a of the holder 4 and the bottom surface 4a of the holder 4 is preferably variable in accordance with the viscosity of the liquid to be detected. If the angle or the interval between the reflection boundary surface 4a and the light receiving means 28 changes due to the above, the malfunction may be caused. Therefore, the holder 4 and the case 12 can be attached and detached, and the interval d does not change with respect to external vibration. Structures are preferred.
Further, since the holder 4 is formed of a light shielding member, there is an effect of preventing noise light from entering around the case 12 and unnecessary reflected light from the floor surface. The operation of the above configuration will be described below. First, when there is no liquid leak 2, as shown in FIG. 2B, the reflected light 24 from the holder bottom surface (reflection boundary surface) 4a is output from the array sensors 28a to 28.
n, and the light and dark pattern forms a distribution as shown in FIG. When the leaked liquid 2 slightly penetrates the reflection boundary surface 4a, the reflected light 24a is reflected in FIG.
When the thickness (depth) of the leaked liquid further increases, the light and dark pattern shown in FIG. 3C is arranged. When the case 12 is submerged in the leaked liquid 2, the reflected light 24z becomes The arrangement changes to the arrangement of the light and dark patterns in FIG. Therefore, at a predetermined sampling period, the array sensor 2
After writing the outputs of the eight elements 28a to 28n into the double buffer memory 34, the following processing may be performed by an MPU or the like. a) After the sensitivity of each light receiving element 28i (i = a to n) is corrected, the light receiving pattern is smoothed by moving average processing or the like. b1) The peak position of lightness and darkness of the smoothed light receiving pattern is calculated, and the presence or absence of leakage is determined based on whether or not this position is within the range of no leakage. b2) The center of gravity XG of the brightness distribution of the reflected light amount of the smoothed light receiving pattern is calculated by the following equation, and the presence or absence of liquid leakage is determined based on whether or not the position of the center of gravity is within the range of no liquid leakage.

【数1】 XG=ΣR(j)・j/Σj (j=1からn) 但し、R(j):受光レベル j=:受光位置 b3)予め、反射光の明暗パターンの波形立上り部分及
び/又は、波形ピーク部分、及び/又は、波形立下り部
分等を漏液有りの反射光パターンの中から切出してテン
プレートメモリ等に漏液テンプレートパターンT(j)
として登録しておき、このテンプレートパターンT
(j)と類似した波形位置を平滑化した受光パターンの
中で次式により演算する。
XG = ΣR (j) · j / Σj (j = 1 to n) where R (j): light receiving level j =: light receiving position b3) The rising edge of the waveform of the bright and dark pattern of the reflected light and / or Alternatively, a waveform peak portion and / or a waveform falling portion are cut out from a reflected light pattern having a leak and the leaked template pattern T (j) is stored in a template memory or the like.
And register this template pattern T
In the light receiving pattern obtained by smoothing the waveform position similar to (j), the calculation is performed by the following equation.

【数2】 次に、漏液無し位置より所定の距離以上離れた位置で、
かつ、所定の類似度Thcr以上テンプレート波形と類
似した明暗パターンが検出された場合、漏液有りと判定
し、それ以外の場合には漏液無しと判定する。 c)かくして、漏液が検出されると、表示手段29を赤
色点灯させると共にケーブル26を介して外部に漏液の
有無を出力する。尚、上述のb1)及びb2)の処理で
はレンズ等の集光手段により広く反射光を集めることに
より、最小限2箇所の受光手段により、漏液の有無演算
が実行できる。また、b3)の相関演算では最小限4〜
8箇所の異なる位置からの受光手段による反射光データ
の収集が好ましい。従って図2に示すような構造の漏液
センサによれば、漏液センサ20aを床面1に置くだけ
で薄紙8を使用せず、床面へのセンサ固定作業も不要で
かつ、大量の漏液が流出せず、漏液が反射境界面4aに
浸透した初期の時点で、確実に漏液を検出することがで
き、ホルダ4の外周を大きくすることによりセンサ20
aの転倒も防止することができる。
(Equation 2) Next, at a position that is at least a predetermined distance from the no-leakage position,
In addition, when a light-dark pattern similar to the template waveform is detected with a predetermined similarity Thcr or more, it is determined that there is liquid leakage, and otherwise, it is determined that there is no liquid leakage. c) Thus, when a leak is detected, the display means 29 is lit in red and the presence or absence of the leak is output to the outside via the cable 26. In the processes b1) and b2), the reflected light is widely collected by a light condensing means such as a lens, so that the presence or absence of liquid leakage can be calculated by a minimum of two light receiving means. In the correlation calculation of b3), at least 4 to
It is preferable to collect reflected light data from eight different positions by the light receiving means. Therefore, according to the liquid leakage sensor having the structure shown in FIG. 2, only the liquid leakage sensor 20a is placed on the floor surface 1 without using the thin paper 8, the sensor fixing work on the floor surface is not required, and a large amount of leakage occurs. At the initial time when the liquid does not flow out and the liquid has permeated the reflective boundary surface 4a, the liquid can be reliably detected, and the sensor 20 can be detected by enlarging the outer periphery of the holder 4.
a can also be prevented from falling.

【0006】次に、図2に対応させて示す図4はこの発
明の明暗パターンの配置を利用した漏液センサ20bの
別の一実施例を示すものであり、漏液検知部に電気配線
をなくし、光ファイバー等の光伝送手段40、42a〜
42zにより反射境界面4aへの光の投受光を行なうよ
うにしたため、液体2が揮発性で引火、爆発の危険があ
る場合でも極めて安全に反射光による漏液検知ができる
ようにしたもので、それぞれ同一の番号を付した装置は
同一の機能を果たすと共に、遠隔地に設けられた光源手
段14からの照射光は光伝送手段40によりケース12
の底部12aまで導かれ所定の角度で反射境界面4aへ
照射され、その反射光は直線状に配設された光伝送手段
42a〜42zにより受光され、遠隔地に設けられた受
光手段28a及び28bに伝送され、AD変換手段32
を介して制御手段30に入力されるようになっている。
かかる構成においても漏液2がホルダ4の反射境界面4
aにない場合には、受光手段28bの出力の方が受光手
段28aの出力よりも大きくなり、また、漏液2が反射
境界面4aの照射領域に浸透すると、漏液2による光の
屈折及び反射現象により受光手段28aの出力が増加
し、受光手段28bの出力が減少する等の変化により、
上述のb1)又はb2)の処理により漏液の有無を検知
することができる。従って、図4に示すような構造の漏
液センサによれば漏液センサ20bを床面1に置くだけ
で薄紙8を使用せず、床面へのセンサ固定作業も不要で
あり、揮発性の液体2に対しても極めて安全に少量の漏
液が反射境界面4aに浸透して来た時点で漏液の検出を
行なうことができる。又、図2及び図4のような構成の
装置では一度に大量の漏液が流出してケース12が漏液
中に水没し、かつ、ケース底部12aに気泡等が発生し
ても、反射境界面4aに漏液が浸透していれば照射光は
その反射系路が曲げられ受光手段28a、28b等の出
力に変化が現れるので、気泡等の影響を受けずに漏液の
検出を行なうことが可能となる。
Next, FIG. 4 corresponding to FIG. 2 shows another embodiment of the liquid leak sensor 20b utilizing the arrangement of the light and dark patterns of the present invention. Optical transmission means 40, 42a-
42z is used to transmit and receive light to the reflective boundary surface 4a, so that even when the liquid 2 is volatile and there is a danger of ignition or explosion, it is possible to detect liquid leakage by reflected light very safely. The devices having the same numbers perform the same functions, and the light emitted from the light source means 14 provided at a remote location is transmitted to the case 12 by the optical transmission means 40.
Is guided to the reflection boundary surface 4a at a predetermined angle, and the reflected light is received by linearly arranged light transmission means 42a to 42z, and the light reception means 28a and 28b provided at remote locations are provided. To the AD conversion means 32
Is input to the control means 30 via the.
Even in such a configuration, the liquid leakage 2 is caused by the reflection boundary surface 4 of the holder 4.
a, the output of the light receiving means 28b is larger than the output of the light receiving means 28a, and when the leaked liquid 2 penetrates into the irradiation area of the reflection boundary surface 4a, the refraction of light by the leaked liquid 2 and Due to changes such as the output of the light receiving means 28a increasing due to the reflection phenomenon and the output of the light receiving means 28b decreasing,
The presence or absence of liquid leakage can be detected by the processing of b1) or b2) described above. Therefore, according to the liquid leakage sensor having a structure as shown in FIG. 4, only the liquid leakage sensor 20b is placed on the floor surface 1 without using the thin paper 8, and the work of fixing the sensor to the floor surface is unnecessary, and the volatile sensor is not volatile. Even when a small amount of liquid leaks into the reflective boundary surface 4a, it is possible to detect the liquid leak very safely for the liquid 2. 2 and 4, even if a large amount of liquid leaks out at once and the case 12 is submerged in the liquid leakage and bubbles or the like are generated at the case bottom 12a, the reflection boundary is not increased. If the liquid leaks into the surface 4a, the reflection path of the irradiated light is bent and the output of the light receiving means 28a, 28b and the like changes, so that the liquid leak should be detected without being affected by bubbles or the like. Becomes possible.

【0007】次に、図1及び図2に対応させて示す図5
はこの発明の漏液センサ20cのまた別の一実施例を示
すものであり、それぞれ同一の番号を付した装置は同一
の機能を果たすと共に、光源手段14aからはケース底
部の漏液と接触する反射境界面12aに対し臨界角以上
の入射角で光22aを照射し、その全反射光24aを受
光手段16aで受光し、電気信号に変換するようになっ
ており、また、光源手段14bからはホルダ4の底面4
aに接着剤5により貼着されたガラス又は合成樹脂等の
反射部材の表面に凸凹を刻設した第2の反射境界面7に
対し臨界角未満の入射角で光22bが照射され、その反
射光24bが受光手段16b又は28により受光され、
電気信号に変換されて制御手段30に入力され、更にケ
ース底部12aの内側には金属箔等の遮光部材15が貼
着され、遮光部材15の一端は静電容量センサ39に入
力されるようになっている。この遮光部材15は光の照
射面及び受光手段近傍の反射光受光面を除いた範囲に配
設するので、漏液浸入時に床面が白又は鏡面であっても
不要な反射光を床面から受光しない光学的効果がある。
かかる構成において漏液センサ20cの動作を説明する
と、傾斜センサ38が所定の角度以上の傾きを検知する
とアラーム信号が外部に出力されるが、かかるアラーム
信号の出力されない通常の状態では受光手段16の出力
及び静電容量センサ39の出力がチェックされ、反射境
界面7からの反射光量が減少したり、静電容量センサ3
9の出力が所定の範囲以上に変化した場合には漏液2が
反射境界面7又はケース底部12aに接近したと判定
し、漏液検知信号を外部に出力する。尚、受光手段16
bを図2と同様の複数の受光手段28に変更した場合に
は凸凹を刻設した反射境界面7は不要である。更に大量
の漏液2が一度に床面1等に流出した場合には受光手段
16aの出力も変化するので、漏液検出の信頼性を一段
と向上させることができる。また、図5(B)に示すす
ように照射光22aと22bとはそれぞれ直交する方向
に投射しているので相互の光学的干渉は少ないが、交互
に光源手段14a/14bを点灯させると光源間の干渉
は完全に排除することができる。又、ケース12の脚部
12fの高さdは検出する液体の粘度に応じて変更する
のが好ましく、着脱可能なホルダ4もケース12の先端
に取付けた方が床面の塗装色や表面性状の影響を排除で
き好ましい。更に又、受光手段16bや静電容量センサ
39はホルダ4を使用しない場合、漏液センサ20cの
床面1からの浮き上がりセンサとして利用することも可
能である。従って、図5に示すような構造の漏液センサ
によれば、消耗品であり、ちり等の原因となる薄紙を使
用せず、床面へのセンサ固定作業も不要でありながら少
量の漏液が床面に浸透して来た時点で確実に漏液の検出
を行なうことができる。また、一度に大量の漏液が流出
しても静電容量センサ39や全反射境界面12aにより
2重、3重に漏液検出をチェックできるので装置の信頼
性を一段と向上させることができる。
Next, FIG. 5 shown corresponding to FIG. 1 and FIG.
Shows another embodiment of the liquid leakage sensor 20c of the present invention. The devices having the same numbers perform the same functions and come into contact with the liquid leakage at the bottom of the case from the light source means 14a. Light 22a is irradiated to the reflection boundary surface 12a at an incident angle equal to or greater than the critical angle, the total reflection light 24a is received by the light receiving means 16a, and is converted into an electric signal. Bottom 4 of holder 4
The light 22b is irradiated at an incident angle smaller than the critical angle with respect to the second reflective boundary surface 7 in which the surface of the reflective member such as glass or synthetic resin adhered to the adhesive member 5 is formed with an unevenness. The light 24b is received by the light receiving means 16b or 28,
The signal is converted into an electric signal and input to the control means 30. Further, a light shielding member 15 such as a metal foil is adhered to the inside of the case bottom 12a, and one end of the light shielding member 15 is input to the capacitance sensor 39. Has become. Since the light shielding member 15 is disposed in a range excluding the light irradiation surface and the reflected light receiving surface in the vicinity of the light receiving means, unnecessary reflected light is emitted from the floor surface even when the floor surface is white or a mirror surface at the time of liquid leakage. There is an optical effect of not receiving light.
The operation of the liquid leakage sensor 20c in such a configuration will be described. When the inclination sensor 38 detects an inclination of a predetermined angle or more, an alarm signal is output to the outside. The output and the output of the capacitance sensor 39 are checked, and the amount of light reflected from the reflection boundary surface 7 decreases, or the capacitance sensor 3
If the output 9 changes beyond a predetermined range, it is determined that the leaked liquid 2 has approached the reflection boundary surface 7 or the case bottom 12a, and a leak detection signal is output to the outside. The light receiving means 16
When b is changed to a plurality of light receiving means 28 similar to that of FIG. 2, the reflection boundary surface 7 having the unevenness is not required. Furthermore, when a large amount of the leaked liquid 2 flows out to the floor 1 or the like at a time, the output of the light receiving means 16a also changes, so that the reliability of the leak detection can be further improved. Further, as shown in FIG. 5 (B), the irradiation light 22a and 22b are projected in directions orthogonal to each other, so that there is little optical interference between them. However, when the light source means 14a / 14b is turned on alternately, the light source Interference between them can be completely eliminated. It is preferable that the height d of the legs 12f of the case 12 be changed according to the viscosity of the liquid to be detected. Is preferable because the influence of the above can be eliminated. Furthermore, when the holder 4 is not used, the light receiving means 16b and the capacitance sensor 39 can be used as a sensor for floating the liquid leakage sensor 20c from the floor surface 1. Therefore, according to the liquid leakage sensor having the structure as shown in FIG. 5, a small amount of liquid leakage can be obtained without using thin paper which is a consumable, causing dust and the like, and without requiring the sensor to be fixed to the floor surface. Liquid leakage can be reliably detected at the time when the water has permeated the floor. Further, even if a large amount of liquid leaks at once, the detection of the liquid leak can be checked twice or three times by the capacitance sensor 39 and the total reflection boundary surface 12a, so that the reliability of the apparatus can be further improved.

【0008】次に、図4及び図5に対応させて示す図6
は、この発明の漏液センサ20dの又別の一実施例を示
すものであり、漏液検知部に電気配線をなくし光ファイ
バ等の光伝送手段40a、40bにより反射境界面12
a及び7にそれぞれ臨界角以上又は臨界角未満の入射角
で光を照射し、その反射光を遠隔地に設けられた受光手
段16a/16bまで光伝送手段42a及び42b〜4
2zにより伝送しているので液体2が揮発性で引火、爆
発の危険がある場合でも極めて安全に反射光による漏液
検知ができるようにしたものである。また、ケース底部
12aはその外側を光の照射面及び反射光受光面を除い
て合成樹脂等の遮光部材12gで被覆又は構成し、透過
光部材12aと一体成形されており、ホルダ4がなくて
も周囲光のノイズを受けたり、漏液浸入時に床面が白又
は鏡面であっても不要な反射光を床面から受光しないよ
うな光学的構造になっており、光源手段14からの照射
光はその一部が光伝送手段40bによりケース12迄伝
送され、床面1に置かれた薄紙8に臨界角未満の入射角
で光22bとして照射され、その反射光24bが光伝送
手段42b〜42zにより遠隔地に設けられた受光手段
16b迄伝送され、漏液2の有無がチェックされるよう
になっている。尚、薄紙8を床面1に載置しないで床面
1からの反射光を直接受光することも可能である。かか
る構成の漏液センサ20dではホルダ4がなくても外来
光の影響を受けにくく、かつ、漏液2が全反射境界面1
2a迄大量に流出しない漏液流出の初期段階で素早く漏
液を検出することができる利点がある。また、漏液検知
部には電気信号が一切流れないので揮発性の漏液に対し
ても極めて安全に検出処理を行なうことができ、全反射
境界面12aを突出させた構造とすると、一度に大量の
漏液が流出しても、この漏液を2重、3重にチェックし
て検出し、検出処理の信頼性を一段と向上させることが
できる。更にまた、上述の遮光部材12gと透過光部材
12aとを一体成形したケースヘッド部は図2乃至図5
に示した薄紙8なしの漏液センサに図6と同様に適用で
きることは明らかである。
Next, FIG. 6 corresponding to FIG. 4 and FIG.
Shows another embodiment of the liquid leak sensor 20d according to the present invention, in which the electric wire is not provided in the liquid leak detecting section, and the reflection boundary surface 12 is formed by the optical transmission means 40a and 40b such as optical fibers.
a and 7 are irradiated with light at an angle of incidence greater than or less than the critical angle, respectively, and the reflected light is transmitted to the light transmitting means 42a and 42b-4 to the light receiving means 16a / 16b provided at a remote place.
Since the liquid 2 is transmitted by 2z, even if the liquid 2 is volatile and there is a danger of ignition or explosion, the liquid leak can be detected by reflected light very safely. The case bottom portion 12a is covered or configured with a light shielding member 12g made of synthetic resin or the like except for the light irradiation surface and the reflected light receiving surface, and is integrally formed with the transmitted light member 12a. Has an optical structure that does not receive unnecessary reflected light from the floor surface even when the floor surface is white or mirror surface when the leaked liquid enters, Is partially transmitted to the case 12 by the optical transmission means 40b, and is radiated to the thin paper 8 placed on the floor 1 as light 22b at an incident angle smaller than the critical angle, and the reflected light 24b is reflected by the optical transmission means 42b to 42z. Is transmitted to the light receiving means 16b provided in a remote place, and the presence or absence of the liquid leakage 2 is checked. It is also possible to directly receive the reflected light from the floor surface 1 without placing the thin paper 8 on the floor surface 1. In the liquid leakage sensor 20d having such a configuration, even if the holder 4 is not provided, the liquid leakage sensor 20d is hardly affected by extraneous light.
There is an advantage that a leak can be detected quickly at the initial stage of leak out which does not flow out in large quantities up to 2a. In addition, since no electric signal flows through the liquid leakage detection unit, the detection processing can be performed extremely safely even for volatile liquid leakage. Even if a large amount of liquid leaks, this liquid leak is double-checked and triple-detected, and the reliability of the detection process can be further improved. Furthermore, the case head portion in which the above-mentioned light shielding member 12g and the transmitted light member 12a are integrally formed is shown in FIGS.
It is clear that the present invention can be applied to the liquid leakage sensor without the thin paper 8 shown in FIG.

【0009】[0009]

【発明の効果】以上説明したように、この発明の光学式
漏液センサによれば、薄紙を使用せず、漏液センサを床
面に置くだけで漏液の検出が可能となり、センサのレイ
アウト変更や施工工事が極めて短時間で行なえるという
利点がある。また、センサを収納したケースの先端にホ
ルダ4を着脱可能な状態で取付けることにより、センサ
の転倒防止効果を期待できると共に、床面の塗装色や表
面性状に影響されない漏液検知処理が行なえ、更に地震
等の振動や衝撃を受けても誤動作をしない信頼性の高い
漏液センサを実現できる。更にまた、従来は漏液が床面
に2〜4mm以上の深さまであふれて大量流出しないと
漏液検知ができなかったが、本願発明の漏液センサでは
床面に0.1mm以上薄く漏液が浸透して来た初期の時
点で漏液を十分に検出することができ、重大な漏液事故
を未然に防止することができる。また、漏液検出部に電
気配線の一切ない構造のセンサを使用すれば揮発性で、
引火爆発の危険のある液体も安全確実に検出することが
できる。更にまた、上述の遮光部材12gと透過光部材
12aとを一体成形したケースヘッド部は外来光の影響
を受けにくく、ホルダ4を不要としてケース12の構造
を簡略化できる利点がある。
As described above, according to the optical leak sensor of the present invention, the leak can be detected simply by placing the leak sensor on the floor surface without using thin paper, and the layout of the sensor is realized. There is an advantage that change and construction work can be performed in an extremely short time. In addition, by attaching the holder 4 to the tip of the case containing the sensor in a detachable state, the effect of preventing the sensor from tipping over can be expected, and a liquid leakage detection process that is not affected by the paint color or surface properties of the floor can be performed. Furthermore, a highly reliable liquid leak sensor that does not malfunction even when subjected to vibration or shock such as an earthquake can be realized. Further, conventionally, it was not possible to detect a liquid leak unless the leaked liquid overflowed to the floor at a depth of 2 to 4 mm or more and flowed in large quantities. The leak can be sufficiently detected at the initial time when the water has permeated, and a serious leak accident can be prevented beforehand. In addition, if a sensor with no electrical wiring is used for the liquid leak detector, it will be volatile,
Liquids with a risk of flammable explosion can also be detected safely and reliably. Furthermore, the case head portion in which the light shielding member 12g and the transmitted light member 12a are integrally formed is hardly affected by extraneous light, and has an advantage that the structure of the case 12 can be simplified by eliminating the need for the holder 4.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の薄紙を使用した光学式漏液センサの構造
を示す図である。
FIG. 1 is a diagram showing the structure of a conventional optical liquid leak sensor using thin paper.

【図2】この発明の漏液センサの構造及び光の反射系路
を示す図である。
FIG. 2 is a diagram showing a structure of a liquid leakage sensor and a light reflection path of the present invention.

【図3】この発明の反射光の明暗パターンの配置例を示
す図である。
FIG. 3 is a diagram showing an example of an arrangement of a light-dark pattern of reflected light according to the present invention.

【図4】この発明の防爆型漏液センサの一例を示す図で
ある。
FIG. 4 is a diagram showing an example of an explosion-proof liquid leakage sensor of the present invention.

【図5】この発明のまた別の一実施例を示す図である。FIG. 5 is a diagram showing still another embodiment of the present invention.

【図6】この発明のまた別の防爆型漏液センサの一例を
示す図である
FIG. 6 is a diagram showing an example of another explosion-proof liquid leakage sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 床面 2 漏液 4 ホルダ 5 接着剤 4a、7、12a 反射境界面 8 薄紙 12 ケース 12g、15 遮光部材 14、14a、14b 光源手段 16、16a、16b、28 受光手段 20a〜20d 漏液センサ 30 制御手段 32 AD変換手段 34 ダブルバッファ 36 MPU 40、40a、40b、42、42a、〜42z 光
伝送手段 38 傾斜センサ 39 静電容量センサ
DESCRIPTION OF SYMBOLS 1 Floor surface 2 Liquid leakage 4 Holder 5 Adhesive 4a, 7, 12a Reflection boundary surface 8 Thin paper 12 Case 12g, 15 Light shielding member 14, 14a, 14b Light source means 16, 16a, 16b, 28 Light receiving means 20a-20d Liquid leakage sensor Reference Signs List 30 control means 32 AD conversion means 34 double buffer 36 MPU 40, 40a, 40b, 42, 42a, to 42z optical transmission means 38 inclination sensor 39 capacitance sensor

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 漏液と接触し得る少なくとも1つの反射
境界面と、光源手段及び受光手段から成る漏液センサで
あって、前記光源手段から前記反射境界面へ光を投射
し、該境界面からの反射光を複数の受光手段で受光し、
これら受光手段の出力を演算処理して前記反射光の明暗
パターンの配置を所定の周期毎に決定し、該反射光の明
暗パターンの配置位置の変動により漏液の有無を判定す
るようにしたことを特徴とする漏液センサ。
1. A liquid leakage sensor comprising at least one reflection boundary surface capable of contacting a liquid leak, a light source means and a light receiving means, wherein light is projected from said light source means to said reflection boundary surface, and said boundary surface is provided. The reflected light from the
The output of these light receiving means is arithmetically processed to determine the arrangement of the light and dark patterns of the reflected light at predetermined intervals, and the presence or absence of liquid leakage is determined by a change in the arrangement position of the light and dark patterns of the reflected light. A liquid leakage sensor.
【請求項2】 前記光源手段及び受光手段を底部が透明
材又は半透明材で構成されたケースに収納し一体化した
請求項1に記載の漏液センサ。
2. The liquid leakage sensor according to claim 1, wherein the light source means and the light receiving means are housed and integrated in a case whose bottom is made of a transparent material or a translucent material.
【請求項3】 漏液と接触し得る少なくとも1つの反射
境界面と、底部が透明材又は半透明材で構成されたケー
スと、光を照射する光源手段と、この光源からの照射光
を前記ケースの透明材又は半透明材を介して前記反射境
界面に照射する第1の光伝送手段と、前記境界面からの
反射光を受光して伝送する第2の光伝送手段と、前記第
2の光伝送手段からの光を受光する受光手段から成る漏
液センサであって、前記第1の光伝送手段の一端及び前
記第2の光伝送手段の一端で光学系路を形成するよう一
体化して前記ケース内に納めると共に、前記第2の光伝
送手段を複数の光伝送手段で構成して反射光の受光位置
が相互に識別できるように伝送し、前記第2の光伝送手
段の他端で複数の受光手段により反射光の受光位置が相
互に識別できるように電気信号に変換し、これら受光手
段の出力を演算処理して前記反射光の明暗パターンの配
置を所定の周期毎に決定し、該反射光の明暗パターン位
置の変動により漏液の有無を判定するようにしたことを
特徴とする漏液センサ。
3. A case in which at least one reflection boundary surface that can come into contact with the liquid leakage, a case whose bottom is made of a transparent material or a translucent material, light source means for irradiating light, and irradiating light from this light source A first light transmitting means for irradiating the reflective boundary surface via a transparent material or a translucent material of the case, a second light transmitting means for receiving and transmitting light reflected from the boundary surface, A liquid leakage sensor comprising light receiving means for receiving light from the light transmitting means, wherein one end of the first light transmitting means and one end of the second light transmitting means are integrated so as to form an optical path. And the second optical transmission means is constituted by a plurality of optical transmission means and transmitted so that the light receiving positions of the reflected light can be distinguished from each other, and the other end of the second optical transmission means The light receiving position of reflected light can be distinguished from each other by multiple light receiving means The output of these light receiving means is subjected to arithmetic processing to determine the arrangement of the light and dark patterns of the reflected light at predetermined intervals, and the presence or absence of liquid leakage is determined based on the change in the position of the light and dark pattern of the reflected light. A liquid leakage sensor characterized in that:
【請求項4】 前記光伝送手段が光ファイバーである請
求項3に記載の漏液センサ。
4. The liquid leakage sensor according to claim 3, wherein said optical transmission means is an optical fiber.
【請求項5】 前記反射光の明暗パターンの配置位置を
相関演算又は反射光量の輝度分布の重心位置により演算
するようにした請求項1乃至4のいずれか1項に記載の
漏液センサ。
5. The liquid leakage sensor according to claim 1, wherein an arrangement position of the light-dark pattern of the reflected light is calculated by a correlation operation or a gravity center position of a luminance distribution of the reflected light amount.
【請求項6】 予め漏液が前記反射境界面に接触した状
態で前記相関演算用のテンプレート受光データを入力
し、所定のメモリに記憶するようにした請求項5に記載
の漏液センサ。
6. The liquid leakage sensor according to claim 5, wherein the template light receiving data for the correlation operation is input in a state where the liquid has previously contacted the reflection boundary surface, and is stored in a predetermined memory.
【請求項7】 前記複数の受光手段からの受光データを
ダブルバッファを利用して入力し、サンプリング入力用
受光データと反射光の明暗パターンの配置位置演算用受
光データとを分離するようにした請求項1乃至6のいず
れか1項に記載の漏液センサ。
7. A method according to claim 7, wherein light receiving data from said plurality of light receiving means is input using a double buffer, and light receiving data for sampling input and light receiving data for calculating an arrangement position of a bright / dark pattern of reflected light are separated. Item 7. The liquid leakage sensor according to any one of Items 1 to 6.
【請求項8】 前記反射境界面上に漏液が浸透し得る気
体層を介在させた請求項1乃至7のいずれか1項に記載
の漏液センサ。
8. The liquid leakage sensor according to claim 1, wherein a gas layer through which liquid leakage can penetrate is interposed on the reflection boundary surface.
【請求項9】 前記受光手段が1次元光電変換素子アレ
イセンサ又は2次元光電変換素子アレイセンサである請
求項1乃至8のいずれか1項に記載の漏液センサ。
9. The liquid leakage sensor according to claim 1, wherein the light receiving unit is a one-dimensional photoelectric conversion element array sensor or a two-dimensional photoelectric conversion element array sensor.
【請求項10】 前記反射境界面を前記ケースに着脱可
能な非透明の薄板状のキャップホルダで形成し、当該漏
液センサの配置箇所の表面性状及び表面色の影響を受け
にくくした請求項2乃至9のいずれか1項に記載の漏液
センサ。
10. The reflection boundary surface is formed of a non-transparent thin plate-like cap holder detachable from the case, and is less affected by the surface properties and surface color of the location of the liquid leakage sensor. 10. The liquid leakage sensor according to any one of claims 9 to 9.
【請求項11】 漏液に接触し得る少なくとも2つの反
射境界面を、光の進行方向に気体層又は漏液浸透層を介
在させて形成し、少なくとも2つの光源手段及び受光手
段を前記各反射境界面のそれぞれに対し、同一の側に配
設し、前記光源手段に最も近い第1の反射境界面に対し
ては臨界角以上の入射角で第1の光源手段から光を投射
し、前記第1の境界面からの反射光を第1の受光手段で
受光し、その出力を演算処理して漏液を検知する第1の
検知手段とで第1の漏液センサを構成し、前記第1の境
界面以外の反射境界面に対しては臨界角未満の入射角で
第2の光源手段から光を投射し、前記第1の境界面以外
の反射境界面からの反射光を第2の受光手段で受光し、
その出力を演算処理して漏液を検知する第2の検知手段
とで第2の漏液センサを構成するようにしたことを特徴
とする漏液センサ。
11. At least two reflection boundary surfaces which can come into contact with the liquid leakage are formed with a gas layer or a liquid leakage permeation layer interposed in the light traveling direction, and at least two light source means and light receiving means are provided for each of said reflection means. For each of the boundary surfaces, disposed on the same side, and projecting light from the first light source unit at an incident angle equal to or greater than the critical angle with respect to the first reflection boundary surface closest to the light source unit, The first light-receiving sensor is configured to receive the reflected light from the first boundary surface by the first light-receiving means and to calculate the output of the first light-receiving means to detect the liquid leakage. Light is projected from the second light source means to the reflection boundary surface other than the first boundary surface at an incident angle smaller than the critical angle, and reflected light from the reflection boundary surface other than the first boundary surface is converted to the second boundary light. Light is received by the light receiving means,
A second leak sensor comprising a second leak sensor including a second detecting means for detecting the leak by arithmetically processing the output.
【請求項12】 前記光源手段及び受光手段を底部が透
明材又は半透明材で構成されたケースに収納し一体化し
た請求項11に記載の漏液センサ。
12. The liquid leakage sensor according to claim 11, wherein the light source means and the light receiving means are housed and integrated in a case whose bottom is made of a transparent material or a translucent material.
【請求項13】 底部が透明材又は半透明材で構成さ
れ、その外側境界面が漏液と接触し得る第1の反射境界
面を形成するケースと、この反射境界面とは別に漏液に
接触し得る少なくとも1つの第2の反射境界面と、光を
照射する光源手段と、この光源手段からの照射先を伝送
し前記第1の反射境界面に臨界角以上の入射角で照射す
る第1の光伝送手段と、前記第1の境界面からの反射光
を受光して伝送する第2の光伝送手段と、前記第2の光
伝送手段からの受光信号を電気信号に変換する第1の受
光手段と、その出力を演算処理して漏液を検知する第1
の検知手段とで第1の漏液センサを構成し、前記光源手
段からの照射光を伝送し、前記第2の反射境界面に臨界
角未満の入射角で照射する第3の光伝送手段と、前記第
2の境界面からの反射光を受光して伝送する第4の光伝
送手段と、前記第4の光伝送手段からの受光信号を電気
信号に変換する第2の受光手段と、その出力を演算処理
して漏液を検知する第2の検知手段とで第2の漏液セン
サを構成し、前記第1の光伝送手段の一端及び前記第2
の光伝送手段の一端で別の光学系路を構成すると共に、
前記第3の光伝送手段の一端及び前記第4の光伝送手段
の一端で第2の光学系路を形成するように一体化して前
記ケース内に納めるようにしたことを特徴とする漏液セ
ンサ。
13. A case in which a bottom portion is made of a transparent material or a translucent material, an outer boundary surface of which forms a first reflection boundary surface capable of coming into contact with liquid leakage, At least one second reflective boundary surface capable of contacting, light source means for irradiating light, and a light source for transmitting an irradiation destination from the light source means and irradiating the first reflective boundary surface with an incident angle greater than a critical angle. A first optical transmission means, a second optical transmission means for receiving and transmitting light reflected from the first boundary surface, and a first optical transmission means for converting a light reception signal from the second optical transmission means into an electric signal. And a first means for calculating the output to detect liquid leakage
And a third light transmitting means for transmitting irradiation light from the light source means and irradiating the second reflection boundary surface with an incident angle smaller than the critical angle. A fourth light transmitting means for receiving and transmitting reflected light from the second boundary surface, a second light receiving means for converting a light receiving signal from the fourth light transmitting means into an electric signal, A second leak sensor is constituted by an arithmetic processing of the output to detect a leak, and one end of the first optical transmission means and the second leak sensor are formed.
While configuring another optical system path at one end of the optical transmission means,
A liquid leakage sensor, wherein one end of the third optical transmission means and one end of the fourth optical transmission means are integrated so as to form a second optical path and housed in the case. .
【請求項14】 前記光伝送手段が光ファイバである請
求項13に記載の漏液センサ。
14. The liquid leakage sensor according to claim 13, wherein said optical transmission means is an optical fiber.
【請求項15】 前記ケースの内部に傾斜センサを内蔵
させ、該ケースが傾いた場合にアラーム信号を出力する
ようにした請求項2乃至14のいずれか1項に記載の漏
液センサ。
15. The liquid leakage sensor according to claim 2, wherein a tilt sensor is built in the case, and an alarm signal is output when the case is tilted.
【請求項16】 前記ケース底部の内側に光の照射面及
び反射光受光面を除いて遮光部材を被覆し、この遮光部
材を近接センサとして作動させるようにした請求項2乃
至15のいずれか1項に記載の漏液センサ。
16. A light shielding member is coated on the inside of the bottom of the case except for a light irradiation surface and a reflected light receiving surface, and the light shielding member is operated as a proximity sensor. The liquid leakage sensor according to the item.
【請求項17】 前記ケース底部を光の照射面及び反射
光受光面を除いて遮光部材で被覆又は一体成形し、当該
漏液センサの設置箇所の表面性状及び/又は表面色の影
響を受け難くした請求項2乃至16のいずれか1項に記
載の漏液センサ。
17. The bottom of the case is covered or integrally formed with a light-blocking member except for a light irradiation surface and a reflected light receiving surface, and is hardly affected by a surface property and / or a surface color of an installation location of the liquid leakage sensor. The liquid leakage sensor according to any one of claims 2 to 16, wherein:
【請求項18】 前記第2の反射境界面を前記ケースに
着脱可能な非透明の薄板状のキャップホルダで形成し、
当該漏液センサの設置箇所の表面性状及び表面色の影響
を受けにくくした請求項11乃至16のいずれか1項に
記載の漏液センサ。
18. The non-transparent thin plate-shaped cap holder detachably attached to the case, wherein the second reflection boundary surface is formed on the case,
The liquid leakage sensor according to any one of claims 11 to 16, wherein the liquid leakage sensor is hardly affected by the surface properties and surface color of the installation location of the liquid leakage sensor.
【請求項19】 前記キャップホルダの表面に漏液との
接触により透明状態となる白色の薄板を貼着した請求項
17に記載の漏液センサ。
19. The liquid leakage sensor according to claim 17, wherein a white thin plate which is brought into a transparent state by contact with the liquid leakage is attached to the surface of the cap holder.
JP11022293A 1999-01-29 1999-01-29 Leakage liquid sensor Pending JP2000221100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11022293A JP2000221100A (en) 1999-01-29 1999-01-29 Leakage liquid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11022293A JP2000221100A (en) 1999-01-29 1999-01-29 Leakage liquid sensor

Publications (1)

Publication Number Publication Date
JP2000221100A true JP2000221100A (en) 2000-08-11

Family

ID=12078712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11022293A Pending JP2000221100A (en) 1999-01-29 1999-01-29 Leakage liquid sensor

Country Status (1)

Country Link
JP (1) JP2000221100A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168769A (en) * 2000-11-28 2002-06-14 Sunx Ltd Liquid leak sensor
JP2004053560A (en) * 2002-07-24 2004-02-19 Sunx Ltd Leakage liquid sensor
JP2011215039A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Liquid leakage sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168769A (en) * 2000-11-28 2002-06-14 Sunx Ltd Liquid leak sensor
JP4480879B2 (en) * 2000-11-28 2010-06-16 サンクス株式会社 Leak sensor
JP2004053560A (en) * 2002-07-24 2004-02-19 Sunx Ltd Leakage liquid sensor
JP2011215039A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Liquid leakage sensor

Similar Documents

Publication Publication Date Title
US7432893B2 (en) Input device based on frustrated total internal reflection
JP5025552B2 (en) Touch panel
US7442914B2 (en) System and method of determining a position of a radiation emitting element
US6484564B1 (en) Liquid leakage sensor, paper for detecting liquid leakage, and holder for detecting liquid leakage
SE8103773L (en) OPTICAL DIGITIZER / DOCTOR
JP6748393B2 (en) Liquid interface detector
JP2000221100A (en) Leakage liquid sensor
CN201364333Y (en) Optic device of immunoassay unit
JP4102135B2 (en) Liquid handling equipment
JP2009014660A (en) Two-liquid leakage sensor and prism for the same
JPH11304724A (en) Device and method for inspecting hole of light-transmission sheet
JP2001050856A (en) Liquid leak sensor
CN109387148A (en) A kind of measurement method of displacement detection apparatus and ohject displacement
KR100712310B1 (en) Liquid leakage sensor, paper for detecting liquid leakage, and holder for detecting liquid leakage
JP2002181695A (en) Leak sensor
JP3756683B2 (en) Leak sensor
JP2001153697A (en) Area type flowmeter
JP4710510B2 (en) Orientation meter
JP2016133491A (en) Gas detection device
JPH08271320A (en) Method for detecting liquid in pipe or vessel, and device therefor
US6259370B1 (en) Leak sensor
JP2003307448A (en) Boundary location detection apparatus and boundary location detection method
KR20120016202A (en) Device and method for optically detecting gas
JP7254422B2 (en) SURFACE PROFILE MEASURING METHOD USING SURFACE PROFILE MEASURING SYSTEM AND SURFACE PROFILE MEASUREMENT
JP2002286844A (en) Distance measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104