JP2001050856A - Liquid leak sensor - Google Patents

Liquid leak sensor

Info

Publication number
JP2001050856A
JP2001050856A JP11229966A JP22996699A JP2001050856A JP 2001050856 A JP2001050856 A JP 2001050856A JP 11229966 A JP11229966 A JP 11229966A JP 22996699 A JP22996699 A JP 22996699A JP 2001050856 A JP2001050856 A JP 2001050856A
Authority
JP
Japan
Prior art keywords
light
liquid leakage
case
light source
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11229966A
Other languages
Japanese (ja)
Inventor
Kenichi Hayashida
建一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUDEN KK
Tsuden KK
Original Assignee
TSUUDEN KK
Tsuden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUDEN KK, Tsuden KK filed Critical TSUUDEN KK
Priority to JP11229966A priority Critical patent/JP2001050856A/en
Publication of JP2001050856A publication Critical patent/JP2001050856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liq. leak sensor immune to bubbles resulting from contact with a leaking liq. in a case. SOLUTION: A liq. leak sensor 20a comprises at least one reflection boundary surface 4a contactable to a leaking liq. 2 through a gas layer or leaking liq. penetration layer penetrable with the leaking liq. 2, light source means 14a, 14b and light receiving means 28A, 28B. Lights from the light source means 14a, 14b are projected on the reflection boundary surface 4a and received by the light receiving means 28A, 28B, the outputs thereof are arithmetically processed to judge if a leaking liq. 2 exists, and a hollow member having suction holes opened at the gas layer or the leaking liq. penetration layer and exhaust holes opened outside above a specified height of the liq. leak sensor 20a exhausts out from a case 12 bubbles produced in the gas layer or the leaking liq. penetration layer due to the leaking liq. 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 この発明は、水、酸性溶
液、アルカリ溶液等の電気的導通を有する液体や、アル
コール、シンナー、ベンジン等の有機性等の絶縁性を有
する液体の漏液を検知する漏液センサの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the leakage of a liquid having electrical continuity such as water, an acidic solution or an alkaline solution, or a liquid having an insulating property such as organic such as alcohol, thinner or benzene. The present invention relates to improvement of a liquid leak sensor.

【0002】[0002]

【従来の技術】従来工場等の設備では配管により液体を
供給している。しかし、配管には多くの個所に接続用の
継手が設けられているため継手から液体が漏液する場合
が多い。そこで、液体の種類によっては漏液の監視を人
間が常時行なわなければならなかった。かかる従来の漏
液監視方法としては導電方式や液量方式が知られてい
る。又、特公平4−70572号公報には漏液を吸収す
ると透明になるフイルタに光源より光を照射しておき、
漏液があった時に上記フイルタからの透過光又は反射光
の変化量を検知することにより漏液を確実に検知できる
ようにした漏液センサ技術が記載されている。図1はか
かる従来の反射方式の漏液センサ20の原理を示す図で
あり、床面1に薄紙8及びケース12のホルダ4がその
底面4aを黒色に塗装され反射光吸収板を兼ねてネジ等
の止め具により固定され、その上に白色の薄紙(又は
布、ガラス,合成樹脂部材等でも良い)8が載置されて
いる。また、ホルダ4にはその底部12aが透明又は半
透明な合成樹脂部材またはガラス等のセラミックス部材
で構成されたケース12が挿入/装着され、ケース12
の内部には光源手段14、受光手段16及びコンパレー
タ等を含む検知手段18が一体化して収容され、電気ケ
ーブル26を介して外部と接続されるようになってい
る。尚、ケース12は防塵、防水用のフタを兼ねている
が、漏液2が薄紙8の中央の反射領域8bに浸透し易く
し、かつ、漏液の検出時間を短縮するため、ケースの底
部12aと薄紙8との間には微少な空隙部10が設けら
れており、ホルダ底面4aとケース底部12aとの間d
は、漏液浸透層を形成している。この空隙dはほこり、
ちり等の汚れを避けると共に、外部のノイズ光を検知せ
ず、安定的に薄紙8からの反射光を検出するため数mm
以内が望ましい。また反射板4aとケース12とを着脱
可能な構造のフイルタとした方が薄紙8の交換や設置作
業等が容易なことが分った。更にまた、漏液の発生個所
が一般的には特定できないことから、どの方向から浸透
して来る漏液に対しても素早く応答するため、薄紙の形
状は一般的には円形が好ましいことも分った。このよう
な構成において通常LEDや赤外レーザー発光素子、光
ファイバー等の光源手段14から光22が照射され、薄
紙8からの白色の反射光24が受光手段16により常時
検出されている。しかして、床面1に漏液2が生じた場
合、接触部9から漏液2が順次薄紙8の反射領域8bに
浸透していき、薄紙8の接触部9は漏液の浸透により白
色から透明色に変化する。しかるに、薄紙8の下側の反
射板4aは黒色であるので、薄紙8の色は接触部9では
白色から黒色に変化し、受光手段16への反射光24は
反射板4aに吸収されて大幅に減少し、検知手段18に
よりこの反射光量の変化を検出して漏液検知が行われ
る。かかる薄紙を利用した漏液センサは構造が簡単で、
動作も確実であり、止め具等で床面にホルダ等が固定さ
れているのでセンサが転倒する事故もなく、粘度の高い
液体でも比較的短時間で検知できる利点があるが、ホル
ダの床面設置作業や薄紙の交換作業をできるだけ省略し
たい利用者からは薄紙を使用せず、床面へのホルダ固定
作業の不要な漏液センサが要望されていた。
2. Description of the Related Art In a conventional facility such as a factory, a liquid is supplied by piping. However, since connecting joints are provided at many places in the pipe, liquid often leaks from the joints. Therefore, depending on the type of liquid, humans must constantly monitor the leakage. As such a conventional liquid leakage monitoring method, a conductive method and a liquid amount method are known. Further, Japanese Patent Publication No. 4-70572 discloses that a filter that becomes transparent when absorbing a liquid leak is irradiated with light from a light source.
There is described a liquid leak sensor technology that can detect a liquid leak reliably by detecting a change amount of transmitted light or reflected light from the filter when there is a liquid leak. FIG. 1 is a view showing the principle of such a conventional reflection type liquid leakage sensor 20. A thin paper 8 and a holder 4 of a case 12 are coated on a floor surface 1 with a black bottom surface 4a, and a screw is used as a reflection light absorbing plate. A white thin paper (or cloth, glass, synthetic resin member or the like) 8 is placed thereon. A case 12 whose bottom 12a is made of a transparent or translucent synthetic resin member or a ceramic member such as glass is inserted / attached to the holder 4.
The light source unit 14, the light receiving unit 16 and the detecting unit 18 including a comparator and the like are integrally accommodated in the inside, and are connected to the outside via an electric cable 26. The case 12 also serves as a dust-proof and water-proof lid. However, in order to make it easier for the leaked liquid 2 to penetrate into the central reflection area 8b of the thin paper 8 and to shorten the time for detecting the leaked liquid, the bottom of the case is used. A minute gap 10 is provided between the thin paper 12 and the thin paper 8, and a gap d between the holder bottom surface 4a and the case bottom 12a is provided.
Forms a liquid leakage permeable layer. This gap d is dust,
A few mm to avoid dust and dirt and to detect reflected light from thin paper 8 stably without detecting external noise light.
Within. In addition, it was found that the use of a filter having a structure in which the reflection plate 4a and the case 12 were detachable facilitated replacement and installation work of the thin paper 8. Furthermore, since the location where the liquid leaks cannot be generally specified, the thin paper is generally preferably circular in order to respond quickly to the liquid leaking from any direction. Was. In such a configuration, light 22 is emitted from light source means 14 such as an LED, an infrared laser light emitting element, or an optical fiber, and white reflected light 24 from thin paper 8 is constantly detected by light receiving means 16. Thus, when the liquid 2 leaks on the floor surface 1, the liquid 2 permeates sequentially from the contact portion 9 into the reflection area 8b of the thin paper 8, and the contact portion 9 of the thin paper 8 turns white due to the permeation of the liquid. Change to transparent color. However, since the reflection plate 4a on the lower side of the thin paper 8 is black, the color of the thin paper 8 changes from white to black at the contact part 9, and the reflected light 24 to the light receiving means 16 is absorbed by the reflection plate 4a and greatly reduced. The change in the amount of reflected light is detected by the detecting means 18 to detect liquid leakage. The liquid leak sensor using such thin paper has a simple structure,
The operation is also reliable, the holder is fixed to the floor with a stopper, etc., so there is no accident that the sensor falls, and there is an advantage that it is possible to detect even a highly viscous liquid in a relatively short time. A user who wants to minimize the installation work and the replacement work of the thin paper as much as possible has demanded a liquid leakage sensor that does not use the thin paper and does not need the work of fixing the holder to the floor surface.

【0003】[0003]

【発明が解決しようとする課題】かかる薄紙8を使用し
ない漏液センサとしては、上述のケース底部12aに全
反射光を照射し、その反射光量の大小により漏液の有無
を判定するものが種々考案されているが、ケース底部と
床面とを密着させると粘度の高い液体はケース底部の中
央部には非常に浸透しにくくなるので、 (A)一般には薄紙8を使用した漏液センサよりもはる
かに大きい、最小でもd=2〜4mmの空隙部を床面と
ケース底部との間に設けた構造となっており、大量に漏
液が流出してケース底部が漏液と接触しないと漏液が全
く検知できない構造となっていた。 (B)また、ケース底部がホルダやキャップがなく直接
床面に対向して露出している構造のものでは床面の塗装
色の影響を受けやすく、漏液が浸透して来た段階で不必
要な床面からの反射光を大量に受光してしまい誤作動す
る等反射光量の大小だけでは漏液の有無判定が安定しな
いという問題点もあった。また、従来の光学式漏液セン
サには当初予期できなかった次のような問題点も発生し
た。 (C)床面1にホルダ底面4aが水平であり、ケース底
部12aもほぼ水平な状態で設置した状態で、高圧配管
や大口径配管等が破損し、一度に大量の漏液が発生/流
出した場合、ケース12の下部は全周がほぼ同時に漏液
中に水没してしまう。かかる状態で漏液2が順次薄紙8
の外縁部からその内側に向って浸透し始めると、ホルダ
底面4aとケース底部12aとの空隙部10にあった気
体は一部が泡となってケース12の外側に排出される
が、空隙部10の中央近傍にあった気体はその周囲を漏
液で塞がれた状態となり、図1(B)に示すように、気
泡が中央部であり、かつ、反射領域でもある8bに停留
し、何時間たっても反射領域8bが透明にならず大量の
漏液を検出できない現象が発生した。 (D)しかるにホルダ底面4aが水平で平らなホルダ4
は現在大量に使用中であるので、床面1に固定されたホ
ルダ4を一つ一つ交換する作業は膨大な時間がかかり、
ほとんど不可能である。 (E)また、薄紙8も消耗品であり、漏液検知毎に廃棄
しているが、できれば従来の薄紙8もそのまま使用でき
る機会があるとよい。 (F)更に、本願出願人は特願平10−353003号
においてケース底部に微少傾斜角度の付いた溝部を設け
た構造の漏液センサを提案したが、実験によると、かか
る構造では、溝部の内部に漏液が先に浸透して、従来と
同様に気泡の排出口を塞ぐ場合もあり、溝部を穿設した
構造では気泡の排出効果が不十分または不安定なことが
判明した。よってこの発明は上述のような事情に鑑みて
成されたものであり、この発明の目的は一度に大量の漏
液が発生した場合にも、漏液との接触によりケース底部
に発生する気泡等の影響を最小限に抑え、安定かつ確実
に漏液を検出することの可能な漏液センサを提供するこ
とにある。また、この発明の目的は、揮発性で引火性の
爆発の危険のある液体に対しても、防爆に注意しつつ、
かかる液体が一度に大量に発生しても、気泡等の影響を
最小限に抑えると共に、遠隔地で安全かつ確実に漏液を
検出することの可能な漏液センサを提供することにもあ
る。
As such a liquid leakage sensor that does not use the thin paper 8, there are various types of sensors that irradiate the above-mentioned case bottom portion 12a with totally reflected light and determine the presence or absence of liquid leakage based on the magnitude of the reflected light amount. Although it has been devised, if the bottom of the case is brought into close contact with the floor, a liquid having a high viscosity becomes very difficult to penetrate into the center of the bottom of the case. (A) Generally, a liquid leakage sensor using thin paper 8 Has a structure in which a gap of at least d = 2 to 4 mm is provided between the floor surface and the case bottom so that a large amount of liquid leaks out and the case bottom does not contact the liquid leak. The structure was such that liquid leakage could not be detected at all. (B) In the case of a structure in which the bottom of the case has no holder or cap and is directly exposed to the floor surface, the case is easily affected by the paint color of the floor surface, and is not suitable at the stage when the liquid leaks in. There is also a problem that the determination of the presence or absence of liquid leakage is not stable only by the magnitude of the amount of reflected light, for example, a large amount of required reflected light from the floor surface is received and malfunctions occur. In addition, the conventional optical leak sensor also has the following problems that could not be expected at first. (C) With the holder bottom surface 4a being horizontal on the floor surface 1 and the case bottom portion 12a being installed in a substantially horizontal state, the high-pressure pipes and large-diameter pipes are damaged, and a large amount of liquid is generated / outflow at one time. In this case, the lower part of the case 12 is submerged in the liquid leakage almost all around. In such a state, the leaked liquid 2 is gradually
When the gas begins to permeate from the outer edge of the case toward the inside, the gas in the gap 10 between the holder bottom surface 4a and the case bottom 12a is partially foamed and discharged to the outside of the case 12, The gas in the vicinity of the center of 10 is in a state where its surroundings are blocked by liquid leakage, and as shown in FIG. 1 (B), the bubbles stay in the central portion 8b which is also a reflection region, Even after many hours, the reflection area 8b did not become transparent and a large amount of liquid leakage could not be detected. (D) However, the holder bottom surface 4a is horizontal and flat.
Is currently being used in large quantities, so replacing the holders 4 fixed to the floor 1 one by one takes an enormous amount of time,
Almost impossible. (E) The thin paper 8 is also a consumable item and is discarded every time a liquid leak is detected. However, if possible, it is preferable that the conventional thin paper 8 can be used as it is. (F) Further, the applicant of the present application has proposed in Japanese Patent Application No. 10-353003 a liquid leakage sensor having a structure in which a groove with a slight inclination angle is provided at the bottom of the case. In some cases, the leaked liquid may penetrate into the inside first, blocking the air outlet of the air bubbles as in the conventional case, and it has been found that the structure in which the groove is formed has an insufficient or unstable air air discharging effect. Therefore, the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method for generating bubbles and the like at the bottom of a case due to contact with the liquid even when a large amount of liquid leaks at once. It is an object of the present invention to provide a liquid leakage sensor capable of minimizing the influence of the liquid leakage and detecting the liquid leakage stably and reliably. It is also an object of the present invention to use volatile and flammable liquids with
Another object of the present invention is to provide a liquid leakage sensor capable of minimizing the influence of bubbles and the like even if a large amount of such liquid is generated at one time, and capable of detecting liquid leakage safely and reliably in a remote place.

【0004】[0004]

【課題を解決するための手段】この発明は、漏液が浸透
し得る気体層又は漏液浸透層を介して、前記漏液と接触
し得る少なくとも1つの反射境界面と、光源手段及び受
光手段から成る漏液センサに関し、この発明の上記目的
は、前記光源手段から前記反射境界面へ光を投射し、該
境界面からの反射光を前記受光手段で受光し、その出力
を演算処理して漏液の有無を判定すると共に、前記漏液
により前記気体層内又は漏液浸透層内に生成された気泡
を、吸入口が該気体層内又は漏液浸透層内に開口し、排
出口が前記漏液センサの所定の高さ以上の高さで外部に
開口している中空部材により外部に排出することによっ
て達成される。また、この発明は、漏液に接触し得る少
なくとも2つの全反射境界面とこれらとは別の第3の反
射境界面とを、気体層又は漏液浸透層を介在させて形成
し、少なくとも2つの光源手段及び受光手段を前記各反
射境界面のそれぞれに対し、同一の側に配設した漏液セ
ンサにも関し、前記第1の全反射境界面に対しては前記
第1の光源手段から光を投射し、前記第1の全反射境界
面からの反射光を前記第2の全反射境界面に投射し、前
記第2の全反射境界面からの反射光を前記第1の受光手
段で受光し、その出力を演算処理して漏液を検知する第
1の検知手段とで第1の漏液センサを構成し、前記第3
の反射境界面に対しては臨界角未満の入射角で第2の光
源手段から光を投射し、前記第3の反射境界面からの反
射光を第2の受光手段で受光し、その出力を演算処理し
て漏液を検知する第2の検知手段とで第2の漏液センサ
を構成することによっても達成される。
According to the present invention, there is provided at least one reflecting boundary surface which can come into contact with a leak through a gas layer or a leak permeable layer through which the leak can penetrate, light source means and light receiving means. The object of the present invention is to project light from the light source means to the reflective boundary surface, receive the reflected light from the boundary surface by the light receiving means, and calculate the output thereof. Along with determining the presence or absence of liquid leakage, bubbles generated in the gas layer or in the liquid leakage permeable layer by the liquid leakage, the suction port is opened in the gas layer or the liquid leakage permeable layer, and the discharge port is opened. This is achieved by discharging to the outside by means of a hollow member that is open to the outside at a height equal to or higher than the predetermined height of the liquid leakage sensor. Further, the present invention forms at least two total reflection boundary surfaces that can come into contact with the liquid leakage and a third reflection boundary surface other than these, with a gas layer or a liquid leakage permeable layer interposed therebetween, and A light source sensor and a light receiving means disposed on the same side with respect to each of the reflection boundary surfaces, and the first total reflection boundary surface is separated from the first light source means. Projecting light, projecting reflected light from the first total reflection boundary surface onto the second total reflection boundary surface, and reflecting light from the second total reflection boundary surface with the first light receiving means. A first detecting means for receiving the light, calculating the output of the light, and detecting the liquid leakage to form a first liquid leakage sensor;
The light is projected from the second light source means at an incident angle smaller than the critical angle with respect to the reflection boundary surface, and the reflected light from the third reflection boundary surface is received by the second light receiving means. It is also achieved by forming a second leak sensor with the second detecting means for detecting the leak by performing arithmetic processing.

【0005】[0005]

【発明の実施の形態】以下、図面に基づいて、この発明
の好適な実施例について詳細に説明する。図1に対応さ
せて示す図2はこの発明の気泡排出用中空部材6a〜6
dを具えた漏液センサ20aの一例であり、それぞれ同
一の番号を付した装置は同一の機能を果たすと共に、光
源手段14aからはケース底部の透明材または半透明材
12dを介して、漏液と接触する反射境界面12aに対
し臨界角以上の入射角で光22xを照射し、その全反射
光24xがCCDやMOS型ホトダイオード等が複数個
並設された1次元又は2次元光電変換素子アレイセンサ
(以下アレイセンサと略す)28A(各受光素子を28
a〜28nとする)に入力され、反射光がそれぞれ相互
に異なる受光角度で各受光素子に受光され、電気信号に
変換され、その出力がそれぞれ所定のサンプリング周期
毎にA/D変換手段32によりデジタル信号に変換さ
れ、マイクロプロセッサ(MPU)36を含み検知手段
18を兼ねた制御手段30内のダブルバッファメモリ3
4に順次書込まれるようになっている。また、光源手段
14bからはホルダ4の底面4aに両面テープ等の接着
手段3aにより貼着されたガラス又は合成樹脂等の反射
部材3の表面に凸凹を刻設した第2の反射境界面7に対
し臨界角未満の入射角で光22yが照射され、その反射
光24yが受光手段16b又は28Bにより受光され、
電気信号に変換されて制御手段30に入力され、更にケ
ース底部12aの内側には金属箔等の遮光部材15が貼
着され、遮光部材15の一端は静電容量センサ39に入
力されるようになっている。この遮光部材15はケース
底部12aの光の照射面及び受光手段近傍の反射光受光
面を除いた範囲に配設するので、漏液浸入時に床面が白
色又は鏡面であっても不要な反射光を床面から受光しな
い光学的効果がある。また転倒/傾斜センサ38がケー
ス12内に配設され、その出力は制御手段30に入力さ
れると共に、漏液の検知出力は外部に電気信号26とし
て出力され、更にケース12の上面に設けられた表示手
段29にも緑色/赤色切換点灯可能なLED等により警
告表示されるようになっている。尚、ホルダ4の床面1
との接触面はその外径がケース12の外径の1.3倍以
上の大きさのものを使用した方が、センサ20aの転倒
防止の面から好ましい。又、ケース12の底部の漏液と
の接触面12aとホルダ4の上側底面4aとの間隔dは
検知する液体の粘度に対応して種々のものに変更できる
ことが好ましく、地震や重量物の移動等により反射境界
面4aと受光手段28Bとの角度や間隔が変化すると、
誤動作の原因となりやすいので、ホルダ4とケース12
とは着脱可能で、かつ、間隔dが外部の振動に対しても
変化しない構造のものが好ましい。又、ホルダ4は遮光
性部材で構成すると、ケース12の周囲からノイズ光が
侵入したり、床面からの不要な反射光の受光を防止する
効果がある。また、ホルダ4を使用せず、ケース12を
単体で漏液センサとして使用する場合は、上述の間隔d
が外部の振動に対しても変化しないように、後述の図7
に示すように、光源手段14及び受光手段16/28B
を底部が透明材又は半透明材で構成されたケース12に
収納し一体化すると共に、ケース先端部に遮光性の薄板
状のケースキャップ12hを装着し、当該漏液センサの
床面1等の設置箇所の表面性状又は表面色からの影響を
受けにくくした構造のものが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 corresponding to FIG. 1 is a hollow member 6a-6 for discharging air bubbles according to the present invention.
d is an example of a liquid leakage sensor 20a provided with the same number, the devices having the same numbers perform the same function, and the liquid leakage from the light source means 14a via the transparent or semi-transparent material 12d at the bottom of the case. A one-dimensional or two-dimensional photoelectric conversion element array in which a plurality of CCDs, MOS-type photodiodes, and the like are illuminated with light 22x at an incident angle equal to or greater than the critical angle with respect to a reflective boundary surface 12a contacting the light. Sensor (hereinafter abbreviated as array sensor) 28A (each light receiving element
a to 28n), the reflected light is received by each light receiving element at a different light receiving angle from each other, converted into an electric signal, and the output is output by the A / D conversion means 32 at each predetermined sampling period. The double buffer memory 3 in the control means 30 which is converted into a digital signal and includes a microprocessor (MPU) 36 and also serves as the detection means 18
4 are sequentially written. Further, the light source means 14b forms a second reflection boundary surface 7 in which the surface of the reflection member 3 made of glass or synthetic resin is adhered to the bottom surface 4a of the holder 4 by an adhesion means 3a such as a double-sided tape. On the other hand, the light 22y is irradiated at an incident angle less than the critical angle, and the reflected light 24y is received by the light receiving means 16b or 28B,
The signal is converted into an electric signal and input to the control means 30. Further, a light shielding member 15 such as a metal foil is adhered to the inside of the case bottom 12a, and one end of the light shielding member 15 is input to the capacitance sensor 39. Has become. Since the light shielding member 15 is disposed in a range excluding the light irradiation surface of the case bottom portion 12a and the reflected light receiving surface near the light receiving means, unnecessary reflected light even if the floor surface is white or a mirror surface at the time of liquid leakage. Is not received from the floor. A fall / inclination sensor 38 is provided in the case 12, and its output is input to the control means 30, and the detection output of the liquid leakage is output as an electric signal 26 to the outside, and further provided on the upper surface of the case 12. The warning means is also displayed on the display means 29 by an LED or the like which can be switched between green and red. The floor 1 of the holder 4
It is preferable to use a contact surface whose outer diameter is 1.3 times or more the outer diameter of the case 12 from the viewpoint of preventing the sensor 20a from tipping over. Further, it is preferable that the distance d between the contact surface 12a of the bottom of the case 12 and the upper surface 4a of the holder 4 can be changed to various ones according to the viscosity of the liquid to be detected. When the angle or interval between the reflection boundary surface 4a and the light receiving unit 28B changes due to, for example,
The holder 4 and the case 12
It is preferable to use a structure that is detachable and that the distance d does not change even with external vibration. Further, when the holder 4 is formed of a light-shielding member, there is an effect of preventing noise light from entering around the case 12 and receiving unnecessary reflected light from the floor surface. When the case 12 is used alone as a liquid leakage sensor without using the holder 4, the above-described distance d is used.
7 so as not to change even with external vibration.
As shown in the figure, the light source means 14 and the light receiving means 16 / 28B
Is housed and integrated in a case 12 whose bottom is made of a transparent or translucent material, and a light-shielding thin plate-like case cap 12h is attached to the end of the case, and the floor surface 1 It is preferable to use a structure that is hardly affected by the surface properties or surface color of the installation location.

【0006】しかして、気泡排出用中空部材6a〜6d
の配置を図3を参照して説明すると、この例では中空部
材6を全てケース12のホルダ4側の部材に埋設又は付
設するように構成したもので、気泡の吸入口5a〜5d
は図3(B)に示すようにホルダ4側の部材に埋設又は
付設され、中空部材6aの一端は投射光22及び反射光
24の光学経路を避けて、ケース12の底面12aの略
中央部に気泡吸入口5aが開口され、ケース底面12a
に沿って付設されたゴムや合成樹脂等の中空パイプ部材
6a1、又は、ホルダ4の上面に中心方向に突設させて
設けられた略直方体のケース受け部に穿設された中空部
6a1を介して、ホルダ4の側壁に埋設された空洞部6
a2に結合され、空洞部6a2の他端はホルダ4の側壁
に出口が水平方向又は下方向に向いて穿設された排出口
7aに接続されるようになっている。従って、吸入口5
aから中空部6a1,空洞部6a2を介して排出口7a
迄が周囲を密閉された状態で気体が外部に漏れることな
く自由に出入りできる中空構造となっており、図3の例
ではその他、同様の中空部材6b〜6dが、吸入口5b
〜5dと、水平中空部6b1〜6d1、空洞部(垂直中
空部)6b2〜6d2及び排出口7b〜7dとから構成
された例を示してあるが、かかる気泡排出用の中空部材
は単独でも、又、複数でも利用可能である。尚、排出口
7a〜7dの床からの高さは、大量の漏液が一度に発生
した場合でも、気泡が外部に排出移動するのに充分な時
間が確保できる程度の、短時間で排出口が水没しないよ
うな適度に高い所定の高さ位置が好ましい。
Accordingly, the hollow members 6a to 6d for discharging air bubbles are provided.
3 is described with reference to FIG. 3. In this example, all the hollow members 6 are embedded or attached to the member on the holder 4 side of the case 12, and the air inlets 5a to 5d for bubbles are provided.
3B is embedded or attached to the member on the holder 4 side as shown in FIG. 3 (B), and one end of the hollow member 6a avoids the optical path of the projection light 22 and the reflection light 24 and is substantially at the center of the bottom surface 12a of the case 12. The air inlet 5a is opened at the bottom of the case 12a.
Through a hollow pipe member 6a1 made of rubber or synthetic resin, etc., or a hollow portion 6a1 formed in a substantially rectangular parallelepiped case receiving portion provided on the upper surface of the holder 4 so as to protrude in the center direction. And the cavity 6 embedded in the side wall of the holder 4
a2, the other end of the cavity 6a2 is connected to a discharge port 7a formed in the side wall of the holder 4 so that the outlet is formed in a horizontal or downward direction. Therefore, the suction port 5
a through the hollow portion 6a1 and the hollow portion 6a2 to the outlet 7a
It has a hollow structure in which gas can freely enter and leave without leaking to the outside in a state where the surroundings are sealed. In the example of FIG. 3, other similar hollow members 6b to 6d are provided with the suction port 5b.
5d, horizontal hollow portions 6b1 to 6d1, hollow portions (vertical hollow portions) 6b2 to 6d2, and outlets 7b to 7d, but such a hollow member for discharging air bubbles is used alone. Also, a plurality can be used. It should be noted that the height of the outlets 7a to 7d from the floor is such that even if a large amount of liquid is leaked at a time, sufficient time for the bubbles to be discharged to the outside can be secured. It is preferable that the predetermined height position is appropriately high so as not to be submerged.

【0007】また、図3に対応させて示す図4乃至図6
はこの発明の気泡排出用中空部材6a〜6dの別の実施
例を示すものであり、それぞれ同一の番号を付した装置
は同一の機能を果たすと共に、図3の構成例では全て中
空部材6a〜6dをホルダ4側に配設したのでケース1
2側には何の物理的改造を加える必要もなく、従来の漏
液検出部12がそのまま使用できる構造例であるが、図
4の例ではホルダ4を使用しないで、かつ、薄紙8を使
用しない漏液センサの例で、ケース12だけを単独で使
用する場合の中空部材6a〜6dの配設の一例を示した
もので、この場合には中空部材6a〜6dがケース12
の外部に出たり突出部があると中空部材が損傷を受けや
すいので、ケース底部12aの気体層又は漏液浸透層と
接する略中央部に気泡吸入用の穴5a〜5dを図4
(B)のように穿設し、また、ケース12の側壁の上部
に排出口7a〜7dを穿設し、これらの間をシリコーン
ゴム部材等の小径の中空部材6a〜6dで連結するよう
にしたものである。更に、図5は上述の中空部材をケー
ス12とホルダ4との両方の部材を利用して形成するよ
うにしたもので、図5(B)はケース12を取外したホ
ルダ4の上面を示しており、ホルダ4の外側側壁部から
略中央に向かって気泡排出用の略直方体の突出部に設け
られた溝6a1〜6d1の上面はケース底部12aと密
着して空洞部を形成し、溝の側面から漏液が浸透しない
ように水平かつ平面状に加工されている。また、各溝の
気泡吸入口5a〜5dの位置は投射光/反射光の光学経
路の障害にならない範囲で、できるだけ内側の中央部が
好ましい。又、水平の溝6a1〜6d1の他端は、ホル
ダ4の内壁が気体が十分移動できる厚さまで削られた溝
部に連結され、この溝部は更に数mm幅で垂直方向にホ
ルダ4の内壁の一部が図5(A)に示す6a2〜6d2
のように溝部を形成するように削られた後、ホルダ4の
所定の高さに設けられた排出口7a〜7dを介してケー
ス12の外部と連結されるようになっている。かかる構
造の図5(A)に示すような中空部材ではホルダ4の側
壁や内壁、底面の一部と、ケース12の側壁及び底面の
一部とで、中空部材6a〜6dが形成されているが、図
3に示すようなホルダ4の側壁/底面に空洞部6a〜6
dを形成するよりも、溝部6a〜6dを加工するほうが
容易である。尚、図5(A)の構造で、排出口7a〜7
dを上方に開口した状態で設置すると、大量に漏液が流
出した場合、上方からの漏液により排出口7a〜7dが
塞がれて気体が移動できなくなる場合があるので、排出
口の開口部の方向を水平方向か下方向へ向けて配設する
ことが好ましく、また、排出口を上方に向けて開口させ
た場合にはその上部に蓋部を付設することが好ましい。
次に、図3に対応させて示す図6はこの発明のまた別の
実施例を示すもので、この例では従来のケース12及び
ホルダ4をそのまま使用し、シリコーンゴム部材等の小
径の中空部材6a〜6dを両面テープ等により、ケース
底部12a及びホルダ4の側壁にそのまま貼着したもの
で、排出口7a〜7dは漏液の浸入を防ぐため水平方向
又は下方に曲折して固定するようになっている。
FIGS. 4 to 6 correspond to FIG.
3 shows another embodiment of the bubble discharging hollow members 6a to 6d according to the present invention. The devices having the same numbers perform the same functions, and all of the hollow members 6a to 6d in the configuration example of FIG. 6d is arranged on the holder 4 side, so the case 1
Although no physical modification is required on the second side and the conventional liquid leakage detection unit 12 can be used as it is, in the example of FIG. 4, the holder 4 is not used and the thin paper 8 is used. This is an example of a liquid leakage sensor that does not include an example of the arrangement of the hollow members 6a to 6d when only the case 12 is used alone. In this case, the hollow members 6a to 6d
The hollow member is liable to be damaged if it goes out of the case or has a protruding part. Therefore, holes 5a to 5d for sucking air bubbles are formed at substantially the center of the case bottom 12a in contact with the gas layer or the liquid leakage permeable layer in FIG.
(B), and discharge ports 7a to 7d are formed in the upper part of the side wall of the case 12, and these are connected by small-diameter hollow members 6a to 6d such as silicone rubber members. It was done. FIG. 5 shows the above-described hollow member formed by using both members of the case 12 and the holder 4. FIG. 5B shows the upper surface of the holder 4 with the case 12 removed. The upper surfaces of the grooves 6a1 to 6d1 provided in the substantially rectangular parallelepiped protrusions for discharging bubbles from the outer side wall of the holder 4 to the substantially center thereof are in close contact with the case bottom portion 12a to form a hollow portion. It is processed horizontally and in a planar shape so that the liquid does not penetrate from the surface. Further, the position of the bubble inlets 5a to 5d in each groove is preferably as central as possible as far as possible without interfering with the optical path of the projected light / reflected light. The other end of each of the horizontal grooves 6a1 to 6d1 is connected to a groove in which the inner wall of the holder 4 is cut to a thickness that allows sufficient movement of the gas. The parts are 6a2 to 6d2 shown in FIG.
After being cut so as to form a groove as described above, the holder 4 is connected to the outside of the case 12 via outlets 7a to 7d provided at a predetermined height of the holder 4. In the hollow member having such a structure as shown in FIG. 5A, hollow members 6a to 6d are formed by the side wall, the inner wall, and a part of the bottom surface of the holder 4 and the part of the side wall and the bottom surface of the case 12. Are provided on the side walls / bottom surface of the holder 4 as shown in FIG.
It is easier to process the grooves 6a to 6d than to form d. It should be noted that the outlets 7a to 7
If d is installed with the upper part opened, if a large amount of liquid leaks out, the liquid outlets 7a to 7d may be blocked by the liquid leakage from above and gas may not be able to move. It is preferable to dispose the portion in a horizontal or downward direction, and when the outlet is opened upward, it is preferable to attach a lid to the upper portion.
Next, FIG. 6 corresponding to FIG. 3 shows another embodiment of the present invention. In this embodiment, the conventional case 12 and holder 4 are used as they are, and a small-diameter hollow member such as a silicone rubber member is used. 6a to 6d are directly adhered to the case bottom 12a and the side wall of the holder 4 with a double-sided tape or the like, and the outlets 7a to 7d are bent horizontally or downward so as to prevent infiltration of the liquid so as to be fixed. Has become.

【0008】かかる構成において、その動作を次に説明
する。先ず、傾斜センサ38が所定の角度以上の傾きを
検知すると、制御手段30を介してアラーム信号が外部
に出力されるが、かかるアラーム信号の出力されない通
常の状態では、漏液2がない場合には、図2(B)に示
すように光源手段14bからの投射光22yがホルダ底
面4aに載置された反射部材3の反射境界面7で反射さ
れ、その反射光24yがアレイセンサ28Bの受光素子
28a〜28nに入力され、その明暗パターンは、例え
ば、図2(C)に示すように、受光素子28n側が明る
く、受光素子28a側が暗い明暗のパターン分布を形成
する。また、漏液2がホルダ底面4aに薄く浸透した場
合には、その反射光24yは図2(C)の24aのよう
な光学経路を経て、各受光素子に入力するので、少し受
光素子28a側に明るさのピークがずれた明暗パターン
の配置となる。更に漏液の厚さ(深さ)が大きくなると
図2(C)の左側に明暗パターンのピークが移動する。
そして、一度に大量の漏液2が発生した場合には、ケー
ス12の外周は全て漏液2で水浸しになるが、ホルダ4
側には中空部材6a〜6dが埋設又は付設されているの
で、漏液2が毛細管現象や浸透圧等によりケース12の
外周から中心部に向かって徐々に浸透してくると、ホル
ダ底面4aとケース底部12aとの空隙部10にあった
気体はその周囲を漏液で塞がれた状態となるが、気泡の
吸入口5a〜5dからケース底面12aに発生/滞留し
ている気泡が中空パイプ部材6a1〜6d1中に徐々に
押し出され、更に、ホルダ4の側壁に埋設された空洞部
6a2〜6d2を介してホルダ4の側壁に出口が水平方
向又は下方向に向いて穿設された排出口7a〜7dから
ケース底面12aに発生した気泡がケース12の外部に
排出される。すなわち、中空部材6a〜6dはその周囲
を密閉された状態で気体が外部に漏れることなく自由に
出入りできる構造となっているので、ケース底部12a
には気泡が発生しても、長期間滞留することなく、非常
に速やかにホルダ底面4aとケース底部12aとの空隙
部10を漏液2で満たし、水没させることができる。か
くして、ケース底部12aが漏液2の中に水没するとそ
の反射光24mは、例えば、図2(C)の受光素子28
a側が最も明るく、受光素子28n側が最も暗い明暗パ
ターンの配置に変化する。
The operation of the above configuration will be described below. First, when the inclination sensor 38 detects an inclination equal to or more than a predetermined angle, an alarm signal is output to the outside via the control means 30. In a normal state where such an alarm signal is not output, when the liquid leakage 2 does not exist, As shown in FIG. 2B, the projection light 22y from the light source means 14b is reflected by the reflection boundary surface 7 of the reflection member 3 mounted on the holder bottom surface 4a, and the reflection light 24y is received by the array sensor 28B. The light / dark patterns input to the elements 28a to 28n form a light / dark pattern distribution in which the light receiving element 28n is bright and the light receiving element 28a is dark, as shown in FIG. 2C, for example. Further, when the leaked liquid 2 permeates the holder bottom surface 4a thinly, the reflected light 24y enters each light receiving element via an optical path like 24a in FIG. The light and dark pattern is shifted in the brightness peak. When the thickness (depth) of the liquid leakage further increases, the peak of the light and dark pattern moves to the left side of FIG.
When a large amount of the liquid 2 is generated at one time, the entire outer periphery of the case 12 is flooded with the liquid 2.
The hollow members 6a to 6d are buried or attached to the sides, so that when the leaked liquid 2 gradually penetrates from the outer periphery of the case 12 toward the center by capillary action or osmotic pressure, the holder bottom surface 4a The gas in the gap 10 with the case bottom 12a is in a state where its surroundings are closed by liquid leakage, but bubbles generated / remaining on the case bottom 12a from the bubble inlets 5a to 5d are hollow pipes. A discharge port which is gradually extruded into the members 6a1 to 6d1 and further has an outlet formed in the side wall of the holder 4 through the hollow portions 6a2 to 6d2 buried in the side wall of the holder 4 so as to be directed horizontally or downward. Air bubbles generated on the case bottom surface 12a from 7a to 7d are discharged to the outside of the case 12. That is, since the hollow members 6a to 6d have a structure in which gas can freely enter and leave without leaking to the outside in a state where the surroundings are sealed, the case bottom portion 12a
Even if bubbles are generated, the gap 10 between the holder bottom surface 4a and the case bottom portion 12a can be filled with the liquid leak 2 and immersed in water very quickly without staying for a long time. Thus, when the case bottom 12a is submerged in the liquid 2, the reflected light 24m is, for example, received by the light receiving element 28 shown in FIG.
The arrangement changes to an arrangement of a bright and dark pattern on the side a, which is the brightest, and on the side of the light receiving element 28n, the darkest.

【0009】従って、所定のサンプリング周期でアレイ
センサ28Bの各受光素子28a〜28nのA/D変換
後のデジタル出力をダブルバッファメモリ34に書込ん
だ後、MPU等により以下の処理を行なうと良い。 a)各受光素子28i(i=a〜n)の感度補正を行な
った後、受光パターンを移動平均処理等により平滑化す
る。 b1)平滑化した受光パターンの明暗のピーク位置を演
算し、この位置が漏液無し範囲内にあるか否かで漏液の
有無を判定する。 b2)平滑化した受光パターンR(j)の反射光量の輝
度分布の重心XGを次式により演算し、この重心位置が
漏液無し範囲内にあるか否かで漏液の有無を判定する。
Therefore, after writing the digital output after the A / D conversion of each of the light receiving elements 28a to 28n of the array sensor 28B into the double buffer memory 34 at a predetermined sampling cycle, the following processing is preferably performed by the MPU or the like. . a) After the sensitivity of each light receiving element 28i (i = a to n) is corrected, the light receiving pattern is smoothed by moving average processing or the like. b1) The peak position of lightness and darkness of the smoothed light receiving pattern is calculated, and the presence or absence of liquid leakage is determined based on whether or not this position is within the range without liquid leakage. b2) The center of gravity XG of the luminance distribution of the amount of reflected light of the smoothed light receiving pattern R (j) is calculated by the following equation, and the presence or absence of liquid leakage is determined based on whether or not the position of the center of gravity is within the range without liquid leakage.

【数1】 XG=ΣR(j)・j/Σj (j=1からn) 但し、R(j):受光レベル j=:受光位置 b3)予め、反射光の明暗パターンの波形立上り部分及
び/又は、波形ピーク部分、及び/又は、波形立下り部
分等を漏液有りの反射光パターンの中から切出してテン
プレートメモリ等に漏液テンプレートパターンT(j)
として登録しておき、このテンプレートパターンT
(j)と類似した波形位置を平滑化した受光パターンR
(j)の中で次式により演算する。
XG = ΣR (j) · j / Σj (j = 1 to n) where R (j): light receiving level j =: light receiving position b3) The rising edge of the waveform of the bright and dark pattern of the reflected light and / or Alternatively, a waveform peak portion and / or a waveform falling portion are cut out from a reflected light pattern having a leak and the leaked template pattern T (j) is stored in a template memory or the like.
And register this template pattern T
Light receiving pattern R obtained by smoothing a waveform position similar to that of (j)
The calculation is performed by the following equation in (j).

【数2】 次に、漏液無し位置より所定の距離(mth)以上離れ
た位置(m>mth)で、かつ、所定の類似度Thcr
以上テンプレート波形と類似した明暗パターンCR
(m)が検出された場合、漏液有りと判定し、それ以外
の場合には漏液無しと判定する。 c)かくして、漏液検知手段18を兼ねた制御手段30
により、b1)からb3)の演算の中から所望の演算ま
たは組合わせた演算により漏液2が検出されると、表示
手段29を赤色点灯させると共にケーブル26を介して
外部に漏液の有無を出力する。尚、上述のb1)及びb
2)の処理ではレンズ等の集光手段により広く反射光を
集めることにより、最小限2箇所の受光手段(素子)に
より、漏液の有無演算が実行できる。また、b3)の相
関演算では最小限4〜8箇所の異なる位置からの受光手
段(素子)による反射光データの収集が好ましい。ま
た、光源手段14aからの投射光22xがケース底部1
2aで全反射され、その反射光24xがアレイセンサ2
8Aの各受光素子28a〜28nに上述のアレイセンサ
28Bと同様に入力され、その明暗パターンの分布や位
置等が漏液検知手段18を兼ねた制御手段30により、
上述と同様にして演算され、漏液の有無が判定される。
尚、制御手段30では、アレイセンサ28B/28Aの
両方の出力を所定の周期毎に相互にチェックして、どち
らかの出力演算結果により漏液が検知できたら、漏液検
知信号を外部に出力するとよい。また、上述の例では、
反射光24xは、全反射光であるので、アレイセンサ2
8Aの替わりに、単独の受光素子16の出力より反射光
量の大小から漏液の有無を判定しても、容易に漏液検知
の判定を行うことができる。
(Equation 2) Next, at a position (m> mth) that is at least a predetermined distance (mth) from the no-leakage position and at a predetermined similarity Thcr
Light / dark pattern CR similar to the above template waveform
If (m) is detected, it is determined that there is liquid leakage, and otherwise, it is determined that there is no liquid leakage. c) Thus, the control means 30 also serving as the liquid leakage detecting means 18
Accordingly, when the leaked liquid 2 is detected by a desired operation or a combined operation among the operations from b1) to b3), the display means 29 is turned on in red and the presence or absence of the liquid leakage to the outside via the cable 26 is determined. Output. Note that b1) and b
In the process (2), the reflected light is widely collected by the condensing means such as a lens, so that the presence / absence calculation of the liquid leakage can be executed by at least two light receiving means (elements). In the correlation calculation of b3), it is preferable to collect reflected light data from the light receiving unit (element) from at least 4 to 8 different positions. Also, the projection light 22x from the light source means 14a is
2a, the reflected light 24x is reflected by the array sensor 2
The light receiving elements 28a to 28n of 8A are inputted in the same manner as the above-described array sensor 28B, and the distribution, position, and the like of the light and dark patterns are controlled by the control means 30 which also serves as the liquid leakage detecting means 18.
The calculation is performed in the same manner as described above, and the presence or absence of liquid leakage is determined.
The control means 30 checks both outputs of the array sensors 28B / 28A at predetermined intervals, and outputs a liquid leak detection signal to the outside if a liquid leak is detected based on either output calculation result. Good to do. Also, in the above example,
Since the reflected light 24x is totally reflected light, the array sensor 2
Instead of 8A, even if the presence or absence of liquid leakage is determined from the magnitude of the amount of reflected light from the output of the single light receiving element 16, it is possible to easily determine the detection of liquid leakage.

【0010】従って図2に示すような構造の漏液センサ
によれば、漏液センサ20aを床面1に置くだけで薄紙
8を使用せず、簡単な床面へのセンサ固定作業だけで、
大量の漏液が流出しなくても、漏液2がホルダ4の反射
境界面4aに薄く浸透した初期の時点で、確実に漏液を
検出することができ、ホルダ4の外周の半径を大きくす
ることによりセンサ20aの転倒も防止することができ
る。また、図2(B)に示すように投射光22xと22
yとはそれぞれ直交する方向に投射しているので相互の
光学的干渉は少ないが、図示しない制御手段により交互
に光源手段14a/14bを点灯させ、光源手段14a
が点灯中は光源手段14bを消灯させ、光源手段14a
が消灯中は光源手段14bを点灯させるようにすると、
光源間の干渉を完全に排除することができる。尚、上述
の例では、光源手段14bからの投射光22yをホルダ
底面4aに載置された反射部材3の反射境界面7で反射
させたが、反射部材3を使用せず、直接ホルダ底面4a
からの反射光の受光を、ホルダ底面4aを灰色中間色ま
たは白色に塗装すること等で実現し、その反射光24y
をアレイセンサ28Bに入力してもよい。また、薄紙8
を反射部材3の替わりに使用することも可能であり、こ
の場合には、ケース底部12aとホルダ底面4aとの間
隔dは1mm以内に設定することも充分可能であり、薄
紙8を使用した場合は、漏液検知後薄紙の交換作業が必
要であるが、反射部材3を使用すると、乾いた布等で漏
液2を反射部材3から拭き去ると、繰り返し同一の反射
部材を使用できる違いがある。かくして、大量の漏液が
発生しても、中空部材6a〜6dが周囲を密閉された状
態で気体が外部に漏れることなく自由にその両端から出
入りできる構造となっているので、ケース底部12aに
は気泡が発生しても、長期間滞留することなく、非常に
速やかにホルダ底面4aとケース底部12aとの空隙部
10を、漏液2で満たし、空隙部10を確実に水没させ
ることができ、気泡発生による漏液センサの誤動作を防
止することができる。また、上述の例では、2つの光学
系を使用したが、光源手段14a〜受光手段28Aまた
は光源手段14b〜受光手段28Bのいずれか一方の光
学系だけを使用しても漏液センサ20aは構成すること
ができる。
Therefore, according to the liquid leakage sensor having the structure as shown in FIG. 2, the liquid leakage sensor 20a is simply placed on the floor surface 1 without using the thin paper 8, and the sensor is simply fixed to the floor surface.
Even if a large amount of liquid leakage does not flow out, it is possible to reliably detect the liquid leakage at the initial point when the liquid leakage 2 has slightly penetrated the reflective boundary surface 4a of the holder 4, and to increase the radius of the outer periphery of the holder 4. By doing so, it is possible to prevent the sensor 20a from falling down. Also, as shown in FIG.
y are projected in directions orthogonal to each other, so that mutual optical interference is small. However, the light source means 14a / 14b are alternately turned on by control means (not shown), and the light source means 14a
Is turned on, the light source means 14b is turned off, and the light source means 14a
When the light source means 14b is turned on while the light is off,
Interference between light sources can be completely eliminated. In the above-described example, the projection light 22y from the light source means 14b is reflected by the reflection boundary surface 7 of the reflection member 3 placed on the holder bottom surface 4a, but the reflection member 3 is not used and the holder bottom surface 4a is directly used.
Is received by painting the holder bottom surface 4a with a gray intermediate color or white, and the like, and receiving the reflected light 24y
May be input to the array sensor 28B. Also, thin paper 8
Can be used in place of the reflecting member 3. In this case, the distance d between the case bottom 12a and the holder bottom 4a can be set to 1 mm or less, and when the thin paper 8 is used. Is necessary to replace the thin paper after detecting liquid leakage. However, if the reflecting member 3 is used, if the liquid 2 is wiped off from the reflecting member 3 with a dry cloth or the like, the same reflecting member can be repeatedly used. is there. Thus, even if a large amount of liquid leakage occurs, the hollow members 6a to 6d have a structure in which the gas can freely enter and exit from both ends without leaking to the outside in a state where the surroundings are sealed. Even if air bubbles are generated, the gap 10 between the holder bottom surface 4a and the case bottom 12a can be filled with the liquid leakage 2 very quickly without staying for a long time, and the gap 10 can be reliably submerged. In addition, it is possible to prevent malfunction of the liquid leakage sensor due to generation of bubbles. In the above example, two optical systems are used. However, even if only one of the optical systems of the light source unit 14a to the light receiving unit 28A or the light source unit 14b to the light receiving unit 28B is used, the liquid leakage sensor 20a can be configured. can do.

【0011】次に、図2及び図4に対応させて示す図7
は、この発明の漏液センサ20bの別の一実施例を示す
ものであり、それぞれ同一の番号を付した装置は同一の
機能を果たすと共に、漏液検知部に電気配線をなくし電
気的発火/引火の事故が絶対発生しないようにしたもの
で、光ファイバ等の光伝送手段40a、40bにより、
遠隔地の制御部31に設けられた光源手段14から投射
光22x,22yを伝送し、光伝送手段40a、42a
〜42kにより反射境界面12aへの光の投受光を行な
う第1の光学系を形成し、光伝送手段40b、42m〜
42tにより反射境界面7または薄紙8またはケースキ
ャップ12h等への光の投受光を行なう第2の光学系を
形成するようにしたため、液体2が揮発性で引火、爆発
の危険がある場合でも極めて安全に反射光による漏液検
知ができるようにしたものである。すなわち、上述の第
1の光学系では、遠隔地に設けられた光源手段14から
の照射光の一部が光伝送手段40aによりケース12内
に導かれ、全反射を生ずるような臨界角以上の所定の角
度でケース底部の反射境界面12aへ投射光22xとし
て照射され、その反射光24xは直線状に配設された光
伝送手段42a〜42kにより受光され、遠隔地に設け
られたアレイセンサ28Aの受光素子28a〜28kに
伝送され、AD変換手段32、ダブルバッファ34を介
して検知手段を兼ねた制御手段30に入力されるように
なっている。また、上述の第2の光学系では、遠隔地に
設けられた光源手段14からの照射光の他の一部が光伝
送手段40bによりケース12内に導かれ、臨界角以内
の所定の角度で反射境界面7、または図示しない薄紙
8、またはケースキャップ12h等へ投射光22yとし
て照射され、その反射光24yは直線状に配設された光
伝送手段42m〜42tにより受光され、遠隔地に設け
られたアレイセンサ28Bの受光素子28m〜28tに
伝送され、スイッチ手段及びAD変換手段32、ダブル
バッファ34を介して検知手段を兼ねた制御手段30に
入力されるようになっている。更に、空隙部10に気泡
が長期間発生し、滞留するのを防止するため、図4の構
造と同様に、ホルダ4を使用しないで、ケース12の内
部に全て中空部材6a〜6dを配設するような気泡排出
機構を設け、ケース底部12aの気体層又は漏液浸透層
と接する略中央部に気泡吸入用の穴5a〜5dを図4
(B)及び図7のように穿設し、また、ケース12の側
壁の上部に排出口7a〜7dを穿設し、これらの間をシ
リコーンゴム部材等の小径の中空部材6a〜6dで連結
した構造となっている。また、ケース12の底部は、透
明材または半透明材からなる透過光部材12dを基材と
して構成し、その外側を光の照射面及び反射光受光面を
除いて遮光性の合成樹脂等の遮光部材12gで被覆又は
構成し、透過光部材12dと一体成形するのが好まし
く、かかる遮光部材を使用すると、ホルダ4がなくても
周囲ノイズ光の影響を受けたり、漏液浸入時に床面が白
色又は鏡面であっても不要な反射光を床面から受光しな
いような光学的構造が実現できる。尚、図7の例では、
中間色または白色で塗装した遮光性のケースキャップ1
2hをケース12の先端に取り付けた構造となっている
が、この上に薄紙8を載置したり、また、ケース12の
先端には何も置かず、床面1からの反射光24yを直接
受光して漏液検知処理することも図2と同様に可能であ
る。
Next, FIG. 7 corresponding to FIG. 2 and FIG.
Shows another embodiment of the liquid leakage sensor 20b according to the present invention. The devices having the same reference numerals perform the same function, and eliminate the electric wiring in the liquid leakage detecting portion, thereby making the electric ignition / It is designed to prevent a fire accident from occurring, and by means of optical transmission means 40a and 40b such as optical fibers.
The projection light 22x, 22y is transmitted from the light source means 14 provided in the remote control unit 31, and the light transmission means 40a, 42a
To 42k to form a first optical system for projecting and receiving light to the reflection boundary surface 12a, and the optical transmission means 40b, 42m to
Since the second optical system for projecting and receiving light on the reflective boundary surface 7, the thin paper 8, the case cap 12h, and the like is formed by the 42t, the liquid 2 is extremely volatile even if there is a danger of ignition or explosion. The leak detection by reflected light can be performed safely. That is, in the above-mentioned first optical system, a part of the irradiation light from the light source means 14 provided at a remote place is guided into the case 12 by the light transmission means 40a, and the angle is equal to or larger than the critical angle such that total reflection occurs. The light is radiated at a predetermined angle to the reflective boundary surface 12a at the bottom of the case as the projection light 22x, and the reflected light 24x is received by the linearly arranged light transmission means 42a to 42k, and the array sensor 28A provided at a remote place. Are transmitted to the light receiving elements 28a to 28k, and are input to the control means 30 also serving as the detection means via the AD conversion means 32 and the double buffer 34. Further, in the second optical system described above, another part of the irradiation light from the light source unit 14 provided at a remote place is guided into the case 12 by the light transmission unit 40b, and is formed at a predetermined angle within the critical angle. The reflection boundary surface 7, or the thin paper 8, not shown, or the case cap 12h is irradiated as the projection light 22y, and the reflection light 24y is received by the linearly arranged light transmission means 42m to 42t and provided at a remote place. The light is transmitted to the light receiving elements 28m to 28t of the array sensor 28B and input to the control means 30 which also serves as the detection means via the switch means, the AD conversion means 32, and the double buffer 34. Further, in order to prevent bubbles from being generated and staying in the void portion 10 for a long period of time, all the hollow members 6a to 6d are disposed inside the case 12 without using the holder 4 as in the structure of FIG. A bubble discharging mechanism is provided, and holes 5a to 5d for sucking bubbles are formed in a substantially central portion of the case bottom portion 12a in contact with the gas layer or the liquid leakage permeable layer in FIG.
(B) and as shown in FIG. 7, and discharge ports 7a to 7d are formed in the upper part of the side wall of the case 12, and these are connected by small-diameter hollow members 6a to 6d such as silicone rubber members. It has a structure. In addition, the bottom of the case 12 is formed by using a transmitted light member 12d made of a transparent material or a translucent material as a base material. It is preferable to cover or configure with the member 12g and integrally mold it with the transmitted light member 12d. If such a light shielding member is used, even if the holder 4 is not provided, it is affected by ambient noise light or the floor surface becomes white when liquid leaks. Alternatively, it is possible to realize an optical structure in which unnecessary reflected light is not received from the floor surface even with a mirror surface. In the example of FIG. 7,
Light-shielding case cap 1 painted in neutral or white
2h is attached to the tip of the case 12, but the thin paper 8 is placed on this, and nothing is placed on the tip of the case 12, and the reflected light 24y from the floor 1 is directly reflected. It is also possible to perform liquid leakage detection processing by receiving light, similarly to FIG.

【0012】かかる構成において、その動作を次に説明
する。先ず、漏液2がない場合には、第2の光学系によ
り、図2(B)と同様にして光源手段14及び光伝送手
段40bからの投射光22yが床面1または薄紙8また
はケースキャップ12h等の反射境界面7で反射され、
その反射光24yが光伝送手段42m〜42tを介して
遠隔地の制御部31内にあるアレイセンサ28Bの受光
素子28m〜28tに伝送されて入力され、その明暗パ
ターンは、例えば、受光素子28t側が明るく、受光素
子28m側が暗い明暗のパターン分布を形成する。ま
た、漏液2が床面1に薄く浸透した場合には、その反射
光24yは少し受光素子28m側に明るさのピークがず
れた明暗パターンの配置となる。更に漏液の厚さ(深
さ)が大きくなると明暗パターンのピークの移動が大き
くなる。そして、一度に大量の漏液2が発生した場合に
は、ケース12の外周は全て漏液2で水浸しになるが、
ケース12側には中空部材6a〜6dが埋設されている
ので、漏液2がケース12の外周から中心部に向かって
徐々に浸透してくると、床面1とケース底部12aとの
空隙部10にあった気体はその周囲を漏液で塞がれた状
態となり、漏液の水圧や浸透圧によりケース底部12a
の気泡吸入口5a〜5dから中空部材6a〜6dの中に
押し出され、更に、ケース12の側壁に穿設された排出
口7a〜7dからケース12の外部に排出される。すな
わち、中空部材6a〜6dが周囲を密閉された状態で気
体が外部に漏れることなく自由に出入りできる構造とな
っているので、ケース底部12aには気泡が発生して
も、長期間滞留することなく、非常に速やかに床面1と
ケース底部12aとの空隙部10を漏液で満たし、水没
させることができる。かくして、ケース12が漏液2の
中に水没するとその反射光24yは例えば受光素子28
m側が最も明るく、受光素子28t側が最も暗い明暗パ
ターンの配置に変化する。従って、所定のサンプリング
周期でアレイセンサ28Bの各受光素子28m〜28t
の出力をダブルバッファメモリ34に書込んだ後、MP
U等により図2の場合と同様の処理を行ない、受光手段
を複数個それぞれ受光角度が相互に異なるように配設
し、複数の受光手段により反射光の受光位置が相互に識
別できるように電気信号に変換し、これら受光手段の出
力を演算処理して反射光の明暗パターンの配置を所定の
周期毎に決定し、該反射光の明暗パターンの変動または
反射光の明暗パターンの位置の変動により漏液の有無を
判定するようにしてもよいし、また、受光手段の出力を
演算処理して反射光量の大小により漏液の有無を検知す
るようにしてもよい。また、一度に大量の漏液2が発生
した場合には、第1の光学系を構成する光源手段14及
び光伝送手段40aからの投射光22xがケース底部1
2aで全反射されず、屈折率のほぼ等しい漏液の内部
に、ほぼ直進して空隙部10中に分散されるので、その
反射光24xが分散して、アレイセンサ等の受光素子
(手段)で受光される反射光量が減少すると共に、反射
光の明暗の分布パターンも大きく変動し、従って、光伝
送手段42a〜42kを介して遠隔地の制御部31内に
設けられたアレイセンサ28Aの各受光素子28a〜2
8kに上述のアレイセンサ28Bと同様に反射光を入力
し処理していると、その明暗パターンの分布や位置、ま
たは、反射光量の大小等が大きく変動するので、漏液検
知手段18を兼ねた制御手段30により上述と同様にし
てこれらの変動が検知でき、容易に大量漏液の有無が判
定できる。
The operation of the above configuration will be described below. First, when there is no liquid leak 2, the projection light 22y from the light source means 14 and the light transmission means 40b is transmitted by the second optical system in the same manner as in FIG. 12h etc., are reflected by the reflection boundary surface 7,
The reflected light 24y is transmitted and input to the light receiving elements 28m to 28t of the array sensor 28B in the remote control unit 31 via the light transmitting means 42m to 42t, and the light / dark pattern is, for example, the light receiving element 28t side. A bright and dark pattern distribution is formed that is bright and the light receiving element 28m side is dark. When the leaked liquid 2 permeates the floor 1 thinly, the reflected light 24y is arranged in a light and dark pattern in which the brightness peak is slightly shifted toward the light receiving element 28m. Further, as the thickness (depth) of the liquid leakage increases, the peak shift of the light-dark pattern increases. When a large amount of liquid 2 is generated at one time, the entire outer periphery of the case 12 is flooded with the liquid 2,
Since the hollow members 6a to 6d are buried in the case 12 side, when the leaked liquid 2 gradually permeates from the outer periphery of the case 12 toward the center, a gap between the floor surface 1 and the case bottom 12a is formed. The gas that was in 10 is in a state where its surroundings are blocked by leakage, and the water pressure or osmotic pressure of the leakage causes the bottom 12a of the case to leak.
Are extruded into the hollow members 6a to 6d from the air bubble inlets 5a to 5d, and further discharged to the outside of the case 12 from the outlets 7a to 7d formed in the side wall of the case 12. That is, since the hollow members 6a to 6d have a structure in which gas can freely enter and leave without leaking to the outside in a state where the surroundings are sealed, even if air bubbles are generated in the case bottom portion 12a, they remain for a long time. In addition, the gap 10 between the floor surface 1 and the case bottom 12a can be filled with liquid leakage very quickly and submerged. Thus, when the case 12 is submerged in the leaked liquid 2, the reflected light 24y is transmitted to the light receiving element 28, for example.
The arrangement on the m side is the brightest and the arrangement on the light receiving element 28t side is the darkest light and dark pattern. Therefore, each of the light receiving elements 28m to 28t of the array sensor 28B has a predetermined sampling period.
Is written to the double buffer memory 34,
U and the like, the same processing as in FIG. 2 is performed, a plurality of light receiving means are arranged so that the light receiving angles are different from each other, and the plurality of light receiving means are used so that the light receiving positions of the reflected light can be distinguished from each other. It converts the output of these light receiving means into a signal, determines the arrangement of the light and dark pattern of the reflected light at predetermined intervals, and determines the arrangement of the light and dark pattern of the reflected light or the position of the light and dark pattern of the reflected light. The presence or absence of liquid leakage may be determined, or the output of the light receiving means may be subjected to arithmetic processing to detect the presence or absence of liquid leakage based on the amount of reflected light. Further, when a large amount of liquid leakage 2 occurs at once, the projection light 22x from the light source means 14 and the light transmission means 40a constituting the first optical system is transmitted to the case bottom 1
Since the light is not totally reflected by 2a and is substantially straight into the liquid having substantially the same refractive index and is dispersed in the gap 10, the reflected light 24x is dispersed and the light receiving element (means) such as an array sensor is provided. And the distribution pattern of the reflected light also fluctuates greatly. Therefore, each of the array sensors 28A provided in the remote controller 31 via the optical transmission means 42a to 42k. Light receiving elements 28a-2
If the reflected light is input to 8k and processed in the same manner as in the above-described array sensor 28B, the distribution and position of the light and dark pattern or the amount of reflected light greatly fluctuates. These changes can be detected by the control means 30 in the same manner as described above, and the presence or absence of a large amount of liquid leakage can be easily determined.

【0013】従って図7に示すような構造の漏液センサ
20bによれば、漏液センサ20bを床面1に置くだけ
でホルダ4や薄紙8がなくても外来光の影響をほとんど
受けずに、かつ、漏液2が全反射境界面12a迄大量に
流出しない漏液流出の初期段階で素早く漏液を検出する
ことができる利点がある。また、漏液検知部には電気信
号が一切流れないので揮発性の漏液に対しても極めて安
全に検出処理を行なうことができ、一度に大量の漏液が
流出しても、この漏液を2重、3重にチェックして検出
し、漏液検出処理の信頼性を一段と向上させることがで
きると共に、光伝送手段40/42の長さを変更するこ
とにより光源手段14並びに受光手段28A/28B
と、反射境界面12a/7等との物理的距離を所望の可
変距離に変更することができる。更にまた、上述の遮光
部材12gと透過光部材12dとを一体成形したケース
ヘッド部は、図2及び図4に示した薄紙8なしの漏液セ
ンサに図7と同様に適用できることは明らかであり、遮
光性のケースキャップ12hをケース12の先端に装着
すると、センサ20bを設置した床面1の表面性状や床
面塗装色等の影響を除去できる利点がある。また、図2
(B)に示すように投射光22xと22yとはそれぞれ
直交する方向に投射しているので相互の光学的干渉は少
ないが、時間的に交互に光源手段14を点灯させたり、
図示しないシャッター手段等により投射光を断続して光
伝送手段40a,40bに出力し、交互に光伝送手段4
0a/40bを点灯させ、光伝送手段40aが点灯中は
光伝送手段40bを消灯させ、光伝送手段40aが消灯
中は光伝送手段40bを点灯させるようにすると、投射
光22x,22y間の干渉は完全に排除することができ
る。尚、薄紙8を使用すると、ケース底部12aと床面
1との間隔dは1mm以内にすることも充分可能であ
る。かかる場合に大量の漏液が発生しても、中空部材6
a〜6dが周囲を密閉された状態で気体が外部に漏れる
ことなく自由に出入りできる構造となっているので、ケ
ース底部12aには気泡が発生しても、長期間滞留する
ことなく、非常に速やかに床面1とケース底部12aと
の空隙部10を、気泡停留を防止しつつ、漏液2で満た
し、確実に水没させることができる。また、上述の例で
は、2つの光学系を使用したが、光源手段14a〜受光
手段28Aまたは光源手段14b〜受光手段28Bのい
ずれか一方の光学系だけを使用しても漏液センサ20b
は構成することができる。
Therefore, according to the liquid leakage sensor 20b having a structure as shown in FIG. 7, the liquid leakage sensor 20b is placed on the floor surface 1 and is hardly affected by extraneous light even without the holder 4 or the thin paper 8. In addition, there is an advantage that the leaked liquid 2 can be detected quickly in the initial stage of the leaked outflow in which the leaked liquid 2 does not flow out to the total reflection boundary surface 12a in a large amount. In addition, since no electric signal flows to the liquid leakage detection unit, it is possible to detect the volatile liquid extremely safely even if a large amount of liquid leaks at once. Is double-checked and detected, the reliability of the liquid leakage detection process can be further improved, and the light source means 14 and the light-receiving means 28A can be changed by changing the length of the light transmission means 40/42. / 28B
, And the physical distance to the reflection boundary surface 12a / 7 or the like can be changed to a desired variable distance. Further, it is apparent that the case head portion in which the light shielding member 12g and the transmitted light member 12d are integrally formed can be applied to the liquid leakage sensor without the thin paper 8 shown in FIGS. When the light-shielding case cap 12h is attached to the tip of the case 12, there is an advantage that the influence of the surface properties of the floor 1 on which the sensor 20b is installed, the floor coating color, and the like can be eliminated. FIG.
As shown in (B), since the projection lights 22x and 22y are projected in directions orthogonal to each other, there is little mutual optical interference, but the light source means 14 is turned on alternately in time,
The projection light is intermittently output by shutter means or the like (not shown) to the light transmission means 40a and 40b, and the light transmission means 4
0a / 40b is turned on, the light transmission means 40b is turned off while the light transmission means 40a is turned on, and the light transmission means 40b is turned on while the light transmission means 40a is turned off. Can be completely eliminated. When the thin paper 8 is used, the distance d between the case bottom portion 12a and the floor surface 1 can be sufficiently reduced to 1 mm or less. In such a case, even if a large amount of liquid leakage occurs, the hollow member 6
Since a to 6d have a structure in which gas can freely enter and leave without leaking to the outside in a sealed state, even if bubbles are generated in the case bottom portion 12a, they do not stay for a long time, The gap 10 between the floor surface 1 and the case bottom 12a can be quickly filled with the liquid leakage 2 while preventing bubbles from stagnating, and can be reliably submerged. In the above example, two optical systems are used. However, even if only one of the optical systems of the light source unit 14a to the light receiving unit 28A or the light source unit 14b to the light receiving unit 28B is used, the liquid leakage sensor 20b
Can be configured.

【0014】次に、図2、図5及び図7に対応させて示
す図8は、この発明の漏液センサ20cのまた別の一実
施例を示すものであり、それぞれ同一の番号を付した装
置は同一の機能を果たすと共に、透明部材または半透明
部材で構成されたケース12の底部12aに図8
(A)、(B)に示すような凸形状の漏液検知部を突設
して設け、この検知部には、略45度の傾斜角度で平面
状の全反射面12m及び12nが設けられ、これらの平
面状全反射面12m及び12nは、その先端部がコーナ
ーキューブと同等の機能を果たすように、その延長が相
互に略直交状態で交差するように形成され、第1の光学
系を形成する光源手段14aからの投射光22uが全反
射面12mに略鉛直上方から下方に照射され、その反射
光22vが全反射面12nに投射され、全反射面12n
の反射光24uが受光手段16で受光され、電気信号に
変換されるようになっている。尚、投射光22uの全反
射面12mへの照射位置は、できるだけ、床面1に近い
下方の位置が好ましい。また、ケース12全体はホルダ
4に挿入/装着されて固定されるようになっており、ホ
ルダ4は床面1にクギ等の固定部材により固定してもよ
いし、固定せず、単に床面1に移動自在に載置しておく
だけでもよい。また、図5と同様にして、中空部材6a
〜6dがケース12の外周及びホルダ4の底部および内
側側面で形成され、更に図8(C)にはホルダ4の上面
図を示してあるが、同図ではホルダ4の底面4aの略中
央部に薄紙8の受け部を兼ねた薄板状の反射面4rが形
成されており、薄紙8を使用する場合には、ホルダ反射
面4rは反射光を吸収する黒色に塗装すると共に、ケー
ス底部先端12aとホルダ反射面4rとの空隙層間隔d
は1mm以内の密着させる構造が好ましく、他方、薄紙
8を使用しない場合には、直接ホルダ反射面4rからの
反射光や床面1からの直接反射光を処理するため、ホル
ダ反射面4rは照射光を反射する白色または中間色に塗
装すると共に、ケース底部先端12aとホルダ反射面4
rとの空隙層間隔dは2mm以上離し、粘度の高い漏液
でも容易に浸透できるような構造が好ましい。更に図8
において、上述の平面状全反射面12m及び12nの先
端部は、平面状にカットされ、このカットされた平面1
2aを介して第2の光学系が形成され、光源手段14b
からの投射光22yが臨界角未満の入射角でケース12
から床面1方向に照射され、薄紙8またはホルダ反射面
4rまたは床面1等からの反射光24yが受光手段16
bまたはアレイセンサ28Bで受光され、電気信号に変
換されるようになっている。尚、ケース底部12aの内
側に金属箔等の遮光部材15を貼着し、遮光部材15の
一端を静電容量センサ39に入力すると、この遮光部材
15は光の照射面及び受光手段近傍の反射光受光面を除
いた範囲に配設することができ、漏液浸入時に床面が白
色又は鏡面であっても不要な反射光を床面から受光しな
い光学的効果がある。
Next, FIG. 8 corresponding to FIGS. 2, 5 and 7 shows another embodiment of the liquid leakage sensor 20c of the present invention. The device performs the same function, and is mounted on the bottom 12a of the case 12 made of a transparent or translucent member as shown in FIG.
(A) and (B), a protruding liquid leak detecting portion is provided protrudingly, and this detecting portion is provided with planar total reflection surfaces 12m and 12n at an inclination angle of approximately 45 degrees. These planar total reflection surfaces 12m and 12n are formed so that their extensions intersect with each other in a substantially orthogonal state so that the tips thereof perform the same function as a corner cube, and form the first optical system. Projection light 22u from the light source means 14a to be formed irradiates the total reflection surface 12m downward from substantially vertically above, and the reflection light 22v is projected on the total reflection surface 12n to form the total reflection surface 12n.
Is received by the light receiving means 16 and is converted into an electric signal. The irradiation position of the projection light 22u on the total reflection surface 12m is preferably a lower position as close to the floor 1 as possible. Further, the whole case 12 is inserted / attached to and fixed to the holder 4, and the holder 4 may be fixed to the floor surface 1 by a fixing member such as a nail, or may be simply fixed to the floor surface without fixing. It is also possible to simply place it movably on 1. Further, similarly to FIG. 5, the hollow member 6a
6D are formed on the outer periphery of the case 12 and the bottom and the inner side surface of the holder 4, and FIG. 8C shows a top view of the holder 4. In the case where thin paper 8 is used, the holder reflective surface 4r is painted black to absorb the reflected light, and the case bottom end 12a is formed. Gap distance d between the holder and the reflecting surface 4r
Is preferably 1 mm or less. On the other hand, when the thin paper 8 is not used, the reflected light from the holder reflecting surface 4r and the reflected light from the floor 1 are processed directly. It is painted in white or neutral color that reflects light, and the case bottom end 12a and the holder reflection surface 4 are coated.
It is preferable that the gap d be 2 mm or more apart from the gap layer r so that a liquid having a high viscosity can easily penetrate. Further FIG.
In (2), the end portions of the above-mentioned planar total reflection surfaces 12m and 12n are cut into a flat shape, and the cut
A second optical system is formed via the light source means 14b.
When the incident light 22y from the
From the thin paper 8, the holder reflection surface 4r, the floor surface 1 or the like.
b or the array sensor 28B receives light and converts it into an electric signal. When a light-shielding member 15 such as a metal foil is adhered to the inside of the case bottom 12a and one end of the light-shielding member 15 is input to the capacitance sensor 39, the light-shielding member 15 reflects the light near the light irradiation surface and the light receiving means. It can be arranged in a range excluding the light receiving surface, and has an optical effect of preventing unnecessary reflected light from being received from the floor surface even when the floor surface is white or a mirror surface when liquid leaks.

【0015】かかる構成において漏液センサ20cの動
作を説明すると、傾斜センサ38が所定の角度以上の傾
きを検知するとアラーム信号が外部に出力されるが、か
かるアラーム信号の出力されない通常の状態では受光手
段16,アレイセンサ28Bの出力及び静電容量センサ
39の出力がチェックされ、通常、漏液の流出が小量の
場合には主として第2の光学系により漏液の検知処理が
実行され、投射光22yに対応した薄紙8またはホルダ
反射面4rまたは床面1等の反射境界面からの反射光量
24yがセンサ28Bにより受光され、その出力が処理
されて、反射光量が減少したり、反射光の明暗パターン
の位置が変化したり、静電容量センサ39の出力が所定
の範囲以上に変化した場合には漏液2が薄紙8またはホ
ルダ反射面4rまたは床面1等の反射境界面又はケース
底部12dに接近したと判定し、漏液検知信号を外部に
出力する。更に大量の漏液2が一度に床面1等に流出し
た場合には、主として第1の光学系により漏液検知処理
が実行され、投射光22uの明るさは一定でも、全反射
面12m,12nからの反射光22v,24uが漏液2
側に分散して大幅に減少するので、受光手段16の出力
も大きく変化し、容易に信頼性を一段と向上させた漏液
検知処理が実現できる。従って、上述の第2の光学系の
一部を構成するケース底面12aに長期間気泡が発生し
ていても、かかる気泡に影響されず、第1の光学系は安
定した漏液検知処理が実行できる。尚、図3乃至図6と
同様のような気泡排出機構をケース及び/またはホルダ
周辺に設けると、空隙部10に気泡が長期間発生し、滞
留するのを防止でき、反射光の気泡による誤動作を低減
でき、漏液センサの動作の信頼性、安定性を一段と高め
ることができる。また、図8の漏液センサの投射/受光
光学系を、図7に示すような投射光/受光光学系に置き
換えて揮発/引火性の漏液に対する漏液検知部を構成
し、電気配線をなくして電気的発火/引火の事故が絶対
発生しないように改造することも可能であり、図7と同
様にして、光ファイバ等の光伝送手段40a、40bに
より、遠隔地の制御部31に設けられた光源手段14か
ら投射光22x,22yを伝送し、光伝送手段40a、
42a〜42kにより反射境界面12aへの光の投受光
を行なう第1の光学系を形成し、光伝送手段40b、4
2m〜42tにより反射境界面7または薄紙8またはケ
ースキャップ12h等への光の投受光を行なう第2の光
学系を形成すると、液体2が揮発性で引火、爆発の危険
がある場合でも極めて安全に反射光による漏液検知が実
行できる。
The operation of the liquid leakage sensor 20c in such a configuration will be described. When the inclination sensor 38 detects an inclination greater than a predetermined angle, an alarm signal is output to the outside. The output of the means 16, the array sensor 28B, and the output of the capacitance sensor 39 are checked. When the leakage of the leakage is small, the leakage detection processing is executed mainly by the second optical system, and the projection is performed. The reflected light 24y from the thin paper 8 or the holder reflecting surface 4r or the reflecting boundary surface such as the floor 1 corresponding to the light 22y is received by the sensor 28B and its output is processed to reduce the reflected light or to reduce the reflected light. If the position of the light and dark pattern changes or the output of the capacitance sensor 39 changes beyond a predetermined range, the liquid 2 may leak to the thin paper 8 or the holder reflection surface 4r. Is determined to have approached to the reflecting boundary surface or case bottom 12d such floor 1, and outputs a leak detection signal to the outside. Further, when a large amount of the liquid leakage 2 flows out to the floor 1 or the like at a time, the liquid leakage detection processing is mainly performed by the first optical system, and even if the brightness of the projection light 22u is constant, the total reflection surface 12m, The reflected light 22v, 24u from 12n is leaked liquid 2
Since the light is dispersed to the side and greatly reduced, the output of the light receiving means 16 also changes greatly, and a liquid leakage detection process with further improved reliability can be easily realized. Therefore, even if bubbles are generated for a long time on the case bottom surface 12a constituting a part of the above-mentioned second optical system, the first optical system is not affected by such bubbles, and the first optical system executes a stable liquid leakage detection process. it can. If a bubble discharge mechanism similar to that shown in FIGS. 3 to 6 is provided around the case and / or the holder, bubbles can be prevented from generating and staying in the gap 10 for a long time, and malfunction due to reflected light bubbles can be prevented. And the reliability and stability of the operation of the liquid leakage sensor can be further improved. Also, the projection / reception optical system of the liquid leakage sensor of FIG. 8 is replaced with a projection light / reception optical system as shown in FIG. 7 to constitute a leakage detection unit for volatile / flammable leakage, and the electric wiring is changed. It is also possible to make modifications so that an electrical fire / ignition accident will never occur, and provided in the remote control unit 31 by optical transmission means 40a and 40b such as optical fibers in the same manner as in FIG. The projection light 22x, 22y is transmitted from the light source 14 thus provided, and the light transmission means 40a,
A first optical system for projecting and receiving light on the reflection boundary surface 12a is formed by the light transmission means 40b,
By forming a second optical system for projecting and receiving light on the reflective boundary surface 7, the thin paper 8, the case cap 12h, and the like by 2m to 42t, the liquid 2 is volatile and is extremely safe even when there is a danger of ignition or explosion. Liquid leak detection can be performed by reflected light.

【0016】[0016]

【発明の効果】 以上説明したように、この発明の光学
式漏液センサによれば、中空部材により漏液の水圧/浸
透圧を利用した気泡排出機構を実現しているので、大量
の漏液が発生しても、中空部材6a〜6dが周囲を密閉
された状態で気体が外部に漏れることなく自由にその両
端から出入りできる構造となっており、ケース底部12
aには気泡が発生しても、長期間滞留することなく、非
常に速やかにホルダ底面4aやケース底部12aとの間
に形成される空隙部10を、漏液2で満たし、空隙部1
0を確実に水没させることができ、気泡発生による漏液
センサの誤動作を防止することができる。また、通常
は、漏液センサを床面1に置くだけで、大量の漏液が流
出しなくても、漏液2がホルダ4の反射境界面4aや床
面1等に薄く浸透した初期の時点で、確実に漏液を検出
することができ、更にホルダ4の外周の半径を大きくす
ることにより漏液センサの転倒も防止することができ
る。尚、光源手段14bからの投射光22yをホルダ底
面4aに載置された反射部材3の反射境界面7で反射さ
せた例を示したが、反射部材3を使用せず、直接ホルダ
底面4aからの反射光の受光を、ホルダ底面4aを灰色
中間色または白色に塗装すること等で実現し、その反射
光24yをアレイセンサ28Bに入力してもよいし、薄
紙8を反射部材3の替わりに使用することも可能であ
り、この場合には、ケース底部12aとホルダ底面4a
との間隔dは1mm以内に設定することも充分可能であ
り、薄紙8を使用した場合は、漏液検知後薄紙の交換作
業が必要であるが、反射部材3を使用すると、乾いた布
等で漏液2を反射部材3から拭き去ると、繰り返し同一
の反射部材を使用できる違いがある。また、薄紙を使用
しないタイプの漏液センサでは、従来、漏液が床面に2
〜4mm以上の深さまであふれて大量流出しないと漏液
検知ができなかったが、本願発明の漏液センサでは床面
に0.1mm以上薄く漏液が浸透して来た初期の時点で
漏液を十分に検出することができ、重大な漏液事故を未
然に防止することができる。また、漏液検出部に電気配
線の一切ない構造のセンサを使用すれば揮発性で、引火
爆発の危険のある液体も安全確実に検出することができ
る。更にまた、上述の2つの全反射境界面を利用したタ
イプの漏液センサでは、略45度に傾斜した反射面を利
用するので、特別に気泡排出機構を設けなくても、気泡
発生による漏液センサの誤動作を防止することができ
る。
As described above, according to the optical liquid leakage sensor of the present invention, since a hollow member realizes a bubble discharging mechanism utilizing the water pressure / osmotic pressure of the liquid leakage, a large amount of liquid leakage is detected. Is generated, the gas can freely enter and exit from both ends of the hollow members 6a to 6d without leaking to the outside in a state where the surroundings are sealed.
Even if bubbles are generated in a, the gap 10 formed between the holder bottom surface 4a and the case bottom 12a is filled with the liquid leakage 2 very quickly without staying for a long time.
0 can be reliably submerged, and malfunction of the liquid leakage sensor due to generation of bubbles can be prevented. Normally, even if the leak sensor is simply placed on the floor 1 and a large amount of the leak does not flow out, the leak 2 is slightly absorbed into the reflection boundary surface 4a of the holder 4, the floor 1 and the like. At this point, the liquid leakage can be reliably detected, and the fall of the liquid leakage sensor can be prevented by increasing the radius of the outer periphery of the holder 4. In addition, although the example in which the projection light 22y from the light source means 14b is reflected by the reflection boundary surface 7 of the reflection member 3 placed on the holder bottom surface 4a, the reflection member 3 is not used, and the light is directly reflected from the holder bottom surface 4a. The reflected light 24y may be input to the array sensor 28B, or the thin paper 8 may be used instead of the reflecting member 3. In this case, the case bottom 12 a and the holder bottom 4 a
Can be set within 1 mm. When thin paper 8 is used, it is necessary to replace the thin paper after detecting liquid leakage. When the leaked liquid 2 is wiped off from the reflecting member 3, there is a difference that the same reflecting member can be repeatedly used. In the case of a type of liquid leak sensor that does not use thin paper, conventionally, the liquid leaks on the floor surface.
Although leaks could not be detected unless they overflowed to a depth of at least 4 mm and leaked in large quantities, the leak sensor according to the present invention does not leak at the initial point when the leak has penetrated the floor by 0.1 mm or more. Can be sufficiently detected, and a serious liquid leakage accident can be prevented. In addition, if a sensor having no electric wiring is used in the liquid leakage detecting section, a volatile liquid which may cause a fire and explosion can be detected safely and reliably. Furthermore, in the above-described type of liquid leakage sensor using the total reflection boundary surface, the reflection surface inclined at approximately 45 degrees is used. A malfunction of the sensor can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の薄紙を使用した光学式漏液センサの構
造を示す図である。
FIG. 1 is a diagram showing the structure of a conventional optical liquid leak sensor using thin paper.

【図2】 この発明の漏液センサの構造及び光の反射経
路を示す図である。
FIG. 2 is a diagram showing a structure of a liquid leak sensor and a light reflection path of the present invention.

【図3】 この発明の気泡排出機構の1例を示す図であ
る。
FIG. 3 is a view showing one example of a bubble discharging mechanism of the present invention.

【図4】 この発明の気泡排出機構内蔵センサの1例を
示す図である。
FIG. 4 is a diagram showing an example of a sensor with a built-in air bubble discharge mechanism of the present invention.

【図5】 この発明の気泡排出機構の別の1例を示す図
である。
FIG. 5 is a view showing another example of the bubble discharging mechanism of the present invention.

【図6】 この発明の気泡排出機構のまた別の1例を示
す図である。
FIG. 6 is a view showing another example of the bubble discharging mechanism of the present invention.

【図7】 この発明の防爆型漏液センサの一例を示す図
である
FIG. 7 is a diagram showing an example of an explosion-proof liquid leakage sensor of the present invention.

【図8】 この発明のまた別の漏液センサの一例を示す
図である
FIG. 8 is a diagram showing an example of another liquid leakage sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 床面 2 漏液 3 反射部材 4 ホルダ 4a ホルダ底面 5a〜5d 気泡吸入口 6a〜6d 気泡排出機構/中空部材 7a〜7d 気泡排出口 4a、7、12a、12m,12n 反射境界面 8 薄紙 10 空隙部 12 ケース 12d 透過光部材 12g 遮光部材 12h ケースキャップ 14、14a、14b 光源手段 16、28A、28B 受光手段、アレイセンサ 20a〜20c 漏液センサ 22、22a〜22y 投射光 24、24a〜24y 反射光 30 制御手段 32 AD変換手段 34 ダブルバッファ 36 MPU 40、40a、40b、42、42a、〜42z 光
伝送手段 38 傾斜センサ 39 静電容量センサ
DESCRIPTION OF SYMBOLS 1 Floor surface 2 Liquid leak 3 Reflection member 4 Holder 4a Holder bottom surface 5a-5d Bubble suction port 6a-6d Bubble discharge mechanism / hollow member 7a-7d Bubble discharge port 4a, 7, 12a, 12m, 12n Reflection boundary surface 8 Thin paper 10 Void portion 12 Case 12d Transmitted light member 12g Light shielding member 12h Case cap 14, 14a, 14b Light source means 16, 28A, 28B Light receiving means, array sensor 20a-20c Liquid leak sensor 22, 22a-22y Projection light 24, 24a-24y Reflection Light 30 Control means 32 AD conversion means 34 Double buffer 36 MPU 40, 40a, 40b, 42, 42a, to 42z Light transmission means 38 Inclination sensor 39 Capacitance sensor

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 漏液が浸透し得る気体層又は漏液浸透層
を介して、前記漏液と接触し得る少なくとも1つの反射
境界面と、光源手段及び受光手段から成る漏液センサに
おいて、 前記光源手段から前記反射境界面へ光を投射し、該境界
面からの反射光を前記受光手段で受光し、その出力を演
算処理して漏液の有無を判定すると共に、 前記漏液により前記気体層内又は漏液浸透層内に生成さ
れた気泡を、吸入口が該気体層内又は漏液浸透層内に開
口し、排出口が前記漏液センサの所定の高さ以上の高さ
で外部に開口している中空部材により前記ケースの外部
に排出するようにしたことを特徴とする漏液センサ。
1. A liquid leakage sensor comprising: at least one reflection boundary surface capable of contacting the liquid leakage through a gas layer or a liquid leakage permeable layer through which the liquid leakage can penetrate; and a light source means and a light receiving means. The light is projected from the light source means to the reflective boundary surface, the reflected light from the boundary surface is received by the light receiving means, and the output thereof is arithmetically processed to determine the presence or absence of liquid leakage, and the gas is generated by the liquid leakage. The air bubbles generated in the layer or the liquid leakage permeable layer are opened at the suction port in the gas layer or the liquid leakage permeable layer, and the discharge port is opened at a height equal to or higher than the predetermined height of the liquid leakage sensor. A liquid leakage sensor characterized in that the liquid is discharged to the outside of the case by a hollow member opened to the case.
【請求項2】 前記光源手段及び受光手段を底部が透明
材又は半透明材で構成されたケースに収納し一体化し
た、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端部に遮光性の薄板状のケースキャップを装着し、
当該漏液センサの床等の設置箇所の表面性状又は表面色
からの影響を受けにくくした、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端に当該漏液センサの床等の設置箇所の表面性状又
は表面色からの影響を受けにくくし、かつ、当該ケース
の転倒防止を兼ねたケースホルダを装着するようにした
請求項1に記載の漏液センサ。
2. The light source means and the light receiving means are housed and integrated in a case whose bottom is made of a transparent material or a translucent material, or the light source means and the light receiving means are made of a transparent material or a translucent material at the bottom. Along with being housed and integrated in the configured case, a light-shielding thin plate-shaped case cap is attached to the end of the case,
It is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, or the light source unit and the light receiving unit are housed in a case whose bottom is made of a transparent or translucent material and integrated. At the same time, a case holder is provided at the end of the case, which is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, and which also prevents the case from tipping over. The liquid leakage sensor according to claim 1.
【請求項3】 前記光源手段と前記反射境界面との間
に、第1の光伝送手段を介挿すると共に、前記反射境界
面と前記受光手段との間に第2の光伝送手段を介挿し、
前記光源手段並びに受光手段と、前記反射境界面との物
理的距離を可変距離に変更できるようにした請求項1又
は2に記載の漏液センサ。
3. A first optical transmission unit is interposed between the light source unit and the reflection boundary surface, and a second optical transmission unit is interposed between the reflection boundary surface and the light reception unit. Insert,
3. The liquid leakage sensor according to claim 1, wherein a physical distance between the light source unit and the light receiving unit and the reflection boundary surface can be changed to a variable distance.
【請求項4】 前記光伝送手段が光ファイバー又は合成
樹脂部材である請求項3に記載の漏液センサ。
4. The liquid leakage sensor according to claim 3, wherein said optical transmission means is an optical fiber or a synthetic resin member.
【請求項5】 漏液に接触し得る少なくとも2つの反射
境界面を、光の進行方向に気体層又は漏液浸透層を介在
させて形成し、少なくとも2つの光源手段及び受光手段
を前記各反射境界面のそれぞれに対し、同一の側に配設
し、 前記光源手段に最も近い第1の反射境界面に対しては第
1の光源手段から光を投射し、前記第1の境界面からの
反射光を第1の受光手段で受光し、その出力を演算処理
して漏液を検知する第1の検知手段とで第1の漏液セン
サを構成し、 前記第1の境界面以外の反射境界面に対しては臨界角未
満の入射角で第2の光源手段から光を投射し、前記第1
の境界面以外の反射境界面からの反射光を第2の受光手
段で受光し、その出力を演算処理して漏液を検知する第
2の検知手段とで第2の漏液センサを構成すると共に、 前記漏液により前記気体層内又は漏液浸透層内に生成さ
れた気泡を、吸入口が前記気泡側に開口し、排出口が前
記漏液センサの所定の高さ以上の高さで外部に開口して
いる中空部材により前記ケースの外部に排出するように
したことを特徴とする漏液センサ。
5. At least two reflection boundary surfaces which can come into contact with the liquid leakage are formed with a gas layer or a liquid leakage permeation layer interposed in the light traveling direction, and at least two light source means and light receiving means are provided for each of said reflection means. Each of the boundary surfaces is disposed on the same side, and light is projected from the first light source unit to a first reflection boundary surface closest to the light source unit, and light is projected from the first boundary surface. The first light receiving means receives the reflected light, and the output of the first light receiving means is subjected to arithmetic processing to constitute a first liquid leak sensor. Light is projected from the second light source means to the boundary surface at an incident angle smaller than the critical angle, and
The second light-receiving sensor is configured to receive reflected light from a reflection boundary surface other than the boundary surface with the second light-receiving unit, and to calculate the output of the second light-receiving unit to detect liquid leakage. Along with the bubbles generated in the gas layer or the liquid leakage permeable layer by the liquid leakage, the suction port is opened to the bubble side, and the discharge port is at a height equal to or higher than a predetermined height of the liquid leakage sensor. A liquid leakage sensor wherein the liquid is discharged to the outside of the case by a hollow member opened to the outside.
【請求項6】 前記第1の光源手段と前記第2の光源手
段とが同一の光源手段であり、分光手段により前記光源
手段の投射光を分割し、異なる投射位置から光を投射す
るようにした請求項5に記載の漏液センサ。
6. The first light source means and the second light source means are the same light source means, and split light projected from the light source means by a spectral means, and project light from different projection positions. 6. The liquid leakage sensor according to claim 5, wherein:
【請求項7】 前記光源手段及び受光手段を底部が透明
材又は半透明材で構成されたケースに収納し一体化し
た、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端部に遮光性の薄板状のケースキャップを装着し、
当該漏液センサの床等の設置箇所の表面性状又は表面色
からの影響を受けにくくした、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端に当該漏液センサの床等の設置箇所の表面性状又
は表面色からの影響を受けにくくし、かつ、当該ケース
の転倒防止を兼ねたケースホルダを装着するようにした
請求項5または6に記載の漏液センサ。
7. The light source means and the light receiving means are housed and integrated in a case whose bottom is made of a transparent material or a translucent material, or the bottom of the light source means and the light receiving means is made of a transparent material or a translucent material. Along with being housed and integrated in the configured case, a light-shielding thin plate-shaped case cap is attached to the end of the case,
It is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, or the light source unit and the light receiving unit are housed in a case whose bottom is made of a transparent or translucent material and integrated. At the same time, a case holder is provided at the end of the case, which is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, and which also prevents the case from tipping over. The liquid leakage sensor according to claim 5.
【請求項8】 前記光源手段と前記反射境界面との間
に、第1の光伝送手段を介挿すると共に、前記反射境界
面と前記受光手段との間に第2の光伝送手段を介挿し、
前記光源手段並びに受光手段と、前記反射境界面との物
理的距離を可変距離に変更できるようにした請求項5乃
至7のいずれか1項に記載の漏液センサ。
8. A first light transmission means is interposed between the light source means and the reflection boundary surface, and a second light transmission means is interposed between the reflection boundary surface and the light reception means. Insert,
The liquid leak sensor according to any one of claims 5 to 7, wherein a physical distance between the light source unit and the light receiving unit and the reflection boundary surface can be changed to a variable distance.
【請求項9】 前記光伝送手段が光ファイバー又は合成
樹脂部材である請求項8に記載の漏液センサ。
9. The liquid leakage sensor according to claim 8, wherein said optical transmission means is an optical fiber or a synthetic resin member.
【請求項10】 前記排出口から前記漏液が逆流して浸
透しないように前記排出口の開閉方向を水平方向又は下
方向に向けて配設するか、前記排出口の上方に蓋部を付
設した請求項1乃至9のいずれか1項に記載の漏液セン
サ。
10. The opening and closing direction of the discharge port is arranged to be horizontal or downward so that the liquid does not flow backward and permeate from the discharge port, or a lid is provided above the discharge port. The liquid leakage sensor according to any one of claims 1 to 9, wherein:
【請求項11】 前記中空部材が前記ケース部材のみで
構成されている、又は、前記ケースのホルダ部材のみで
構成されている、又は、前記ケース部材とそのホルダ部
材の組合わせ部材で構成されている、又は、前記ケース
部材及びそのホルダ部材とは異なる第3の部材で構成さ
れている請求項1乃至10のいずれか1項に記載の漏液
センサ。
11. The hollow member is constituted only by the case member, is constituted only by a holder member of the case, or is constituted by a combination member of the case member and the holder member. The liquid leakage sensor according to any one of claims 1 to 10, wherein the liquid leakage sensor includes a third member that is different from the case member and the holder member.
【請求項12】 前記反射境界面が前記ケース底部であ
る、及び/又は、前記ケース先端に装着したケースキャ
ップである、及び/又は、前記ケースホルダの上面であ
る請求項1乃至11のいずれか1項に記載の漏液セン
サ。
12. The case according to claim 1, wherein the reflection boundary surface is the bottom of the case, and / or a case cap attached to a tip of the case, and / or an upper surface of the case holder. 2. The liquid leakage sensor according to item 1.
【請求項13】 前記反射境界面の少なくとも1つに漏
液の浸透により透明となる薄紙を並設し、密着させるよ
うにした請求項1乃至12のいずれか1項に記載の漏液
センサ。
13. The liquid leakage sensor according to claim 1, wherein thin paper that becomes transparent due to liquid penetration penetrates and is closely attached to at least one of the reflection boundary surfaces.
【請求項14】 前記受光手段の出力を演算処理して反
射光量の大小により漏液の有無を検知するようにした、
及び/又は、前記受光手段を複数個それぞれの受光角度
が相互に異なるように配設し、前記複数の受光手段によ
り反射光の受光位置が相互に識別できるようにして電気
信号に変換し、これら受光手段の出力を演算処理して前
記反射光の明暗パターンの配置を所定の周期毎に決定
し、該反射光の明暗パターンの変動により漏液の有無を
判定するようにした請求項1乃至13のいずれか1項に
記載の漏液センサ。
14. An arithmetic processing of an output of said light receiving means to detect the presence or absence of liquid leakage based on the magnitude of reflected light.
And / or disposing the plurality of light receiving means such that the light receiving angles of the plurality of light receiving elements are different from each other, and converting the light receiving positions of the reflected light into electric signals so that the light receiving positions of the reflected light can be distinguished from each other. The output of the light receiving means is arithmetically processed to determine the arrangement of the light and dark patterns of the reflected light at predetermined intervals, and the presence or absence of liquid leakage is determined based on a change in the light and dark pattern of the reflected light. The liquid leakage sensor according to any one of the above items.
【請求項15】 前記光源手段より投射光の明暗パター
ンが所定の周期で変化する変調光を前記反射境界面へ投
射し、この投射光のタイミングに同期させてその反射光
を前記受光手段により受光するようにした請求項1乃至
14のいずれか1項に記載の漏液センサ。
15. The light source means projects modulated light, in which the light / dark pattern of the projected light changes at a predetermined cycle, onto the reflective boundary surface, and receives the reflected light by the light receiving means in synchronization with the timing of the projected light. The liquid leakage sensor according to any one of claims 1 to 14, wherein the liquid leakage sensor is configured to perform the operation.
【請求項16】 漏液に接触し得る少なくとも2つの全
反射境界面を、気体層又は漏液浸透層を介在させて形成
し、少なくとも1つの光源手段及び受光手段を前記各反
射境界面のそれぞれに対し、同一の側に配設し、 前記第1の全反射境界面に対しては前記光源手段から光
を投射し、前記第1の全反射境界面からの反射光を前記
第2の全反射境界面に投射し、前記第2の全反射境界面
からの反射光を前記受光手段で受光し、その出力を演算
処理して漏液を検知するようにしたことを特徴とする漏
液センサ。
16. At least two total reflection interfaces capable of contacting a liquid leakage are formed with a gas layer or a liquid leakage permeation layer interposed therebetween, and at least one light source means and a light receiving means are provided for each of the reflection interfaces. And light is projected from the light source means onto the first total reflection boundary surface, and reflected light from the first total reflection boundary surface is reflected on the second total reflection boundary surface. A liquid leakage sensor which projects light onto a reflection boundary surface, receives light reflected from the second total reflection boundary surface by the light receiving means, and processes the output to detect liquid leakage. .
【請求項17】 漏液に接触し得る少なくとも2つの全
反射境界面とこれらとは別の第3の反射境界面とを、気
体層又は漏液浸透層を介在させて形成し、少なくとも2
つの光源手段及び受光手段を前記各反射境界面のそれぞ
れに対し、同一の側に配設し、 前記第1の全反射境界面に対しては前記第1の光源手段
から光を投射し、前記第1の全反射境界面からの反射光
を前記第2の全反射境界面に投射し、前記第2の全反射
境界面からの反射光を前記第1の受光手段で受光し、そ
の出力を演算処理して漏液を検知する第1の検知手段と
で第1の漏液センサを構成し、 前記第3の反射境界面に対しては臨界角未満の入射角で
第2の光源手段から光を投射し、前記第3の反射境界面
からの反射光を第2の受光手段で受光し、その出力を演
算処理して漏液を検知する第2の検知手段とで第2の漏
液センサを構成するようにしたことを特徴とする漏液セ
ンサ。
17. At least two total reflection interfaces that can come into contact with the liquid leakage and a third reflection interface other than these are formed with a gas layer or a liquid leakage permeation layer interposed therebetween, and at least 2
Two light source means and a light receiving means are arranged on the same side with respect to each of the reflection boundary surfaces, and project light from the first light source means to the first total reflection boundary surface; The light reflected from the first total reflection boundary is projected onto the second total reflection boundary, the light reflected from the second total reflection boundary is received by the first light receiving means, and the output is received. And a first detecting means for detecting a liquid leak by performing arithmetic processing, wherein a first liquid leak sensor is formed, and an incident angle less than a critical angle with respect to the third reflecting boundary surface is provided from the second light source means. A second light receiving means for projecting light, receiving the reflected light from the third reflecting boundary surface by a second light receiving means, calculating the output thereof, and detecting the liquid leakage; A liquid leakage sensor comprising a sensor.
【請求項18】 前記第1の光源手段と前記第2の光源
手段とが同一の光源手段であり、分光手段により前記光
源手段の投射光を分割し、異なる投射位置から光を投射
するようにした請求項17に記載の漏液センサ。
18. The light source device according to claim 1, wherein the first light source and the second light source are the same light source, and the light emitted from the light source is split by a spectroscope so as to project light from different projection positions. 18. The liquid leakage sensor according to claim 17, wherein:
【請求項19】 前記光源手段及び受光手段を底部が透
明材又は半透明材で構成されたケースに収納し一体化し
た、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端部に遮光性の薄板状のケースキャップを装着し、
当該漏液センサの床等の設置箇所の表面性状又は表面色
からの影響を受けにくくした、または、 前記光源手段及び受光手段を底部が透明材又は半透明材
で構成されたケースに収納し一体化すると共に、該ケー
ス先端に当該漏液センサの床等の設置箇所の表面性状又
は表面色からの影響を受けにくくし、かつ、当該ケース
の転倒防止を兼ねたケースホルダを装着するようにした
請求項16乃至18のいずれか1項に記載の漏液セン
サ。
19. The light source means and the light receiving means are housed and integrated in a case whose bottom is made of a transparent material or a translucent material, or the bottom part of the light source means and the light receiving means is made of a transparent material or a translucent material. Along with being housed and integrated in the configured case, a light-shielding thin plate-shaped case cap is attached to the end of the case,
It is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, or the light source unit and the light receiving unit are housed in a case whose bottom is made of a transparent or translucent material and integrated. At the same time, a case holder is provided at the end of the case, which is hardly affected by the surface properties or surface color of the installation location such as the floor of the liquid leakage sensor, and which also prevents the case from tipping over. The liquid leakage sensor according to any one of claims 16 to 18.
【請求項20】 前記光源手段と前記反射境界面との間
に、第1の光伝送手段を介挿すると共に、前記反射境界
面と前記受光手段との間に第2の光伝送手段を介挿し、
前記光源手段並びに受光手段と、前記反射境界面との物
理的距離を可変距離に変更できるようにした請求項16
乃至19のいずれか1項に記載の漏液センサ。
20. A first optical transmission means interposed between the light source means and the reflection boundary surface, and a second optical transmission means interposed between the reflection boundary surface and the light receiving means. Insert,
17. The physical distance between the light source unit and the light receiving unit and the reflection boundary surface can be changed to a variable distance.
20. The liquid leakage sensor according to any one of claims 19 to 19.
【請求項21】 前記光伝送手段が光ファイバー又は合
成樹脂部材である請求項20に記載の漏液センサ。
21. The liquid leakage sensor according to claim 20, wherein the optical transmission means is an optical fiber or a synthetic resin member.
【請求項22】 前記漏液により前記気体層内又は漏液
浸透層内に生成された気泡を、吸入口が該気体層内又は
漏液浸透層内に開口し、排出口が前記漏液センサの所定
の高さ以上の高さで外部に開口している中空部材により
前記ケースの外部に排出するようにした請求項16乃至
21のいずれか1項に記載の漏液センサ。
22. A bubble generated in the gas layer or the liquid leakage permeable layer due to the liquid leakage, an inlet opening the gas layer or the liquid leakage permeable layer, and a discharge port opening the liquid leakage sensor. 22. The liquid leakage sensor according to any one of claims 16 to 21, wherein the liquid is discharged to the outside of the case by a hollow member that is open to the outside at a height equal to or higher than a predetermined height.
【請求項23】 前記排出口から前記漏液が逆流して浸
透しないように前記排出口の開閉方向を水平方向又は下
方向に配設するか、前記排出口の上方に蓋部を付設した
請求項22に記載の漏液センサ。
23. An opening / closing direction of the discharge port is arranged in a horizontal direction or a downward direction so as to prevent the leaked liquid from flowing backward from the discharge port and penetrating therethrough, or a lid is provided above the discharge port. Item 23. The liquid leakage sensor according to item 22.
【請求項24】 前記中空部材が前記ケース部材のみで
構成されている、又は、前記ケースのホルダ部材のみで
構成されている、又は、前記ケース部材とそのホルダ部
材の組合わせ部材で構成されている、又は、前記ケース
部材及びそのホルダ部材とは異なる第3の部材で構成さ
れている請求項22または23に記載の漏液センサ。
24. The hollow member is constituted only by the case member, is constituted only by a holder member of the case, or is constituted by a combination member of the case member and the holder member. 24. The liquid leakage sensor according to claim 22 or 23, wherein the liquid sensor comprises a third member different from the case member and the holder member.
【請求項25】 前記反射境界面が前記ケース底部であ
る、及び/又は、前記ケース先端に装着したケースキャ
ップである、及び/又は、前記ケースホルダの上面であ
る請求項16乃至24のいずれか1項に記載の漏液セン
サ。
25. The case according to claim 16, wherein the reflection boundary surface is the bottom of the case, and / or a case cap attached to a tip of the case, and / or an upper surface of the case holder. 2. The liquid leakage sensor according to item 1.
【請求項26】 前記反射境界面の少なくとも1つに漏
液の浸透により透明となる薄紙を並設し、密着させるよ
うにした請求項16乃至25のいずれか1項に記載の漏
液センサ。
26. The liquid leakage sensor according to claim 16, wherein thin papers that become transparent due to the penetration of liquid leakage are arranged side by side on at least one of the reflection boundary surfaces and are brought into close contact with each other.
【請求項27】 前記気体層又は漏液浸透層内に、前記
漏液の浸透により透明となる薄紙を並設しないようにし
た請求項1乃至12または請求項14乃至25のいずれ
か1項に記載の漏液センサ。
27. The method according to claim 1, wherein thin paper which becomes transparent due to the permeation of the liquid is not juxtaposed in the gas layer or the liquid permeation layer. The liquid leakage sensor as described in the above.
JP11229966A 1999-08-16 1999-08-16 Liquid leak sensor Pending JP2001050856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11229966A JP2001050856A (en) 1999-08-16 1999-08-16 Liquid leak sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11229966A JP2001050856A (en) 1999-08-16 1999-08-16 Liquid leak sensor

Publications (1)

Publication Number Publication Date
JP2001050856A true JP2001050856A (en) 2001-02-23

Family

ID=16900507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11229966A Pending JP2001050856A (en) 1999-08-16 1999-08-16 Liquid leak sensor

Country Status (1)

Country Link
JP (1) JP2001050856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053560A (en) * 2002-07-24 2004-02-19 Sunx Ltd Leakage liquid sensor
JP2005156541A (en) * 2003-10-30 2005-06-16 Tsuuden:Kk Liquid leakage sensor and liquid leakage sensing system
JP2011145157A (en) * 2010-01-14 2011-07-28 Yamatake Corp Vibration sensor
JP2012233744A (en) * 2011-04-28 2012-11-29 Panasonic Industrial Devices Sunx Co Ltd Liquid leakage detection device and base of liquid leakage detection device
CN116942941A (en) * 2023-09-14 2023-10-27 苏州森斯缔夫传感科技有限公司 Light intensity comparison sensor and light intensity comparison method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053560A (en) * 2002-07-24 2004-02-19 Sunx Ltd Leakage liquid sensor
JP2005156541A (en) * 2003-10-30 2005-06-16 Tsuuden:Kk Liquid leakage sensor and liquid leakage sensing system
JP2011145157A (en) * 2010-01-14 2011-07-28 Yamatake Corp Vibration sensor
JP2012233744A (en) * 2011-04-28 2012-11-29 Panasonic Industrial Devices Sunx Co Ltd Liquid leakage detection device and base of liquid leakage detection device
KR101747831B1 (en) * 2011-04-28 2017-06-15 파나소닉 디바이스 썬크스 주식회사 Liquid Leakage Detector and Base for Liquid Leakage Detector
CN116942941A (en) * 2023-09-14 2023-10-27 苏州森斯缔夫传感科技有限公司 Light intensity comparison sensor and light intensity comparison method
CN116942941B (en) * 2023-09-14 2023-12-29 苏州森斯缔夫传感科技有限公司 Light intensity comparison sensor, method and blood purifier

Similar Documents

Publication Publication Date Title
CA2467624C (en) Procedure and appliance for touch-free examinations of objects, especially regarding their surface character
CN106453723B (en) Sensor assembly and terminal
US7158039B2 (en) Liquid leakage sensor and liquid leakage detecting system
WO2008091528A2 (en) Motion sensor with led alignment aid
KR20080044017A (en) Touch screen
JPH01145785A (en) Method and instrument for measuring surface shape
CN100514016C (en) Leakage sensor and leakage detection system
US6484564B1 (en) Liquid leakage sensor, paper for detecting liquid leakage, and holder for detecting liquid leakage
JP2001050856A (en) Liquid leak sensor
JP3220440B2 (en) Liquid leak sensor
JPH0514209B2 (en)
JP4537568B2 (en) Leak sensor
JPH08271320A (en) Method for detecting liquid in pipe or vessel, and device therefor
KR101912708B1 (en) Contamination Measuring Device for Solar Panel Surface and Solar Cell Panel Measuring Contamination
JP2004294164A (en) Liquid leakage sensor
JP2000221100A (en) Leakage liquid sensor
US9719913B2 (en) Outer part for a device and device
JP3756683B2 (en) Leak sensor
KR100712310B1 (en) Liquid leakage sensor, paper for detecting liquid leakage, and holder for detecting liquid leakage
JP2002039938A (en) Liquid leakage sensor
JP2005140745A (en) Optical level sensor and liquid level detector using the same sensor
US11936376B2 (en) Method for operating an optoelectronic touch and/or operating element
CN112362134B (en) Liquid level position detection device and detection method
CN217059274U (en) Optical detector
JP2012523562A (en) Devices and methods for optically detecting gases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104