JP3646389B2 - Switching device for gas analyzer - Google Patents

Switching device for gas analyzer Download PDF

Info

Publication number
JP3646389B2
JP3646389B2 JP02464496A JP2464496A JP3646389B2 JP 3646389 B2 JP3646389 B2 JP 3646389B2 JP 02464496 A JP02464496 A JP 02464496A JP 2464496 A JP2464496 A JP 2464496A JP 3646389 B2 JP3646389 B2 JP 3646389B2
Authority
JP
Japan
Prior art keywords
gas
switching device
cleaning liquid
ammonia
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02464496A
Other languages
Japanese (ja)
Other versions
JPH09196828A (en
Inventor
保 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP02464496A priority Critical patent/JP3646389B2/en
Publication of JPH09196828A publication Critical patent/JPH09196828A/en
Application granted granted Critical
Publication of JP3646389B2 publication Critical patent/JP3646389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス分析装置に装着され複数の試料ガスなどを選択的に分析する際にガス流路を切り換えるために用いるガス分析装置用切換装置に関する。
【0002】
【従来の技術】
図5はガス分析装置用切換装置の従来例を示す構成説明図であり、この図において、複数の測定ガス流路は切換装置51によって選択的に切り換えられ、ガス分析装置52へ接続される。制御装置(マイクロコンピュータ等)53は、ガス分析装置52および切換装置51の動作を制御する。
【0003】
切換装置51は、複数のガス導入口54と、1個の測定ガス導出口55とを備え、電磁弁56の切換によって、ガス導入口54のうちいずれかが、共通流路58を介して測定ガス導出口55へ導通される。電磁弁56の開閉は、制御装置53からの指令に基づき駆動回路57を介して制御される。
【0004】
【発明が解決しようとする課題】
しかしながら、上述のような構成の切換装置51においては、各測定ガスが、共通流路58を介してガス導出口55へ流通するため、直前に測定されたガスの影響を受けるという欠点があった。即ち、アンモニアガスの測定を例に取ると、直前に測定したアンモニアガスの濃度が比較的高く、その次に別のガス導入口54から、アンモニアガス濃度が比較的低い測定ガスを導入する場合、共通流路58における残留ガスの影響を受けてコンタミネーション(汚染)が発生し、低濃度アンモニアガスの測定値に大きな誤差を生ずるという欠点があった。
【0005】
このようなコンタミネーションは、特に低濃度のガスを測定(たとえば半導体装置製造用クリーンルーム内のアンモニアガス測定)する際に大きな問題となっていたが、従来、効果的な解決策は提案されていなかった。
【0006】
本発明は上述のような従来例の欠点などに鑑みてなされたもので、コンタミネーションを抑え低濃度ガスを正確に測定できるようにするためのガス分析装置用切換装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明においては、複数の流体導入口を有し、そのうちの少なくとも1つを選択的にガス分析装置へ導通させる切換手段を備え、測定ガス流路を洗浄するための洗浄液を前記流体導入口のうちの少なくとも1つに導入するガス分析装置用切換装置において、前記洗浄液は容器に収納された純水であって、該純水をポンプとイオン交換樹脂装置により循環し再生するように構成したことを特徴としている
【0008】
ガス分析装置における測定ガスが酸性ガスまたは塩基性ガスである場合は、洗浄液としては、水を用いることができる。
【0009】
洗浄液は、試料ガスが切り換る毎に流すようにしてもよい。
【0010】
【発明の実施の形態】
以下本発明について図面を参照しながら詳しく説明する。
ここでは、本発明実施例を、クリーンルーム内のアンモニアガスを測定するアンモニアガス測定装置として用いた例について説明する。半導体装置の製造プロセスにおいては、アンモニア等のガス状汚染物質がパターン不良の原因となることが知られており、その対策のため、クリーンルーム内のアンモニア濃度を精度良く測定することが求められている。そして、クリーンルーム内のアンモニア成分は極めて低濃度であるため、アンモニアガス測定装置におけるコンタミネーションの抑制が強く求められる。
【0011】
図1は本発明実施例の構成説明図であり、この図において、アンモニアガス測定装置1はクリーンルーム2内の隅に配置される。半導体装置の製造工程ごとに設けられた加工室A,B,…,Nの各室の空気およびクリーンルーム2内の空気は、流体導入管a,b,…,nおよび流体導入管zによってそれぞれアンモニアガス測定装置1へ導入される。
【0012】
アンモニアガス測定装置1は、図2に示すように、アンモニアガスを測定するガス分析部21と、測定ガスをガス分析部21へ選択的に導入する切換装置22と、ガス分析部21および切換装置22を制御する制御装置23(シーケンサ、パーソナルコンピュータ等)と、イオンクロマトグラフ28の出力を制御装置23を介して受け測定結果を出力する出力装置24(CRT、LCD、プリンタ等)とを備えている。
【0013】
図3は切換装置22の一例としてのロータリーバルブユニットを示し、このユニットは、複数の流体導入口31と、1つの流体排出口32とを備えている。ユニット内部には、回転自在の円板状回転板33が配置され、この回転板33には溝34が形成されている。溝34は、流体排出口32と、流体導入口31のうちのいずれか1つとを連通させる。回転板33はギアドモータ35によって回転され、この回転により、流体排出口32と連通される流体導入口が選択される。尚、切換装置22としては、たとえば、レオダイン社製「ロータリーバルブユニット」や株式会社フロム製「オートマチックバルブユニット401シリーズ」等を使用することもできる。
【0014】
ガス分析部21は、図2に示すように、拡散スクラバー25とイオンクロマトグラフ28とを備えている。拡散スクラバー25は、フッ素系多孔質膜で構成された多孔質中空管25aを備え、中空管25aの外側に吸収液としての純水が導入され、中空管25aの内側は流体導入管pによって切換装置22の流体排出口32と接続されている。拡散スラバー25の出口側にはポンプ26が配置されて、測定ガスを吸入し、測定ガス中のアンモニア成分は、中空管25aを通過する間に吸収液に吸収される。一方、測定ガス中の水分は弁27を介して排出される。アンモニア成分を吸収した吸収液はイオンクロマトグラフ28に送られ、そこにおいてアンモニアが分離分析される。この分析結果は制御装置23を介して出力装置24に送出されアンモニア濃度として出力(表示)される。
【0015】
図3に示す切換装置22の複数の流体導入口31のうちの1つには流体導入管xを介して洗浄液としての純水41が供給される。さらに、純水41は図2のポンプ42によってイオン交換樹脂装置43を通して循環され再生される。
【0016】
次に図4に示す本発明実施例のタイミングチャート及び図3などを用いて本発明実施例の動作を説明する。
【0017】
まず、制御装置23は、図3のギアドモータ35を駆動させて回転板33を回転させ、A室の測定ガスが流通するように切換装置22を制御する(図4(a))。A室からの測定ガスは図2のポンプ26によって吸入され、この測定ガスに含まれるアンモニア成分は図2の拡散スクラバー25の吸収液に捕集され、吸収液はガス分析部21へ送られて分析される(図4(e))。所定時間(たとえば20分)経過後、切換装置22の流体導入口は洗浄液側に切り換えられ微量(たとえば0.1cc)の洗浄液が切換装置22内に導入される(図4(b))。これにより切換装置22内に残留するアンモニア成分は洗浄液(水)に捕集され、コンタミネーションが抑制される。洗浄液はポンプ42の圧力により押し出され、切換装置22を経て拡散スクラバーの中空管25a内を通過し、弁27を介して排出される。
【0018】
次に切換装置22はB室の測定ガスを導入し(図4(c))、以下N室の測定ガス導入まで同様の動作を繰り返す(図4(d))。
【0019】
上記のような本発明のガス分析装置を用いれば、切換装置におけるコンタミネーションを最小限に抑えることができる。本発明者の実験によれば、従来装置を用いた場合と比較してコンタミネーションを大幅に抑えることができた。具体的には、図5に示した従来の切換装置と、上記本発明実施例の切換装置(8方ロータリーバルブを使用)とを比較試験したところ、図5の装置を用いたときのコンタミネーションは23%であった。つまり、1つの流体導入口から20ppbのアンモニアを含む測定ガスを流し、その後別の流体導入口からアンモニア0ppbの測定ガスを流したときの測定値は、コンタミネーションが無ければ、0ppbとなるべきところ、4.6ppbとなった(20×0.23ppb)。上記実施例の切換装置について同様に試験したところ、洗浄液なしの場合はコンタミネーション4.0%、洗浄液を導入した場合はコンタミネーション0.9%であった。
【0020】
切換装置としてロータリバルブを使用した場合、共通流路(図5の58参照)を短くできるため、コンタミネーションを大幅に抑えることができる。さらに、ロータリーバルブの流路を洗浄液で洗浄した場合、コンタミネーションをほとんど抑制することができる。
【0021】
上記装置において、洗浄液の導入のタイミングは任意であり、たとえば、特に濃度が高い測定ガスを測定した後だけ洗浄液を導入するようにしてもよいし、測定ガスを切り換えるごとに洗浄するようにしてもよい。測定ガスの切換ごとに洗浄すれば、すべての測定ガスの測定においてコンタミネーションを抑制して正確な測定値を得ることができる。
【0022】
本発明の切換装置としては、従来装置(図5)のような電磁弁式のものを使用してもよいが、上記実施例のようなロータリーバルブを用いることにより、コンタミネーションの抑制効果が大きいうえ、切り換えの周期も短くすることができる。
【0023】
また、本発明実施例においては洗浄液として純水を用いたが、洗浄液としてはそれに限らず、測定ガスの性質に応じて、例えば有機溶剤等の流体を使用してもよい。
【0024】
【発明の効果】
以上説明したように、本発明によれば、複数の流体導入口を有し、そのうちの少なくとも1つを選択的にガス分析装置へ導通させる切換手段を備え、測定ガス流路を洗浄するための洗浄液を前記流体導入口のうちの少なくとも1つに導入するガス分析装置用切換装置において、前記洗浄液は容器に収納された純水であって、該純水をポンプとイオン交換樹脂装置により循環し再生するように構成したので、純水の劣化を防止することができコンタミネーションを抑えて正確な測定ができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明によるガス分析装置用切換装置を用いたクリーンルーム用アンモニアガス測定装置のクリーンルーム内における配置を示す図。
【図2】アンモニアガス測定装置の構成を示す本発明実施例の構成説明図。
【図3】切換装置としてのロータリバルブユニットの斜視図。
【図4】実施例の動作を示すタイミングチャート。
【図5】従来の切換装置を示す従来例構成説明図。
【符号の説明】
1 アンモニアガス測定装置
21 ガス分析部
22 切換装置
31 流体導入口
41 洗浄液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching device for a gas analyzer used for switching a gas flow path when selectively analyzing a plurality of sample gases or the like attached to a gas analyzer.
[0002]
[Prior art]
FIG. 5 is an explanatory diagram showing a conventional example of a gas analyzer switching device. In this figure, a plurality of measurement gas flow paths are selectively switched by a switching device 51 and connected to a gas analyzer 52. A control device (such as a microcomputer) 53 controls the operations of the gas analyzer 52 and the switching device 51.
[0003]
The switching device 51 includes a plurality of gas inlets 54 and one measurement gas outlet 55, and any one of the gas inlets 54 is measured via the common channel 58 by switching the electromagnetic valve 56. Conducted to the gas outlet 55. The opening / closing of the electromagnetic valve 56 is controlled via a drive circuit 57 based on a command from the control device 53.
[0004]
[Problems to be solved by the invention]
However, in the switching device 51 having the above-described configuration, each measurement gas flows to the gas outlet 55 via the common flow path 58, and thus has a drawback of being affected by the gas measured immediately before. . That is, taking the measurement of ammonia gas as an example, the concentration of ammonia gas measured immediately before is relatively high, and then when another measurement gas having a relatively low ammonia gas concentration is introduced from another gas inlet 54, There is a drawback that contamination (contamination) occurs due to the influence of residual gas in the common flow path 58, and a large error occurs in the measured value of the low-concentration ammonia gas.
[0005]
Such contamination has been a major problem especially when measuring low concentration gas (for example, measuring ammonia gas in a clean room for manufacturing semiconductor devices), but no effective solution has been proposed in the past. It was.
[0006]
The present invention has been made in view of the drawbacks of the conventional example as described above, and it is an object of the present invention to provide a switching device for a gas analyzer for suppressing contamination and accurately measuring a low concentration gas. To do.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention has a plurality of fluid inlets, and includes switching means for selectively connecting at least one of them to the gas analyzer, for cleaning the measurement gas flow path. In the gas analyzer switching device for introducing a cleaning liquid into at least one of the fluid inlets , the cleaning liquid is pure water stored in a container, and the pure water is circulated by a pump and an ion exchange resin device. It is characterized by being configured to reproduce .
[0008]
When the measurement gas in the gas analyzer is an acidic gas or a basic gas, water can be used as the cleaning liquid.
[0009]
The cleaning liquid may be flowed every time the sample gas is switched.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
Here, an example in which the embodiment of the present invention is used as an ammonia gas measuring apparatus for measuring ammonia gas in a clean room will be described. In semiconductor device manufacturing processes, gaseous contaminants such as ammonia are known to cause pattern defects, and it is required to accurately measure the ammonia concentration in a clean room as a countermeasure. . And since the ammonia component in a clean room is very low concentration, suppression of the contamination in an ammonia gas measuring device is calculated | required strongly.
[0011]
FIG. 1 is a diagram for explaining the configuration of an embodiment of the present invention. In this figure, an ammonia gas measuring device 1 is arranged at a corner in a clean room 2. The air in each of the processing chambers A, B,..., N provided for each manufacturing process of the semiconductor device and the air in the clean room 2 are ammonia by the fluid introduction pipes a, b,. It is introduced into the gas measuring device 1.
[0012]
As shown in FIG. 2, the ammonia gas measuring device 1 includes a gas analyzing unit 21 that measures ammonia gas, a switching device 22 that selectively introduces the measuring gas into the gas analyzing unit 21, a gas analyzing unit 21, and a switching device. And an output device 24 (CRT, LCD, printer, etc.) for receiving the output of the ion chromatograph 28 via the control device 23 and outputting the measurement results. Yes.
[0013]
FIG. 3 shows a rotary valve unit as an example of the switching device 22, and this unit includes a plurality of fluid introduction ports 31 and one fluid discharge port 32. A rotatable disk-shaped rotating plate 33 is disposed inside the unit, and a groove 34 is formed in the rotating plate 33. The groove 34 allows the fluid discharge port 32 and any one of the fluid introduction ports 31 to communicate with each other. The rotating plate 33 is rotated by a geared motor 35, and a fluid introduction port communicating with the fluid discharge port 32 is selected by this rotation. As the switching device 22, for example, “Rotary valve unit” manufactured by Leodyne, “Automatic valve unit 401 series” manufactured by Frome, etc. can be used.
[0014]
As shown in FIG. 2, the gas analyzer 21 includes a diffusion scrubber 25 and an ion chromatograph 28. The diffusion scrubber 25 includes a porous hollow tube 25a formed of a fluorine-based porous membrane, and pure water as an absorbing liquid is introduced to the outside of the hollow tube 25a, and the inside of the hollow tube 25a is a fluid introduction tube. The fluid outlet 32 of the switching device 22 is connected by p. A pump 26 is arranged on the outlet side of the diffusion rubber 25 to suck in the measurement gas, and the ammonia component in the measurement gas is absorbed by the absorption liquid while passing through the hollow tube 25a. On the other hand, moisture in the measurement gas is discharged through the valve 27. The absorption liquid that has absorbed the ammonia component is sent to the ion chromatograph 28 where the ammonia is separated and analyzed. The analysis result is sent to the output device 24 via the control device 23 and output (displayed) as the ammonia concentration.
[0015]
Pure water 41 as a cleaning liquid is supplied to one of the plurality of fluid introduction ports 31 of the switching device 22 shown in FIG. Further, the pure water 41 is circulated and regenerated through the ion exchange resin device 43 by the pump 42 of FIG.
[0016]
Next, the operation of the embodiment of the present invention will be described with reference to the timing chart of the embodiment of the present invention shown in FIG. 4 and FIG.
[0017]
First, the control device 23 drives the geared motor 35 of FIG. 3 to rotate the rotating plate 33 and controls the switching device 22 so that the measurement gas in the A chamber flows (FIG. 4A). The measurement gas from the chamber A is sucked by the pump 26 in FIG. 2, the ammonia component contained in this measurement gas is collected in the absorption liquid of the diffusion scrubber 25 in FIG. 2, and the absorption liquid is sent to the gas analysis unit 21. It is analyzed (FIG. 4 (e)). After a predetermined time (for example, 20 minutes) has elapsed, the fluid introduction port of the switching device 22 is switched to the cleaning liquid side, and a trace amount (for example, 0.1 cc) of cleaning liquid is introduced into the switching device 22 (FIG. 4B). As a result, the ammonia component remaining in the switching device 22 is collected in the cleaning liquid (water), and contamination is suppressed. The cleaning liquid is pushed out by the pressure of the pump 42, passes through the hollow tube 25 a of the diffusion scrubber through the switching device 22, and is discharged through the valve 27.
[0018]
Next, the switching device 22 introduces the measurement gas in the B chamber (FIG. 4C), and thereafter repeats the same operation until the measurement gas is introduced into the N chamber (FIG. 4D).
[0019]
If the gas analyzer of the present invention as described above is used, contamination in the switching device can be minimized. According to the experiments of the present inventor, the contamination can be greatly suppressed as compared with the case where the conventional apparatus is used. Specifically, when the conventional switching device shown in FIG. 5 and the switching device of the above-described embodiment of the present invention (using an 8-way rotary valve) were subjected to a comparative test, contamination when using the device of FIG. Was 23%. In other words, when a measurement gas containing 20 ppb of ammonia flows from one fluid inlet and then a measurement gas of 0 ppb of ammonia flows from another fluid inlet, the measured value should be 0 ppb if there is no contamination. It was 4.6 ppb (20 × 0.23 ppb). When the switching device of the above example was tested in the same manner, the contamination was 4.0% when there was no cleaning liquid and 0.9% when the cleaning liquid was introduced.
[0020]
When a rotary valve is used as the switching device, the common flow path (see 58 in FIG. 5) can be shortened, so that contamination can be significantly suppressed. Furthermore, when the flow path of the rotary valve is washed with a washing solution, contamination can be suppressed almost.
[0021]
In the above apparatus, the timing of introducing the cleaning liquid is arbitrary. For example, the cleaning liquid may be introduced only after the measurement gas having a particularly high concentration is measured, or the cleaning liquid may be cleaned every time the measurement gas is switched. Good. If cleaning is performed every time the measurement gas is switched, it is possible to obtain accurate measurement values while suppressing contamination in the measurement of all measurement gases.
[0022]
As the switching device of the present invention, an electromagnetic valve type device as in the conventional device (FIG. 5) may be used, but the use of the rotary valve as in the above embodiment has a great effect of suppressing contamination. In addition, the switching cycle can be shortened.
[0023]
In the embodiments of the present invention, pure water is used as the cleaning liquid. However, the cleaning liquid is not limited thereto, and a fluid such as an organic solvent may be used according to the property of the measurement gas.
[0024]
【The invention's effect】
As described above, according to the present invention, there are provided a plurality of fluid introduction ports, including switching means for selectively conducting at least one of them to the gas analyzer, for cleaning the measurement gas flow path. In the gas analyzer switching device for introducing a cleaning liquid into at least one of the fluid inlets , the cleaning liquid is pure water stored in a container, and the pure water is circulated by a pump and an ion exchange resin device. Since it is configured to regenerate, it is possible to prevent the degradation of pure water, and to obtain an effect that accurate measurement can be performed while suppressing contamination.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement of a clean room ammonia gas measuring apparatus using a gas analyzer switching device according to the present invention in a clean room.
FIG. 2 is a configuration explanatory view of an embodiment of the present invention showing a configuration of an ammonia gas measuring device.
FIG. 3 is a perspective view of a rotary valve unit as a switching device.
FIG. 4 is a timing chart showing the operation of the embodiment.
FIG. 5 is a configuration explanatory diagram of a conventional example showing a conventional switching device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ammonia gas measuring device 21 Gas analysis part 22 Switching apparatus 31 Fluid inlet 41 Cleaning liquid

Claims (3)

複数の流体導入口を有し、そのうちの少なくとも1つを選択的にガス分析装置へ導通させる切換手段を備え、測定ガス流路を洗浄するための洗浄液を前記流体導入口のうちの少なくとも1つに導入するガス分析装置用切換装置において、前記洗浄液は容器に収納された純水であって、該純水をポンプとイオン交換樹脂装置により循環し再生するように構成したことを特徴とするガス分析装置用切換装置。A switching means having a plurality of fluid inlets, selectively switching at least one of the fluid inlets to the gas analyzer, and having at least one of the fluid inlets as a cleaning liquid for cleaning the measurement gas channel In the gas analyzer switching device to be introduced into the gas , the cleaning liquid is pure water stored in a container, and the pure water is circulated and regenerated by a pump and an ion exchange resin device. Switching device for analyzer. 前記切換手段を切り換えるごとに前記洗浄液を導入する請求項1に記載の切換装置。  The switching device according to claim 1, wherein the cleaning liquid is introduced each time the switching means is switched. 前記切換手段がロータリーバルブである請求項1または2に記載の切換装置。  The switching device according to claim 1 or 2, wherein the switching means is a rotary valve.
JP02464496A 1996-01-18 1996-01-18 Switching device for gas analyzer Expired - Lifetime JP3646389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02464496A JP3646389B2 (en) 1996-01-18 1996-01-18 Switching device for gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02464496A JP3646389B2 (en) 1996-01-18 1996-01-18 Switching device for gas analyzer

Publications (2)

Publication Number Publication Date
JPH09196828A JPH09196828A (en) 1997-07-31
JP3646389B2 true JP3646389B2 (en) 2005-05-11

Family

ID=12143857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02464496A Expired - Lifetime JP3646389B2 (en) 1996-01-18 1996-01-18 Switching device for gas analyzer

Country Status (1)

Country Link
JP (1) JP3646389B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081422A (en) 1998-06-29 2000-03-21 Nec Corp Automated multipoint trace material analysis device and method and automated trace material analysis device and method
JP3419375B2 (en) * 2000-02-03 2003-06-23 日本電気株式会社 Ultra-trace gas analyzer and its analysis method
KR100414157B1 (en) 2001-09-28 2004-01-13 삼성전자주식회사 Apparatus for sampling a fluid sample and fluid analyzer having the same
JP2010190681A (en) * 2009-02-17 2010-09-02 Beckman Coulter Inc Automatic analysis device, and method of controlling purified water of the same

Also Published As

Publication number Publication date
JPH09196828A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP2526178B2 (en) Exhaust gas adsorption device
US6470760B2 (en) Method and apparatus for automatically analyzing trace substance
KR20010078280A (en) Trace-level gas analysis apparatus and method
JP3646389B2 (en) Switching device for gas analyzer
WO2002095389A2 (en) Method and detector for detecting gases
JPH10170488A (en) Sample-introducing apparatus
JPH07113796A (en) Automatic gas gathering method and automatic gas analyzing method
KR20070051185A (en) Particle adsorption chamber and particle sampling apparatus and particle sampling method
JP3043305B2 (en) Ion chromatography system for environmental analysis in semiconductor facilities
US4983526A (en) Method of measuring and controlling ozone concentration
JP3601635B2 (en) Switching device for gas analyzer
JP2001033362A (en) Foul odor-measuring device
JPH1090134A (en) Method and analyzer for analyzing water for trace volatile organic compound
JP4366861B2 (en) Aeration processing instrument, aeration processing mechanism, and purge and trap system
JP4042638B2 (en) Infrared gas analyzer
GB2068543A (en) Methods and apparatus for cleaning reaction vessels
JP2002214116A (en) Gas removal rate test method and testing device of chemical filter
JPH05256842A (en) Method and device for analyzing small amount of organic compound
JP7085001B2 (en) Detection method of detector, control system, detection system, and program
US20240101448A1 (en) Impurity acquisition system, water quality testing system, and liquid production and supply system
JP2001198427A (en) Chemical filter unit and method for manufacturing semiconductor device
RU2267775C2 (en) Gas analyzer based on piezoelectric sensitive elements
JPH10153562A (en) Odor detecting apparatus
JPH039016Y2 (en)
JP2001165919A (en) Apparatus for automatically analyzing atmospheric gas component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

EXPY Cancellation because of completion of term