JP3601635B2 - Switching device for gas analyzer - Google Patents

Switching device for gas analyzer Download PDF

Info

Publication number
JP3601635B2
JP3601635B2 JP15897896A JP15897896A JP3601635B2 JP 3601635 B2 JP3601635 B2 JP 3601635B2 JP 15897896 A JP15897896 A JP 15897896A JP 15897896 A JP15897896 A JP 15897896A JP 3601635 B2 JP3601635 B2 JP 3601635B2
Authority
JP
Japan
Prior art keywords
gas
fluid introduction
switching device
measurement
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15897896A
Other languages
Japanese (ja)
Other versions
JPH09318609A (en
Inventor
保 猪俣
恭知 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP15897896A priority Critical patent/JP3601635B2/en
Publication of JPH09318609A publication Critical patent/JPH09318609A/en
Application granted granted Critical
Publication of JP3601635B2 publication Critical patent/JP3601635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス分析装置に装着され複数の測定ガスなどを選択的に分析する際にガス流路を切り換えるために用いるガス分析装置用切換装置に関する。
【0002】
【従来の技術】
従来より、クリーンルーム等のガス濃度を測定する際には、クリーンルーム内の測定箇所の空気を流体導入管によってガス分析装置に導入し、アンモニアガス等の濃度をサブppbレベルまで測定することが行われている。一般に、測定箇所は複数あって、その複数箇所から複数の流体導入管によって空気を導入し、その流体導入管を切換装置を用いて切り換えて、選択された測定ガスがガス分析装置へ導入されるようになっている。
【0003】
【発明が解決しようとする課題】
ガス分析装置は一般に測定箇所から離れた位置に配置され、その間は流体導入管で接続されており、場合によっては50m程度離れていることもある。このように測定箇所と分析装置が離れてくると、測定ガスを送る流体導入管内に前回測定したガスが残っていたり、流体導入管の壁面に前回測定したガス成分が付着してしまったりすることがあり、これにより前回測定されたガスの影響を受けるという問題が発生する。たとえば、ある時点における測定箇所のアンモニアガスの濃度が比較的高く、次の時点において濃度は前回より低くなっていたという場合を考えると、前の時点における流体導入管内の残留ガスの影響を受けてコンタミネーション(汚染)が発生し、次の時点における測定値に誤差を生ずる。
【0004】
このようなコンタミネーションは、特に、クリーンルーム内のアンモニアガス測定等のように、低濃度のガスを測定する際に大きな問題となっていたが、従来、効果的な解決策は提案されていなかった。
【0005】
本発明は上述のような従来例の欠点などに鑑みてなされたもので、コンタミネーションを抑え低濃度ガスを正確に測定できるようにするためのガス分析装置用切換装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明においては、複数の流体導入路を有しそのうちの少なくとも1つを選択的にガス分析装置へ導通させる切換手段と、前記流体導入路の各々に接続されて測定ガスを吸引するための吸引手段とによってガス分析装置用切換装置を構成した。
【0007】
各流体導入路は弁を介して吸引手段と接続されるようにし、これらの弁を各々独立して制御するようにすることができる。
【0008】
上記制御は、例えば、流体導入路のうちの1つが選択されたとき、その選択された流体導入路に接続された弁を閉じ、その他の弁は開放するようにする。
【0009】
【発明の実施の形態】
以下本発明について図面を参照しながら詳しく説明する。
ここでは、本発明実施例を、クリーンルーム内のアンモニアガスを測定するアンモニアガス測定装置として用いた例について説明する。半導体装置の製造プロセスにおいては、アンモニア等のガス状汚染物質がパターン不良の原因となることが知られており、その対策のため、クリーンルーム内のアンモニア濃度を精度良く測定することが求められている。そして、クリーンルーム内のアンモニア成分は極めて低濃度であるため、アンモニアガス測定装置におけるコンタミネーションの抑制が強く求められる。
【0010】
図1は本発明実施例の構成説明図であり、この図において、アンモニアガス測定装置1はクリーンルーム2内の隅に配置される。半導体装置の製造工程ごとに設けられた加工室A,B,…,Nの各室の空気およびクリーンルーム2内の空気は、流体導入管a,b,…,nおよび流体導入管zによってそれぞれアンモニアガス測定装置1へ導入される。
【0011】
アンモニアガス測定装置1は、図2に示すように、アンモニアガスを測定するガス分析部21と、測定ガスをガス分析部21へ選択的に導入する切換装置22と、ガス分析部21および切換装置22を制御する制御装置23(シーケンサ、パーソナルコンピュータ等)と、イオンクロマトグラフ28の出力を制御装置23を介して受け測定結果を出力する出力装置24(CRT、LCD、プリンタ等)とを備えている。
【0012】
切換装置22の上流側において、各流体導入管z,a,b,…,nの途中にはそれぞれ吸引管51z,51a,51b,…,51nが接続され、これらの吸引管51は電磁弁52z,52a,52b,…,52nを介して吸引ポンプ53に接続されている。電磁弁52z,52a,52b,…,52nは制御装置23からの指令により各々独立して開閉制御される。また吸引ポンプ53も制御装置23によって駆動制御される。
【0013】
吸引ポンプ53の吸引流量は後述するポンプ26の吸引流量より多く、10〜20リットル/分程度である(ポンプ26は1リットル/分程度)。
【0014】
図3は切換装置22の一例としてのロータリーバルブユニットを示し、このユニットは、複数の流体導入口31と、1つの流体排出口32とを備えている。ユニット内部には、回転自在の円板状回転板33が配置され、この回転板33には溝34が形成されている。溝34は、流体排出口32と、流体導入口31のうちのいずれか1つとを連通させる。回転板33はギアドモータ35によって回転され、この回転により、流体排出口32と連通される流体導入口が選択される。尚、切換装置22としては、たとえば、レオダイン社製「ロータリーバルブユニット」や株式会社フロム製「オートマチックバルブユニット401シリーズ」等を使用することもできる。
【0015】
ガス分析部21は、図2に示すように、拡散スクラバー25とイオンクロマトグラフ28とを備えている。拡散スクラバー25は、フッ素系多孔質膜で構成された多孔質中空管25aを備え、中空管25aの外側に吸収液としての純水が導入され、中空管25aの内側は流体導入管pによって切換装置22の流体排出口32と接続されている。拡散スラバー25の出口側にはポンプ26が配置されて、測定ガスを吸入し、測定ガス中のアンモニア成分は、中空管25aを通過する間に吸収液に吸収される。一方、測定ガス中の水分は弁27を介して排出される。アンモニア成分を吸収した吸収液はイオンクロマトグラフ28に送られ、そこにおいてアンモニアが分離分析される。この分析結果は制御装置23を介して出力装置24に送出されアンモニア濃度として出力(表示)される。
【0016】
図3に示す切換装置22の複数の流体導入口31のうちの1つには流体導入管xを介して洗浄液としての純水41が供給される。さらに、純水41は図2のポンプ42によってイオン交換樹脂装置43を通して循環され再生される。
【0017】
次に図4に示す本発明実施例のタイミングチャート及び図3などを用いて本発明実施例の動作を説明する。
【0018】
はじめに、制御装置23は、例えば電磁弁52aを閉じ、残りのすべての電磁弁を開放し(図4(f)(g)(h))、図3のギアドモータ35を駆動させて回転板33を回転させ、流体導入管aからの測定ガスが流通するように切換装置22を制御する(図4(a))。A室からの測定ガスは図2のポンプ26によって吸入され、この測定ガスに含まれるアンモニア成分は図2の拡散スクラバー25の吸収液に捕集され、吸収液はガス分析部21へ送られて分析される(図4(e))。
【0019】
A室からの測定ガスが流体導入管aからガス分析部21へ送られている間、他の流体導入管からの測定ガスは各電磁弁52を介して吸引ポンプ53によって多量に吸引される。
【0020】
所定時間(たとえば20分)経過後、切換装置22の流体導入口は洗浄液側に切り換えられ微量(たとえば0.1cc)の洗浄液が切換装置22内に導入される(図4(b))。これにより切換装置22内に残留するアンモニア成分は洗浄液(水)に捕集され洗浄される。洗浄液はポンプ42の圧力により押し出され、切換装置22を経て拡散スクラバーの中空管25a内を通過し、弁27を介して排出される。
【0021】
次に、制御装置23は、電磁弁52bを閉じ、残りのすべての電磁弁を開放し(図4(f)(g)(h))、流体導入管bからの測定ガスが流通するように切換装置22を制御する(図4(c))。その間他の流体導入管から測定ガスは吸引ポンプ53によって多量に吸引される。以下、N室の測定ガス導入まで同様の動作が繰り返される(図4(d))。
【0022】
上記のような本発明のガス分析装置を用いれば、流体導入管の長さが長い場合であっても、吸引ポンプ53の吸引によってガス流量が多くなるため、流体導入管内の残留ガスや付着ガスの影響を受けにくくなり、前回の測定ガスの影響が少なくなる。
【0023】
発明者らの実験によれば、吸引ポンプ53を付けない従来タイプの装置の場合、測定ガスはポンプ26だけで吸入されるので応答(測定値を測定量の真の値で除したもの)が悪かった。すなわち、50mの流体導入管を使用し、24時間経過後した場合でも応答は悪く75%程度であった。これに対して、上記装置を用いて、測定開始前に吸引ポンプ53により15リットル/分の吸入量で1時間吸引を行ったところ、測定開始後1時間経過時の応答は93%、2時間経過時の応答は97%であり、コンタミネーションの少ない測定結果が得られた。なお、前もって吸引させる時間を増加させることによって、その後の応答は良くなる。
【0024】
上記実施例においては、流体導入管のすべてについて吸引ポンプ53によって吸引するようにしたが、所定の流体導入管だけを吸引ポンプ53によって吸引し、他の流体導入管はポンプ26によって吸入するようにしてもよい。そうすれば吸引ポンプ53の容量は小さくてすむという利点がある。
【0025】
ところで、各流体導入管からの吸入量を増加させるため、従来タイプの装置において、ポンプ26により多量に吸入を行うことも考えられるが、そうすると拡散スクラバー25にかなりの負圧がかかり、測定ガスばかりでなく吸収液(純水)も吸引されてしまい、ポンプ26に水分が入ってしまうという問題が生じる。また拡散スクラバー25の上流側にポンプを配置するということも考えられるが、そうするとポンプ内から発生するアンモニアが拡散スクラバー25に入ってしまい、微量アンモニアの測定が 不可能になるという問題が生じる。これに対して、本発明によれば、切換装置22の上流側に吸引ポンプ53を配置しているので、上記のような問題を発生させることなく、コンタミネーションの少ない正確な測定を行うことができる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、コンタミネーションを抑えて正確な測定ができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明によるガス分析装置用切換装置を用いたクリーンルーム用アンモニアガス測定装置のクリーンルーム内における配置を示す図。
【図2】アンモニアガス測定装置の構成を示す本発明実施例の構成説明図。
【図3】切換装置としてのロータリバルブユニットの斜視図。
【図4】実施例の動作を示すタイミングチャート。
【符号の説明】
1 アンモニアガス測定装置
21 ガス分析部
22 切換装置
51z,51a,51b,…,51n 吸引管
52z,52a,52b,…,52n 電磁弁
53 吸引ポンプ
z,a,b,…,n 流体導入管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas analyzer switching device that is mounted on a gas analyzer and is used to selectively switch a gas flow path when selectively analyzing a plurality of measurement gases.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when measuring gas concentration in a clean room or the like, air at a measurement point in the clean room is introduced into a gas analyzer through a fluid introduction pipe, and the concentration of ammonia gas or the like is measured to a sub-ppb level. ing. Generally, there are a plurality of measurement points, air is introduced from a plurality of points by a plurality of fluid introduction pipes, the fluid introduction pipes are switched using a switching device, and a selected measurement gas is introduced into the gas analyzer. It has become.
[0003]
[Problems to be solved by the invention]
The gas analyzer is generally arranged at a position distant from the measurement point, and is connected by a fluid introduction pipe between them, and in some cases, is separated by about 50 m. When the measurement point and the analyzer are separated in this way, the previously measured gas may remain in the fluid introduction pipe that sends the measurement gas, or the previously measured gas component may adhere to the wall of the fluid introduction pipe. This causes a problem of being affected by the gas measured last time. For example, considering the case where the concentration of ammonia gas at a measurement point at a certain time is relatively high and the concentration at the next time is lower than the previous time, the influence of the residual gas in the fluid introduction pipe at the previous time is Contamination occurs, causing errors in measured values at the next time point.
[0004]
Such a contamination has been a major problem when measuring low-concentration gases, such as ammonia gas measurement in a clean room, but no effective solution has been proposed. .
[0005]
The present invention has been made in view of the above-described drawbacks of the conventional example, and has an object to provide a gas analyzer switching device for suppressing contamination and enabling accurate measurement of a low concentration gas. I do.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a switching means having a plurality of fluid introduction paths and selectively conducting at least one of the fluid introduction paths to a gas analyzer, and a measuring means connected to each of the fluid introduction paths. The switching device for the gas analyzer was constituted by the suction means for sucking the gas.
[0007]
Each fluid introduction path can be connected to the suction means via a valve, and these valves can be controlled independently.
[0008]
The control is such that, for example, when one of the fluid introduction paths is selected, a valve connected to the selected fluid introduction path is closed, and the other valves are opened.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
Here, an example in which the embodiment of the present invention is used as an ammonia gas measuring device for measuring ammonia gas in a clean room will be described. In a semiconductor device manufacturing process, it is known that a gaseous contaminant such as ammonia causes a pattern defect. To prevent such a problem, it is required to accurately measure the ammonia concentration in a clean room. . Since the concentration of the ammonia component in the clean room is extremely low, suppression of contamination in the ammonia gas measuring device is strongly required.
[0010]
FIG. 1 is an explanatory view of the configuration of an embodiment of the present invention. In this figure, an ammonia gas measuring device 1 is arranged at a corner in a clean room 2. The air in the processing chambers A, B,..., N provided in each manufacturing process of the semiconductor device and the air in the clean room 2 are supplied through the fluid introduction pipes a, b,. It is introduced into the gas measuring device 1.
[0011]
As shown in FIG. 2, the ammonia gas measuring device 1 includes a gas analyzer 21 for measuring ammonia gas, a switching device 22 for selectively introducing a measurement gas into the gas analyzer 21, and a gas analyzer 21 and a switching device. A control device 23 (sequencer, personal computer, etc.) for controlling the device 22, and an output device 24 (CRT, LCD, printer, etc.) for receiving the output of the ion chromatograph 28 via the control device 23 and outputting the measurement result. I have.
[0012]
On the upstream side of the switching device 22, suction pipes 51z, 51a, 51b,..., 51n are connected in the middle of the fluid introduction pipes z, a, b,. , 52a, 52b,..., 52n are connected to the suction pump 53. The solenoid valves 52z, 52a, 52b,..., 52n are independently controlled to open and close according to commands from the controller 23. The drive of the suction pump 53 is also controlled by the controller 23.
[0013]
The suction flow rate of the suction pump 53 is higher than the suction flow rate of the pump 26 described later, and is about 10 to 20 liters / minute (the pump 26 is about 1 liter / minute).
[0014]
FIG. 3 shows a rotary valve unit as an example of the switching device 22. This unit includes a plurality of fluid inlets 31 and one fluid outlet 32. A rotatable disk-shaped rotating plate 33 is disposed inside the unit, and a groove 34 is formed in the rotating plate 33. The groove 34 allows the fluid outlet 32 to communicate with any one of the fluid inlets 31. The rotating plate 33 is rotated by a geared motor 35, and by this rotation, a fluid inlet which is communicated with the fluid outlet 32 is selected. The switching device 22 may be, for example, a "Rotary valve unit" manufactured by Leodyne or an "Automatic valve unit 401 series" manufactured by From.
[0015]
The gas analyzer 21 includes a diffusion scrubber 25 and an ion chromatograph 28 as shown in FIG. The diffusion scrubber 25 includes a porous hollow tube 25a made of a fluorine-based porous film, and pure water as an absorbing liquid is introduced outside the hollow tube 25a, and a fluid introduction tube is provided inside the hollow tube 25a. It is connected to the fluid outlet 32 of the switching device 22 by p. A pump 26 is arranged on the outlet side of the diffusion slab 25 to suck in the measurement gas, and the ammonia component in the measurement gas is absorbed by the absorbing liquid while passing through the hollow tube 25a. On the other hand, the moisture in the measurement gas is discharged through the valve 27. The absorbing solution having absorbed the ammonia component is sent to the ion chromatograph 28, where the ammonia is separated and analyzed. This analysis result is sent to the output device 24 via the control device 23 and output (displayed) as the ammonia concentration.
[0016]
Pure water 41 as a cleaning liquid is supplied to one of the plurality of fluid introduction ports 31 of the switching device 22 shown in FIG. 3 via a fluid introduction pipe x. Further, the pure water 41 is circulated and regenerated through the ion exchange resin device 43 by the pump 42 of FIG.
[0017]
Next, the operation of the embodiment of the present invention will be described with reference to the timing chart of the embodiment of the present invention shown in FIG.
[0018]
First, the control device 23 closes, for example, the solenoid valve 52a and opens all the remaining solenoid valves (FIGS. 4F, 4G, and 4H), and drives the geared motor 35 in FIG. The switching device 22 is rotated so that the measurement gas flows from the fluid introduction pipe a (FIG. 4A). The measurement gas from the chamber A is sucked by the pump 26 in FIG. 2, and the ammonia component contained in the measurement gas is collected in the absorption liquid of the diffusion scrubber 25 in FIG. 2, and the absorption liquid is sent to the gas analyzer 21. It is analyzed (FIG. 4 (e)).
[0019]
While the measurement gas from the chamber A is being sent from the fluid introduction pipe a to the gas analyzer 21, a large amount of the measurement gas from the other fluid introduction pipe is sucked by the suction pump 53 via each solenoid valve 52.
[0020]
After a lapse of a predetermined time (for example, 20 minutes), the fluid inlet of the switching device 22 is switched to the cleaning liquid side, and a small amount (for example, 0.1 cc) of the cleaning liquid is introduced into the switching device 22 (FIG. 4B). Thereby, the ammonia component remaining in the switching device 22 is collected by the cleaning liquid (water) and washed. The cleaning liquid is pushed out by the pressure of the pump 42, passes through the switching device 22, passes through the hollow tube 25 a of the diffusion scrubber, and is discharged via the valve 27.
[0021]
Next, the controller 23 closes the solenoid valve 52b and opens all remaining solenoid valves (FIGS. 4 (f), (g), and (h)) so that the measurement gas flows from the fluid introduction pipe b. The switching device 22 is controlled (FIG. 4C). During this time, a large amount of the measurement gas is sucked from another fluid introduction pipe by the suction pump 53. Hereinafter, the same operation is repeated until the measurement gas is introduced into the N chamber (FIG. 4D).
[0022]
When the gas analyzer of the present invention as described above is used, even if the length of the fluid introduction pipe is long, the gas flow rate is increased by suction of the suction pump 53, so that the residual gas and the attached gas in the fluid introduction pipe are increased. And the influence of the previous measurement gas is reduced.
[0023]
According to the experiments by the inventors, in the case of the conventional type device without the suction pump 53, the response (the measured value divided by the true value of the measured amount) is obtained because the measured gas is sucked only by the pump 26. It was bad. In other words, the response was poor and about 75% even when 24 hours had passed after using a 50 m fluid introduction pipe. On the other hand, when the above apparatus was used to perform suction for 1 hour at a suction rate of 15 liters / minute by the suction pump 53 before the start of the measurement, the response at the elapse of 1 hour after the start of the measurement was 93% and 2 hours. The response at the passage of time was 97%, and a measurement result with little contamination was obtained. It should be noted that by increasing the suction time in advance, the subsequent response is improved.
[0024]
In the above embodiment, all of the fluid introduction pipes are sucked by the suction pump 53. However, only predetermined fluid introduction pipes are sucked by the suction pump 53, and other fluid introduction pipes are sucked by the pump 26. You may. Then, there is an advantage that the capacity of the suction pump 53 can be small.
[0025]
By the way, in order to increase the amount of suction from each fluid introduction pipe, it is conceivable that a large amount of suction is performed by the pump 26 in the conventional type device. However, the absorption liquid (pure water) is also sucked, and the problem that water enters the pump 26 occurs. It is also conceivable to arrange a pump upstream of the diffusion scrubber 25. However, this causes a problem that ammonia generated from inside the pump enters the diffusion scrubber 25, making it impossible to measure a small amount of ammonia. On the other hand, according to the present invention, since the suction pump 53 is disposed on the upstream side of the switching device 22, it is possible to perform accurate measurement with less contamination without causing the above-described problem. it can.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an effect that accurate measurement can be performed while suppressing contamination.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement in a clean room of an ammonia gas measuring device for a clean room using a switching device for a gas analyzer according to the present invention.
FIG. 2 is a configuration explanatory view of an embodiment of the present invention showing the configuration of an ammonia gas measuring device.
FIG. 3 is a perspective view of a rotary valve unit as a switching device.
FIG. 4 is a timing chart showing the operation of the embodiment.
[Explanation of symbols]
1 Ammonia gas measuring device 21 Gas analyzer 22 Switching device 51z, 51a, 51b, ..., 51n Suction pipe 52z, 52a, 52b, ..., 52n Electromagnetic valve 53 Suction pump z, a, b, ..., n Fluid introduction pipe

Claims (1)

複数の流体導入路を有しそのうちの少なくとも1つを選択的にガス分析装置へ導く切換手段と、前記流体導入路の各々に弁を介して接続されて測定ガスを吸引するための吸引手段と、前記弁を各々独立して制御するとともに、前記切換手段によって前記流体導入路のうちの1つが選択されたとき、その選択された流体導入路に接続された弁を閉じ、その他の弁は開放するように制御する制御手段とを備えたことを特徴とするガス分析装置用切換装置。Switching means having a plurality of fluid introduction paths and selectively guiding at least one of the fluid introduction paths to the gas analyzer; and suction means connected to each of the fluid introduction paths via a valve for aspirating a measurement gas. Controlling the valves independently, and when one of the fluid introduction paths is selected by the switching means, closes the valve connected to the selected fluid introduction path, and opens the other valves. A switching unit for controlling the gas analyzer.
JP15897896A 1996-05-30 1996-05-30 Switching device for gas analyzer Expired - Fee Related JP3601635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15897896A JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15897896A JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Publications (2)

Publication Number Publication Date
JPH09318609A JPH09318609A (en) 1997-12-12
JP3601635B2 true JP3601635B2 (en) 2004-12-15

Family

ID=15683543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15897896A Expired - Fee Related JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Country Status (1)

Country Link
JP (1) JP3601635B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081422A (en) 1998-06-29 2000-03-21 Nec Corp Automated multipoint trace material analysis device and method and automated trace material analysis device and method
JP3419375B2 (en) * 2000-02-03 2003-06-23 日本電気株式会社 Ultra-trace gas analyzer and its analysis method
KR100414157B1 (en) 2001-09-28 2004-01-13 삼성전자주식회사 Apparatus for sampling a fluid sample and fluid analyzer having the same
KR100475644B1 (en) * 2002-05-27 2005-03-17 주식회사 위드텍 High collection efficiency method of ammonia gas and automated monitoring system

Also Published As

Publication number Publication date
JPH09318609A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JPS63304133A (en) Analyzer using mixed gas
US6470760B2 (en) Method and apparatus for automatically analyzing trace substance
JP3601635B2 (en) Switching device for gas analyzer
US6176120B1 (en) Methods of analyzing water soluble contaminants generated during microelectronic device manufacturing processes
JPH09196828A (en) Changeover device for gas analyzing device
US5616827A (en) Flow manifold for high purity analyzers
JPH10104134A (en) Apparatus for constant flow rate diluted sampling for internal combustion engine exhaust gas
US4577517A (en) Nebulizer
JP2002168737A (en) Ventirating implment, ventirating mechanism, and purge- and-trap system
JP3651525B2 (en) Gas sampling device
JPH10153562A (en) Odor detecting apparatus
JP4042638B2 (en) Infrared gas analyzer
JP2003149099A (en) Apparatus for measuring engine exhaust gas
JPH1174169A (en) Substrate-processing apparatus equipped with life discriminating device for atmosphere processing part
JP2002214116A (en) Gas removal rate test method and testing device of chemical filter
JP2004138557A (en) Gas measurement device
JP3353336B2 (en) Apparatus for analyzing salt in gas and method for using the same
JP7085001B2 (en) Detection method of detector, control system, detection system, and program
JPH10106914A (en) Life judging device of atmosphere treatment part for substrate treatment device
JPH039016Y2 (en)
JPS63281055A (en) Analysis instrument
JP3051015B2 (en) Metal component analyzer
JPS625149A (en) Gas-diluting apparatus
JPH06258276A (en) Simple temperature adjusting method for automatic electrolyte analyzer
JPH10339725A (en) Measuring device for atmospheric contamination harmful substance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees