JPH09318609A - Switching device for gas analyzer - Google Patents

Switching device for gas analyzer

Info

Publication number
JPH09318609A
JPH09318609A JP15897896A JP15897896A JPH09318609A JP H09318609 A JPH09318609 A JP H09318609A JP 15897896 A JP15897896 A JP 15897896A JP 15897896 A JP15897896 A JP 15897896A JP H09318609 A JPH09318609 A JP H09318609A
Authority
JP
Japan
Prior art keywords
gas
switching device
measuring
fluid
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15897896A
Other languages
Japanese (ja)
Other versions
JP3601635B2 (en
Inventor
Tamotsu Inomata
保 猪俣
Takatomo Matsumoto
恭知 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Analytical Systems Inc
Original Assignee
Yokogawa Analytical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Analytical Systems Inc filed Critical Yokogawa Analytical Systems Inc
Priority to JP15897896A priority Critical patent/JP3601635B2/en
Publication of JPH09318609A publication Critical patent/JPH09318609A/en
Application granted granted Critical
Publication of JP3601635B2 publication Critical patent/JP3601635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform accurate measuring by suppressing contamination (pollution) in a gas analyzer. SOLUTION: An ammonia gas measuring device 1 includes a gas analyzing part 21 for measuring ammonia gas, a switching device 22 for selectively introducing a plurality of measured gases to the gas analyzing part 21, a controller 23 for controlling the gas analyzing part 21 and the switching device 22, an output device 24 for outputting measuring results an a suction pump 23 for sucking a great amount of measured gas. For measuring the gas from an introducing pipe (a), a solenoid valve 52a is closed while other solenoid valves are opened. The switching device 22 selects the fluid introducing pipe (a). Then, only the gas from the introducing pipe (a) is sent through the switching device 22 to the gas analyzing part 21. The gases from the other introducing pipes are all sucked by the suction pump 23. Since a gas flow rate is increased by the sucking of the suction pump 23, the influence of gas remaining in the fluid introducing pipe or stuck gas is prevented and accurate measuring is performed with little contamination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス分析装置に装
着され複数の測定ガスなどを選択的に分析する際にガス
流路を切り換えるために用いるガス分析装置用切換装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer switching device which is mounted on a gas analyzer and is used for switching gas passages when selectively analyzing a plurality of measurement gases.

【0002】[0002]

【従来の技術】従来より、クリーンルーム等のガス濃度
を測定する際には、クリーンルーム内の測定箇所の空気
を流体導入管によってガス分析装置に導入し、アンモニ
アガス等の濃度をサブppbレベルまで測定することが
行われている。一般に、測定箇所は複数あって、その複
数箇所から複数の流体導入管によって空気を導入し、そ
の流体導入管を切換装置を用いて切り換えて、選択され
た測定ガスがガス分析装置へ導入されるようになってい
る。
2. Description of the Related Art Conventionally, when measuring a gas concentration in a clean room or the like, air at a measurement point in the clean room is introduced into a gas analyzer through a fluid introduction pipe to measure the concentration of ammonia gas or the like to a sub ppb level. Is being done. Generally, there are a plurality of measurement points, air is introduced from the plurality of points by a plurality of fluid introduction pipes, the fluid introduction pipes are switched by using a switching device, and the selected measurement gas is introduced to the gas analyzer. It is like this.

【0003】[0003]

【発明が解決しようとする課題】ガス分析装置は一般に
測定箇所から離れた位置に配置され、その間は流体導入
管で接続されており、場合によっては50m程度離れて
いることもある。このように測定箇所と分析装置が離れ
てくると、測定ガスを送る流体導入管内に前回測定した
ガスが残っていたり、流体導入管の壁面に前回測定した
ガス成分が付着してしまったりすることがあり、これに
より前回測定されたガスの影響を受けるという問題が発
生する。たとえば、ある時点における測定箇所のアンモ
ニアガスの濃度が比較的高く、次の時点において濃度は
前回より低くなっていたという場合を考えると、前の時
点における流体導入管内の残留ガスの影響を受けてコン
タミネーション(汚染)が発生し、次の時点における測
定値に誤差を生ずる。
The gas analyzer is generally arranged at a position distant from the measuring point, and is connected by a fluid introducing pipe between them, and in some cases it may be separated by about 50 m. If the measurement location and the analyzer are separated from each other in this way, the previously measured gas may remain in the fluid introduction pipe that sends the measurement gas, or the previously measured gas component may adhere to the wall of the fluid introduction pipe. However, this causes a problem of being affected by the previously measured gas. For example, consider the case where the concentration of ammonia gas at a measurement point at a certain time point was relatively high, and the concentration at the next time point was lower than that at the previous time point, so it was affected by the residual gas in the fluid introduction pipe at the previous time point. Contamination occurs, which causes an error in the measured value at the next time point.

【0004】このようなコンタミネーションは、特に、
クリーンルーム内のアンモニアガス測定等のように、低
濃度のガスを測定する際に大きな問題となっていたが、
従来、効果的な解決策は提案されていなかった。
Such contamination is particularly
It was a big problem when measuring low concentration gas such as ammonia gas measurement in a clean room.
So far, no effective solution has been proposed.

【0005】本発明は上述のような従来例の欠点などに
鑑みてなされたもので、コンタミネーションを抑え低濃
度ガスを正確に測定できるようにするためのガス分析装
置用切換装置を提供することを課題とする。
The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and provides a gas analyzer switching device for suppressing contamination and enabling accurate measurement of a low-concentration gas. Is an issue.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明においては、複数の流体導入路を有しそのう
ちの少なくとも1つを選択的にガス分析装置へ導通させ
る切換手段と、前記流体導入路の各々に接続されて測定
ガスを吸引するための吸引手段とによってガス分析装置
用切換装置を構成した。
In order to solve the above-mentioned problems, in the present invention, a switching means having a plurality of fluid introduction passages for selectively conducting at least one of the fluid introduction passages to a gas analyzer, and the fluid. The gas analyzer switching device was constituted by the suction means connected to each of the introduction paths and sucking the measurement gas.

【0007】各流体導入路は弁を介して吸引手段と接続
されるようにし、これらの弁を各々独立して制御するよ
うにすることができる。
Each fluid introducing passage may be connected to a suction means via a valve, and these valves may be independently controlled.

【0008】上記制御は、例えば、流体導入路のうちの
1つが選択されたとき、その選択された流体導入路に接
続された弁を閉じ、その他の弁は開放するようにする。
The above-mentioned control is performed, for example, so that when one of the fluid introducing passages is selected, the valve connected to the selected fluid introducing passage is closed and the other valves are opened.

【0009】[0009]

【発明の実施の形態】以下本発明について図面を参照し
ながら詳しく説明する。ここでは、本発明実施例を、ク
リーンルーム内のアンモニアガスを測定するアンモニア
ガス測定装置として用いた例について説明する。半導体
装置の製造プロセスにおいては、アンモニア等のガス状
汚染物質がパターン不良の原因となることが知られてお
り、その対策のため、クリーンルーム内のアンモニア濃
度を精度良く測定することが求められている。そして、
クリーンルーム内のアンモニア成分は極めて低濃度であ
るため、アンモニアガス測定装置におけるコンタミネー
ションの抑制が強く求められる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. Here, an example in which the embodiment of the present invention is used as an ammonia gas measuring device for measuring ammonia gas in a clean room will be described. In the manufacturing process of semiconductor devices, it is known that gaseous contaminants such as ammonia cause pattern defects, and as a countermeasure against this, it is required to accurately measure the ammonia concentration in the clean room. . And
Since the ammonia component in the clean room has an extremely low concentration, suppression of contamination in the ammonia gas measuring device is strongly required.

【0010】図1は本発明実施例の構成説明図であり、
この図において、アンモニアガス測定装置1はクリーン
ルーム2内の隅に配置される。半導体装置の製造工程ご
とに設けられた加工室A,B,…,Nの各室の空気およ
びクリーンルーム2内の空気は、流体導入管a,b,
…,nおよび流体導入管zによってそれぞれアンモニア
ガス測定装置1へ導入される。
FIG. 1 is an explanatory view of the configuration of the embodiment of the present invention.
In this figure, the ammonia gas measuring device 1 is arranged at a corner in the clean room 2. The air in each of the processing chambers A, B, ...
, N and the fluid introducing pipe z are introduced into the ammonia gas measuring device 1, respectively.

【0011】アンモニアガス測定装置1は、図2に示す
ように、アンモニアガスを測定するガス分析部21と、
測定ガスをガス分析部21へ選択的に導入する切換装置
22と、ガス分析部21および切換装置22を制御する
制御装置23(シーケンサ、パーソナルコンピュータ
等)と、イオンクロマトグラフ28の出力を制御装置2
3を介して受け測定結果を出力する出力装置24(CR
T、LCD、プリンタ等)とを備えている。
As shown in FIG. 2, the ammonia gas measuring device 1 includes a gas analyzer 21 for measuring ammonia gas,
A switching device 22 for selectively introducing the measurement gas to the gas analysis unit 21, a control device 23 (sequencer, personal computer, etc.) for controlling the gas analysis unit 21 and the switching device 22, and a control device for controlling the output of the ion chromatograph 28. Two
Output device 24 (CR
T, LCD, printer, etc.).

【0012】切換装置22の上流側において、各流体導
入管z,a,b,…,nの途中にはそれぞれ吸引管51
z,51a,51b,…,51nが接続され、これらの
吸引管51は電磁弁52z,52a,52b,…,52
nを介して吸引ポンプ53に接続されている。電磁弁5
2z,52a,52b,…,52nは制御装置23から
の指令により各々独立して開閉制御される。また吸引ポ
ンプ53も制御装置23によって駆動制御される。
On the upstream side of the switching device 22, a suction pipe 51 is provided in the middle of each fluid introduction pipe z, a, b, ..., N.
, 51n are connected, and these suction pipes 51 have solenoid valves 52z, 52a, 52b ,.
It is connected to the suction pump 53 via n. Solenoid valve 5
.., 52n are controlled to be opened and closed independently by a command from the control device 23. The suction pump 53 is also driven and controlled by the control device 23.

【0013】吸引ポンプ53の吸引流量は後述するポン
プ26の吸引流量より多く、10〜20リットル/分程
度である(ポンプ26は1リットル/分程度)。
The suction flow rate of the suction pump 53 is higher than the suction flow rate of the pump 26, which will be described later, and is about 10 to 20 liters / minute (the pump 26 is about 1 liter / minute).

【0014】図3は切換装置22の一例としてのロータ
リーバルブユニットを示し、このユニットは、複数の流
体導入口31と、1つの流体排出口32とを備えてい
る。ユニット内部には、回転自在の円板状回転板33が
配置され、この回転板33には溝34が形成されてい
る。溝34は、流体排出口32と、流体導入口31のう
ちのいずれか1つとを連通させる。回転板33はギアド
モータ35によって回転され、この回転により、流体排
出口32と連通される流体導入口が選択される。尚、切
換装置22としては、たとえば、レオダイン社製「ロー
タリーバルブユニット」や株式会社フロム製「オートマ
チックバルブユニット401シリーズ」等を使用するこ
ともできる。
FIG. 3 shows a rotary valve unit as an example of the switching device 22, and this unit includes a plurality of fluid inlets 31 and one fluid outlet 32. A rotatable disc-shaped rotary plate 33 is arranged inside the unit, and a groove 34 is formed in the rotary plate 33. The groove 34 connects the fluid discharge port 32 and any one of the fluid introduction ports 31. The rotating plate 33 is rotated by the geared motor 35, and this rotation selects the fluid inlet port communicating with the fluid outlet port 32. As the switching device 22, for example, a "rotary valve unit" manufactured by Rheodyne Co., Ltd. or an "automatic valve unit 401 series" manufactured by From Co., Ltd. may be used.

【0015】ガス分析部21は、図2に示すように、拡
散スクラバー25とイオンクロマトグラフ28とを備え
ている。拡散スクラバー25は、フッ素系多孔質膜で構
成された多孔質中空管25aを備え、中空管25aの外
側に吸収液としての純水が導入され、中空管25aの内
側は流体導入管pによって切換装置22の流体排出口3
2と接続されている。拡散スラバー25の出口側にはポ
ンプ26が配置されて、測定ガスを吸入し、測定ガス中
のアンモニア成分は、中空管25aを通過する間に吸収
液に吸収される。一方、測定ガス中の水分は弁27を介
して排出される。アンモニア成分を吸収した吸収液はイ
オンクロマトグラフ28に送られ、そこにおいてアンモ
ニアが分離分析される。この分析結果は制御装置23を
介して出力装置24に送出されアンモニア濃度として出
力(表示)される。
As shown in FIG. 2, the gas analysis section 21 includes a diffusion scrubber 25 and an ion chromatograph 28. The diffusion scrubber 25 includes a porous hollow tube 25a made of a fluorine-based porous film, pure water as an absorbing liquid is introduced to the outside of the hollow tube 25a, and the inside of the hollow tube 25a is a fluid introduction tube. fluid discharge port 3 of the switching device 22 by p
It is connected to 2. A pump 26 is arranged on the outlet side of the diffusion slubber 25 to suck the measurement gas, and the ammonia component in the measurement gas is absorbed by the absorbing liquid while passing through the hollow tube 25a. On the other hand, the water content in the measurement gas is discharged via the valve 27. The absorption liquid that has absorbed the ammonia component is sent to the ion chromatograph 28, where the ammonia is separated and analyzed. The analysis result is sent to the output device 24 via the control device 23 and output (displayed) as the ammonia concentration.

【0016】図3に示す切換装置22の複数の流体導入
口31のうちの1つには流体導入管xを介して洗浄液と
しての純水41が供給される。さらに、純水41は図2
のポンプ42によってイオン交換樹脂装置43を通して
循環され再生される。
Pure water 41 as a cleaning liquid is supplied to one of the plurality of fluid introducing ports 31 of the switching device 22 shown in FIG. 3 via a fluid introducing pipe x. Further, the pure water 41 is shown in FIG.
The pump 42 of FIG.

【0017】次に図4に示す本発明実施例のタイミング
チャート及び図3などを用いて本発明実施例の動作を説
明する。
Next, the operation of the embodiment of the present invention will be described with reference to the timing chart of the embodiment of the present invention shown in FIG. 4 and FIG.

【0018】はじめに、制御装置23は、例えば電磁弁
52aを閉じ、残りのすべての電磁弁を開放し(図4
(f)(g)(h))、図3のギアドモータ35を駆動
させて回転板33を回転させ、流体導入管aからの測定
ガスが流通するように切換装置22を制御する(図4
(a))。A室からの測定ガスは図2のポンプ26によ
って吸入され、この測定ガスに含まれるアンモニア成分
は図2の拡散スクラバー25の吸収液に捕集され、吸収
液はガス分析部21へ送られて分析される(図4
(e))。
First, the controller 23 closes, for example, the solenoid valve 52a and opens all the remaining solenoid valves (see FIG. 4).
(F) (g) (h)), the geared motor 35 of FIG. 3 is driven to rotate the rotary plate 33, and the switching device 22 is controlled so that the measurement gas from the fluid introduction pipe a flows (FIG. 4).
(A)). The measurement gas from the chamber A is sucked by the pump 26 of FIG. 2, the ammonia component contained in the measurement gas is collected by the absorption liquid of the diffusion scrubber 25 of FIG. 2, and the absorption liquid is sent to the gas analysis unit 21. Analyzed (Figure 4)
(E)).

【0019】A室からの測定ガスが流体導入管aからガ
ス分析部21へ送られている間、他の流体導入管からの
測定ガスは各電磁弁52を介して吸引ポンプ53によっ
て多量に吸引される。
While the measurement gas from the chamber A is being sent from the fluid introduction pipe a to the gas analysis section 21, a large amount of the measurement gas from the other fluid introduction pipes is sucked by the suction pump 53 via each electromagnetic valve 52. To be done.

【0020】所定時間(たとえば20分)経過後、切換
装置22の流体導入口は洗浄液側に切り換えられ微量
(たとえば0.1cc)の洗浄液が切換装置22内に導
入される(図4(b))。これにより切換装置22内に
残留するアンモニア成分は洗浄液(水)に捕集され洗浄
される。洗浄液はポンプ42の圧力により押し出され、
切換装置22を経て拡散スクラバーの中空管25a内を
通過し、弁27を介して排出される。
After a lapse of a predetermined time (for example, 20 minutes), the fluid inlet of the switching device 22 is switched to the cleaning liquid side and a small amount (for example, 0.1 cc) of the cleaning liquid is introduced into the switching device 22 (FIG. 4 (b)). ). As a result, the ammonia component remaining in the switching device 22 is collected in the cleaning liquid (water) and cleaned. The cleaning liquid is pushed out by the pressure of the pump 42,
After passing through the switching device 22, it passes through the hollow tube 25a of the diffusion scrubber and is discharged through the valve 27.

【0021】次に、制御装置23は、電磁弁52bを閉
じ、残りのすべての電磁弁を開放し(図4(f)(g)
(h))、流体導入管bからの測定ガスが流通するよう
に切換装置22を制御する(図4(c))。その間他の
流体導入管から測定ガスは吸引ポンプ53によって多量
に吸引される。以下、N室の測定ガス導入まで同様の動
作が繰り返される(図4(d))。
Next, the controller 23 closes the solenoid valve 52b and opens all the remaining solenoid valves (FIGS. 4 (f) (g)).
(H)), The switching device 22 is controlled so that the measurement gas from the fluid introducing pipe b flows (FIG. 4 (c)). During that time, a large amount of the measurement gas is sucked from the other fluid introduction pipe by the suction pump 53. Hereinafter, the same operation is repeated until the measurement gas is introduced into the N chamber (FIG. 4 (d)).

【0022】上記のような本発明のガス分析装置を用い
れば、流体導入管の長さが長い場合であっても、吸引ポ
ンプ53の吸引によってガス流量が多くなるため、流体
導入管内の残留ガスや付着ガスの影響を受けにくくな
り、前回の測定ガスの影響が少なくなる。
When the gas analyzer of the present invention as described above is used, the gas flow rate increases due to the suction of the suction pump 53 even when the length of the fluid introducing pipe is long, so that the residual gas in the fluid introducing pipe is increased. It is less likely to be affected by the adhered gas, and the effect of the previously measured gas is reduced.

【0023】発明者らの実験によれば、吸引ポンプ53
を付けない従来タイプの装置の場合、測定ガスはポンプ
26だけで吸入されるので応答(測定値を測定量の真の
値で除したもの)が悪かった。すなわち、50mの流体
導入管を使用し、24時間経過後した場合でも応答は悪
く75%程度であった。これに対して、上記装置を用い
て、測定開始前に吸引ポンプ53により15リットル/
分の吸入量で1時間吸引を行ったところ、測定開始後1
時間経過時の応答は93%、2時間経過時の応答は97
%であり、コンタミネーションの少ない測定結果が得ら
れた。なお、前もって吸引させる時間を増加させること
によって、その後の応答は良くなる。
According to the experiments conducted by the inventors, the suction pump 53
In the case of the conventional type device without the pump, the measurement gas is sucked only by the pump 26, so that the response (measured value divided by the true value of the measured amount) was poor. That is, the response was poor and was about 75% even after 24 hours had elapsed using a 50 m fluid introduction pipe. On the other hand, using the above-mentioned apparatus, the suction pump 53 was used to measure 15 liters /
After inhaling for 1 hour with a minute inhalation amount, 1
93% responded over time and 97 responded over 2 hours
%, And the measurement result with less contamination was obtained. It should be noted that by increasing the suction time in advance, the response after that becomes better.

【0024】上記実施例においては、流体導入管のすべ
てについて吸引ポンプ53によって吸引するようにした
が、所定の流体導入管だけを吸引ポンプ53によって吸
引し、他の流体導入管はポンプ26によって吸入するよ
うにしてもよい。そうすれば吸引ポンプ53の容量は小
さくてすむという利点がある。
In the above embodiment, the suction pump 53 sucks all the fluid introducing pipes, but only the predetermined fluid introducing pipe is sucked by the suction pump 53, and the other fluid introducing pipes are sucked by the pump 26. You may do it. This has the advantage that the capacity of the suction pump 53 can be small.

【0025】ところで、各流体導入管からの吸入量を増
加させるため、従来タイプの装置において、ポンプ26
により多量に吸入を行うことも考えられるが、そうする
と拡散スクラバー25にかなりの負圧がかかり、測定ガ
スばかりでなく吸収液(純水)も吸引されてしまい、ポ
ンプ26に水分が入ってしまうという問題が生じる。ま
た拡散スクラバー25の上流側にポンプを配置するとい
うことも考えられるが、そうするとポンプ内から発生す
るアンモニアが拡散スクラバー25に入ってしまい、微
量アンモニアの測定が 不可能になるという問題が生じ
る。これに対して、本発明によれば、切換装置22の上
流側に吸引ポンプ53を配置しているので、上記のよう
な問題を発生させることなく、コンタミネーションの少
ない正確な測定を行うことができる。
By the way, in order to increase the suction amount from each fluid introduction pipe, in the conventional type device, the pump 26
Although it is possible to inhale a large amount by this, a considerable negative pressure is applied to the diffusion scrubber 25, and not only the measurement gas but also the absorbing liquid (pure water) is sucked in, which causes water to enter the pump 26. The problem arises. It is also conceivable to arrange a pump on the upstream side of the diffusion scrubber 25. However, if this is done, ammonia generated from within the pump will enter the diffusion scrubber 25, and this will cause a problem that a trace amount of ammonia cannot be measured. On the other hand, according to the present invention, since the suction pump 53 is disposed on the upstream side of the switching device 22, it is possible to perform accurate measurement with less contamination without causing the above problems. it can.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
コンタミネーションを抑えて正確な測定ができるという
効果が得られる。
As described above, according to the present invention,
The effect is obtained that contamination can be suppressed and accurate measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス分析装置用切換装置を用いた
クリーンルーム用アンモニアガス測定装置のクリーンル
ーム内における配置を示す図。
FIG. 1 is a diagram showing an arrangement in a clean room of an ammonia gas measuring device for a clean room using a switching device for a gas analyzer according to the present invention.

【図2】アンモニアガス測定装置の構成を示す本発明実
施例の構成説明図。
FIG. 2 is a structural explanatory view of an embodiment of the present invention showing the structure of an ammonia gas measuring device.

【図3】切換装置としてのロータリバルブユニットの斜
視図。
FIG. 3 is a perspective view of a rotary valve unit as a switching device.

【図4】実施例の動作を示すタイミングチャート。FIG. 4 is a timing chart showing the operation of the embodiment.

【符号の説明】[Explanation of symbols]

1 アンモニアガス測定装置 21 ガス分析部 22 切換装置 51z,51a,51b,…,51n 吸引管 52z,52a,52b,…,52n 電磁弁 53 吸引ポンプ z,a,b,…,n 流体導入管 1 Ammonia gas measuring device 21 Gas analysis part 22 Switching device 51z, 51a, 51b, ..., 51n Suction pipe 52z, 52a, 52b, ..., 52n Solenoid valve 53 Suction pump z, a, b, ..., n Fluid introduction pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 30/26 G01N 30/26 Q 30/32 30/32 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01N 30/26 G01N 30/26 Q 30/32 30/32 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の流体導入路を有しそのうちの少な
くとも1つを選択的にガス分析装置へ導く切換手段と、
前記流体導入路の各々に接続されて測定ガスを吸引する
ための吸引手段とを備えたことを特徴とするガス分析装
置用切換装置。
1. A switching means which has a plurality of fluid introduction paths and which selectively guides at least one of them to a gas analyzer.
A switching device for a gas analyzer, comprising: a suction unit connected to each of the fluid introduction paths and configured to suction a measurement gas.
【請求項2】 前記各流体導入路は弁を介して前記吸引
手段と接続されるとともに、前記弁を各々独立して制御
する制御手段を設けた請求項1に記載の切換装置。
2. The switching device according to claim 1, wherein each of the fluid introduction paths is connected to the suction means via a valve, and control means for independently controlling the valve is provided.
【請求項3】 前記制御手段は、前記切換手段によって
前記流体路のうちの1つが選択されたとき、その選択さ
れた流体導入路に接続された弁を閉じ、その他の弁は開
放するように制御する請求項2に記載の切換装置。
3. The control means, when one of the fluid paths is selected by the switching means, closes a valve connected to the selected fluid introduction path and opens the other valves. The switching device according to claim 2, which is controlled.
JP15897896A 1996-05-30 1996-05-30 Switching device for gas analyzer Expired - Fee Related JP3601635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15897896A JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15897896A JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Publications (2)

Publication Number Publication Date
JPH09318609A true JPH09318609A (en) 1997-12-12
JP3601635B2 JP3601635B2 (en) 2004-12-15

Family

ID=15683543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15897896A Expired - Fee Related JP3601635B2 (en) 1996-05-30 1996-05-30 Switching device for gas analyzer

Country Status (1)

Country Link
JP (1) JP3601635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078280A (en) * 2000-02-03 2001-08-20 가네꼬 히사시 Trace-level gas analysis apparatus and method
US6470760B2 (en) 1998-06-29 2002-10-29 Nec Corporation Method and apparatus for automatically analyzing trace substance
KR100475644B1 (en) * 2002-05-27 2005-03-17 주식회사 위드텍 High collection efficiency method of ammonia gas and automated monitoring system
US7105133B2 (en) 2001-09-28 2006-09-12 Samsung Electronics, Co., Ltd. Fluid sampling apparatus and fluid analyzer having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470760B2 (en) 1998-06-29 2002-10-29 Nec Corporation Method and apparatus for automatically analyzing trace substance
KR20010078280A (en) * 2000-02-03 2001-08-20 가네꼬 히사시 Trace-level gas analysis apparatus and method
US7105133B2 (en) 2001-09-28 2006-09-12 Samsung Electronics, Co., Ltd. Fluid sampling apparatus and fluid analyzer having the same
KR100475644B1 (en) * 2002-05-27 2005-03-17 주식회사 위드텍 High collection efficiency method of ammonia gas and automated monitoring system

Also Published As

Publication number Publication date
JP3601635B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US7208123B2 (en) Molecular contamination monitoring system and method
US6295864B1 (en) Analysis system and method for water-soluble contaminants in a cleanroom environment
US7913535B2 (en) Apparatus and methods for dilution
JP2004510973A (en) Air sampler
JPH09318609A (en) Switching device for gas analyzer
US6176120B1 (en) Methods of analyzing water soluble contaminants generated during microelectronic device manufacturing processes
CA2531344A1 (en) Apparatus for measuring mercury contained in gaseous medium
US6053058A (en) Atmosphere concentration monitoring for substrate processing apparatus and life determination for atmosphere processing unit of substrate processing apparatus
JPH09196828A (en) Changeover device for gas analyzing device
JPH10104134A (en) Apparatus for constant flow rate diluted sampling for internal combustion engine exhaust gas
JP2000180364A (en) Gas analyser
JPH0743636Y2 (en) SO ▲ 2 ▼ Gas analyzer
JPH1174169A (en) Substrate-processing apparatus equipped with life discriminating device for atmosphere processing part
JP2002214116A (en) Gas removal rate test method and testing device of chemical filter
JP2004138557A (en) Gas measurement device
JPH07174765A (en) Dispenser
JP2003149099A (en) Apparatus for measuring engine exhaust gas
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid
JP3533082B2 (en) Hydrocarbon analyzer
CN114878081B (en) Efficient filter leakage detection device and detection method
JPH0348530Y2 (en)
JP3051015B2 (en) Metal component analyzer
JPS63132170A (en) Method for co-cleaning of pipeline of analysis instrument of the like
JP3521420B2 (en) Gas analyzer for gas analysis
JPH039016Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees