JP4042638B2 - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP4042638B2
JP4042638B2 JP2003174252A JP2003174252A JP4042638B2 JP 4042638 B2 JP4042638 B2 JP 4042638B2 JP 2003174252 A JP2003174252 A JP 2003174252A JP 2003174252 A JP2003174252 A JP 2003174252A JP 4042638 B2 JP4042638 B2 JP 4042638B2
Authority
JP
Japan
Prior art keywords
gas
water vapor
sample
sample cell
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003174252A
Other languages
Japanese (ja)
Other versions
JP2005010007A (en
Inventor
克彦 荒谷
博司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003174252A priority Critical patent/JP4042638B2/en
Publication of JP2005010007A publication Critical patent/JP2005010007A/en
Application granted granted Critical
Publication of JP4042638B2 publication Critical patent/JP4042638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化学工場や製鉄所のガス濃度に関するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排ガス測定などに使用するのに適した赤外線ガス分析計に関し、特にガス分子固有の赤外線吸収効果を利用してガス又は蒸気中にある特定成分の濃度を測定する赤外線ガス分析計に関する。
【0002】
【従来の技術】
基準ガスと試料ガスを試料セルに切り換えて流通させる赤外線ガス分析計が知られている。
図9はそのような赤外線ガス分析計で、本発明者が先に提案したものの流路図である(特許文献1参照。)。試料セル1はガス導入口1aとガス排出口1bを有し、三方弁7を介して試料ガス又は基準ガスがガス導入口1aから試料セル1内に供給され、ガス排出口1bから排出される。試料セル1の一端には赤外光を発する光源5が配設され、試料セル1の他端には試料セル1を透過した赤外光を検出するための検出器2が配設されている。
【0003】
光源5と試料セル1端部の間には赤外光を断続するためのセクタ3が設けられている。セクタ3は遮光部と切欠部とからなり、回転軸を中心に回転して、切欠部が試料セル1の光軸上にあるときに赤外光を試料セル1内に照射し、遮光部が試料セル1光軸上にあるときに試料セル1内への赤外光の照射を遮断するように構成されている。コントローラ6はモータ4を介してセクタ3の回転位置制御を行い、また、ドライバ8を介して三方弁7の駆動制御を行う。
【0004】
検出器2はその内部に試料ガス中の測定対象ガスが封入されており、測定対象ガス固有の周波数の赤外光強度を内部の圧力変化により検出する。そして、検出器2での検出出力は、信号処理回路9で所定の信号処理を受け、試料ガス中の測定ガス濃度が計測される。
【0005】
このような赤外線ガス分析計では、三方弁7を介して試料セル1に供給される基準ガスと試料ガスを得るための前処理装置が三方弁7の試料ガス用ポートと標準ガス用ポートにそれぞれ接続される。それらの前処理装置には、図10に示されるように、それぞれダスト除去のためのフィルタ12a,12b、ガスを吸引するポンプ14a,14b、ガス流量を調整するニードル弁16a,16bのほか、ガスを除湿するためにペルチェ素子を利用した電子クーラ18a,18bが設けられている。
【0006】
基準ガスとしては、基準ガスに含まれる測定対象成分の濃度が測定に影響しない程度である必要があり、大気や、大気を精製器に通して測定対象成分を取り除いたガスが用いられる。
【0007】
【特許文献1】
特開平9−49797号公報
【0008】
【発明が解決しようとする課題】
赤外線ガス分析計でSO2やNOを測定する場合、SO2、NOの赤外線吸収波長帯に重なる吸収波長帯をもつ水蒸気による干渉誤差がある。図10に示されたような前処理装置では、ガス中の水蒸気を電子クーラで取り除くが、電子クーラで発生するドレンの凍結の問題から電子クーラの温度は低くても1℃程度が限界である。しかし、1℃では、常圧で約7000ppmの水蒸気がガスに含まれる。
【0009】
そのため、SO2やNO測定では検出器信号がガス中の水蒸気影響を受けるため、基準ガスと試料ガスで使われるそれぞれの電子クーラの温度を同一とし、試料セルヘ切り換えて導入される基準ガスと試料ガスに含まれる水蒸気量を等しくして水蒸気誤差を除いている。
【0010】
しかしながら、2つの電子クーラの温度を長期間にわたって全く同一に制御することは難しく、また、電子クーラの使用環境温度が上昇すると、ペルチェ素子の冷却能力の限界から温度制御ができなくなり、2つ電子クーラの温度のずれにより、測定の誤差が大きくなる問題点があった。その対策としては、2つの電子クーラの温度を同一にするために、同じ冷却ブロックに2つの流路を設置する、所謂2系列の電子クーラが用いられることもある。それでも冷却ブロックの温度を温度分布なしに完全に同一にすることは困難である。
【0011】
仮に、2つの電子クーラの温度を全く同一にできたとしても、基準ガスである大気が乾燥していてガス露点が電子クーラ温度より低い場合には、切り換えて試料セルに導入される基準ガスと試料ガスの水蒸気量が異なることになり、測定の誤差が大きくなる問題点があった。
また、電子クーラにより水蒸気の除去を行なった場合、ガスから凝縮した水とガスが接触するので、SO2などの水溶性ガスが凝縮水に吸収されて損失するといった問題もある。
【0012】
本発明は、上記の問題を解決するためになされたものであって、電子クーラの冷却能力による誤差及びその他の問題を克服することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明は、赤外線によるガス分析の前処理である、電子クーラを用いた基準ガス及び試料ガス中の水蒸気の除去の代わりに、ガス切替用の3方電磁弁と試料セルの間に半透膜水蒸気交換物質を設置することにより、両ガスの水蒸気濃度差を小さくすることを提案する。
【0014】
すなわち、本発明の赤外線ガス分析計は、基準ガスと試料ガスを選択的に試料セルに供給する切換弁と、前記切換弁から試料セルヘガスが導入される途中に設置され、接するガス中の水蒸気をその濃度によって吸着・放出する半透膜水蒸気交換物質を内部に備え、基準ガスと試料ガスがともに前記半透膜水蒸気交換物質を通過することによって両ガスの水蒸気濃度を調節する水蒸気濃度調節手段と、前記試料セルに赤外光を照射する光源と、前記光源からの赤外光を断続する断続手段と、前記試料セルを透過した赤外光を検出する検出器と、前記切換弁の切換え制御と前記断続手段の断続制御とを行うコントローラと、基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値に基づいて試料ガス中の測定ガス濃度を求める信号処理手段とを備えている。
【0015】
【作用】
半透膜水蒸気交換物質は、接するガス中の水蒸気濃度によってガス中の水蒸気を物質内に取り込んだり、逆に水蒸気をガス中に放出したりする所謂調湿機能を有する。基準ガスと試料ガス中の水蒸気濃度が異なる場合でも、半透膜水蒸気交換物質に基準ガスと試料ガスを交互に流すことで、半透膜水蒸気交換物質を通過した両ガス中の水蒸気濃度は等しくなるので、水蒸気濃度の差によって生じる測定誤差を小さくすることができる。
また、基準ガスと試料ガス中の水蒸気濃度差が大きい場合には、電子クーラと半透膜水蒸気交換物質を併用し、電子クーラの下流側に半透膜水蒸気交換物質を設けることによって、より少ない量の半透膜水蒸気交換物質で水蒸気濃度の差によって生じる測定誤差を小さくすることが可能である。
【0016】
【発明の実施の形態】
以下に本発明の一実施例を説明する。
図1は一実施例の赤外線分析計の流路図であり、図9と同一部分には同一の符号を使用する。
試料セル1はガス導入口1aとガス排出口1bを有し、切替弁である三方弁7を介して試料ガス又は基準ガスが導入口1aから試料セル1内に供給され、ガス排出口1bから排出される。
【0017】
この実施例では、三方弁7と試料セル1の間の流路に、ガス中の水蒸気を吸着及び放出する機能を持つ半透膜水蒸気交換物質11を内蔵した水蒸気濃度調節手段10を設置し、三方弁7から供給される試料ガスと基準ガスは、ともにこの水蒸気濃度調節手段10を経由して試料セル1へ導かれる。
【0018】
水蒸気濃度調節手段10が三方弁7と試料セル1の間の流路に配置されたことにより、基準ガスと試料ガスを供給する前処理装置には冷却器は不要になる。すなわち、試料ガスと基準ガスをそれぞれ供給するために、前処理装置は、図2に示されるように、それぞれダスト除去のためのフィルタ12a,12b、ガスを吸引するポンプ14a,14b及びガス流量を調整するニードル弁16a,16bだけを含んだものとなり、ガスを除湿するための冷却器は省略される。
【0019】
試料セル1の一端には赤外光を発する光源5が、また、試料セル1の他端には試料セル1を透過した赤外光を検出するための検出器2が配設されている。
【0020】
光源5と試料セル1端部の間には赤外光を断続するためのセクタ3が設けられている。このセクタ3は、図3に示されるように、遮光部3aと切欠部3bとからなり、セクタ回転軸3cを中心としてセクタ3が回転するよう構成されている。1sは試料セル1の端面を表わしている。セクタ3が回転して切欠部3bが試料セル1の光軸上にあるときに赤外光を試料セル1内に照射し、遮光部3aが試料セル1の光軸上にあるときに試料セル1内への赤外光の照射を遮断する。
【0021】
コントローラ6は、モータ4を介してセクタ3の回転位置制御を行い、また、ドライバ8を介して三方弁7の駆動制御を行う。
三方弁7は、コントローラ6によって2〜10秒程度の一定周期で切り替えられ基準ガスと試料ガスが試料セル1に交互に導入される。それぞれのガスが試料セル1内を置換したときの試料セル1内ガスの赤外線吸光度を検出器2で測定する。
【0022】
検出器2は、その内部に試料ガス中の測定対象ガスが封入されており、測定対象ガス固有の周波数の赤外光強度を内部の圧力変化により検出する。そして、検出器2での検出出力は、信号処理回路9で所定の信号処理を受け、試料ガスでの検出器出力を基準ガスでの検出器出力で補正して、吸光度から濃度演算を行なう。
【0023】
半透膜水蒸気交換物質11は、例えば基材の高分子としてPTFE(ポリテトラフルオロエチレン)やポリスチレン等に対して、スルホン基のような親水性官能基を修飾した水蒸気交換物質など、水蒸気の保持及び放出ができる物質であり、数mm程度の小片にして適当量を容器に入れて、三方弁7と試料セル1の間の流路の間に水蒸気濃度調節手段10として設置する。
【0024】
半透膜水蒸気交換物質11の機能を以下に説明する。
試料ガス中の水蒸気濃度が基準ガスに比べて高い場合を想定し、試料ガスと基準ガスを長い周期で切り替えて半透膜水蒸気交換物質11に導入したときの水蒸気濃度調節手段10の入口ガスと出口ガス中の水蒸気濃度の時間変化を図4(A),(B)に示す。
半透膜水蒸気交換物質11は水蒸気の取り込みや放出をし、水蒸気に対するコンデンサの役割をする。このため、入口ガスではガスの切替によって図4(A)のように矩形型になるが、半透膜水蒸気交換物質11を通すことによって出口ガス中の水蒸気濃度は(B)のように矩形型がなまったような変化をするようになる。
【0025】
図5(A),(B)は図4における基準ガスと試料ガスとの導入の切替周期を短くした場合を示したものである。
ガスの切替周期を短くすると、入口ガス中の水蒸気濃度は矩形であるが、出口ガス中では図5(B)に示されるように、出口ガス中の水蒸気濃度の変化が無くなり、基準ガスと試料ガス中の水蒸気濃度が等しくなる。
【0026】
この水蒸気コンデンサの能力は、使用する半透膜水蒸気交換物質11の量によって決まり、量が多いほどその能力が高くなる。したがって、半透膜水蒸気交換物質11の量を多くすれば、ガス切替周期をより長く、ガス流量をより多く、又は、基準ガスと試料ガス中の水蒸気濃度の差をより大きくしても出口ガス中の水蒸気濃度差を一定にすることができる。これにより、実際に必要な切替周期、流量、基準ガスと試料ガスの水蒸気濃度差などを勘案して半透膜水蒸気交換物質11の量を決定することで、基準ガスと試料ガスの水蒸気濃度差を同じにすることが可能である。
【0027】
以上のように、半透膜水蒸気交換物質11を使用して基準ガスと試料ガスの水蒸気濃度差を同じにすることにより、水蒸気の干渉を受けるSO2やNOの測定を水蒸気の影響を受けないで実施することができる。
半透膜水蒸気交換物質11の形状としては、一般に入手しやすいチューブ状のもの、又は、それを短く切ったものでもよく、特に形状は限定されることはない。
半透膜水蒸気交換物質11は赤外線ガス分析計の他にも、水蒸気の影響を受ける原理のガス分析計にも使用できる。
【0028】
また、基準ガスと試料ガスとの水蒸気濃度差が大きい場合など多量に半透膜水蒸気交換物質11を必要とする際は、半透膜水蒸気交換物質の上流側に電子クーラを設けて両ガス間の水蒸気濃度差を小さくして、半透膜水蒸気交換物質11の設置量を少量にすることも可能である。そうすることで、切替弁から試料セルまでの容積を小さくすることができ、分析装置本体を小型化することができる。
【0029】
図6は信号処理回路9の一実施例を示したものである。
比較器9bは予め決められた所定電圧Vrと基準ガスを透過した赤外光の検出出力である比較信号との差に比例した信号を出力し、増幅器9aはかかる比較器9bの出力によりゲインが調整されるよう構成されている。このため、増幅器9aのゲインは、基準ガスの増幅された後の出力が一定値Vrに保持されるように調整されることとなり、この試料ガスの検出出力である測定信号がここでゲイン倍されることによって、基準ガスとの出力比が求められることとなる。
【0030】
そして、増幅器9aの出力は、試料ガス又は基準ガスの供給状態に応じてコントローラ6によって引算器9cの測定入力又は比較入力に適宜切り換えられ、引算器9cは両者の差をとり出力する。ここで、検出器2の比較信号をR,測定信号をMとすると、増幅器9aの増幅率は、比較信号Rを一定値VrにするようVr/Rとなるため、引算器9cの出力Vは、
V=(Vr/R)・(R−M)
=Vr(1−M/R)
となり、測定信号Mと比較信号Rとの比に応じた出力を得ることができる。
【0031】
このように、試料ガス、基準ガスを透過した赤外光を別々に検出し、両者の検出出力比を求めるよう構成したため、光源の印加電圧や周囲温度或いは光源自体の劣化等による光量変化、試料セルの透過窓やセル内の汚れ、さらに検出器の感度変化があっても、検出精度が低下するといった問題が解消できる。
【0032】
次に、コントローラ6の動作を図7のフローチャートに基づいて説明する。まず、モータ4を介してセクタ3を回転させ赤外光を遮断した状態で(ステップS1)、一つ前に供給したガスとは異なるガスを供給するようにドライバ8を介して三方弁7を切り換える(ステップS2,S3,S4)。そして、供給されたガスが前回供給されたガスを完全に置換して試料セル1に充填されるまでの時間を待って(ステップS5)、再びモータ4を介してセクタ3を回転させ赤外光を試料セル1内に照射する(ステップS6)。そして、検出器2において赤外光が検出されるための時間を待って、再度モータ4を介してセクタ3を回転させ赤外光を遮断し、上記ステップS1〜S7の動作を繰り返す。
【0033】
図8は、以上のようにコントローラ6が動作したときのセクタ3の開閉動作と、試料セル1内の試料ガスの充填状態を示すタイミングチャートである。この図では、試料セル1の内径を8mm、長さを50mm、内容積2.51cm3、ガス流量1リットル/minとし、0.5秒毎に三方弁7を切り換えた場合の例が示されている。かかる場合、ガスが完全に入れ換わる時間は0.15秒となり、試料セル内の試料ガスの状態は図8の上図に示されるようになる。ここで、試料ガスが存在しない部分は基準ガスが充填されていることを示している。
【0034】
コントローラ6によりセクタ3が駆動されるタイミングは、図8下図に示されているように、三方弁7を切り換えてからセクタ3を駆動し赤外光を試料セル1に照射するまでの時間を、ガスが完全に置換されるまでの時間の約2倍の0.3秒程度とすれば、ガスが完全に入れ替わった状態で赤外光が入射されるため、より精度の高い測定が可能となると共に、ガスの流量が0.5リットル/min程度に下がった場合であっても、測定精度に影響を与えることはない。
【0035】
このように、試料セル1内のガスが完全に置換される時間を予め求めておき、三方弁7を切り換えてからその時間を待って或いはさらに余裕を持たせてセクタ3を駆動し赤外光を試料セル1に照射するようにすれば、ガスが置換される際の流量変化による検出精度への影響を削減することができる。
【0036】
なお、以上の実施例では、セクタ3を回転駆動することによって、赤外光を断続的に試料セル1に照射するよう構成したが、セクタを設けるのに替えて光源への電力供給を断続することによって赤外光の照射を断続するようにしてもよい。
【0037】
【発明の効果】
本発明の赤外線ガス分析計では、基準ガスと試料ガスの供給を切り換える切換弁と試料セルの間に半透膜水蒸気交換物質を内蔵した水蒸気濃度調節手段を設置したことで、SO2などの水溶性ガスの損失がなく、応答の早いガス分析計が実現できる。
また、使用環境温度が高い状況で電子クーラによる水蒸気の除去を行なうと、電子クーラの冷却能力が不足し温度制御ができなくなるといった問題が生じたが、代わりに半透膜水蒸気交換物質を使用すれば、使用環境温度の影響を受けずに測定を実行することができる。
【0038】
電子クーラを使用した場合、基準ガスが乾燥し、電子クーラ温度よりも露点が低い場合には水蒸気による誤差が大きくなるが、そのような乾燥基準ガスの場合でも半透膜水蒸気交換物質を使用すれば水蒸気の影響による測定誤差を小さくすることができる。
また、半透膜水蒸気交換物質を内蔵した水蒸気濃度調節手段は電源供給が不要であり、小型でもあるため、電子クーラを使用した場合に比べて、小型で安価なガス分析計を構成することができる。
【図面の簡単な説明】
【図1】一実施例の赤外線分析計を示す流路図である。
【図2】同実施例において供給されるガスの前処理装置を示す流路図である。
【図3】同実施例におけるセクタを示す平面図である。
【図4】基準ガスと試料ガスの長周期切換え時の半透膜水蒸気交換物質の機能を説明するための図であり、(A)は水蒸気濃度調節手段の入口におけるガス中の水蒸気濃度、(B)は水蒸気濃度調節手段の出口におけるガス中の水蒸気濃度を示すグラフである。
【図5】基準ガスと試料ガスの短周期切換え時の半透膜水蒸気交換物質の機能を説明するための図であり、(A)は水蒸気濃度調節手段の入口におけるガス中の水蒸気濃度、(B)は水蒸気濃度調節手段の出口におけるガス中の水蒸気濃度を示すグラフである。
【図6】同実施例における信号処理回路を示す回路図である。
【図7】同実施例の動作を示すフローチャート図である。
【図8】同実施例の動作を示すタイミングチャート図である。
【図9】従来の赤外線分析計を示す流路図である。
【図10】同従来例において供給されるガスの前処理装置を示す流路図である。
【符号の説明】
1 試料セル
1a ガス導入口
1b ガス排出口
2 検出器
3 セクタ
5 光源
6 コントローラ
7 三方弁
8 ドライバ
10 水蒸気濃度調節手段
11 半透膜水蒸気交換物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared gas analyzer suitable for use in process monitors relating to gas concentrations in chemical factories and steelworks, analysis of combustion gases in boilers and combustion furnaces, air pollution monitoring, automobile exhaust gas measurement, etc. The present invention relates to an infrared gas analyzer that measures the concentration of a specific component in a gas or vapor by using an inherent infrared absorption effect.
[0002]
[Prior art]
An infrared gas analyzer is known in which a reference gas and a sample gas are switched to flow through a sample cell.
FIG. 9 is a flow chart of such an infrared gas analyzer, which was previously proposed by the present inventor (see Patent Document 1). The sample cell 1 has a gas inlet 1a and a gas outlet 1b. A sample gas or a reference gas is supplied from the gas inlet 1a into the sample cell 1 through the three-way valve 7, and is discharged from the gas outlet 1b. . A light source 5 that emits infrared light is disposed at one end of the sample cell 1, and a detector 2 for detecting infrared light transmitted through the sample cell 1 is disposed at the other end of the sample cell 1. .
[0003]
A sector 3 for interrupting infrared light is provided between the light source 5 and the end portion of the sample cell 1. Sector 3 includes a light shielding portion and a cutout portion, and rotates around a rotation axis. When the cutout portion is on the optical axis of sample cell 1, infrared light is irradiated into sample cell 1, and the light shielding portion is When the sample cell 1 is on the optical axis, it is configured to block irradiation of infrared light into the sample cell 1. The controller 6 controls the rotational position of the sector 3 via the motor 4, and controls the driving of the three-way valve 7 via the driver 8.
[0004]
The detector 2 has a measurement target gas in the sample gas sealed therein, and detects infrared light intensity at a frequency unique to the measurement target gas based on a change in internal pressure. The detection output from the detector 2 is subjected to predetermined signal processing by the signal processing circuit 9, and the measurement gas concentration in the sample gas is measured.
[0005]
In such an infrared gas analyzer, a pretreatment device for obtaining a reference gas and a sample gas supplied to the sample cell 1 via the three-way valve 7 is provided at the sample gas port and the standard gas port of the three-way valve 7, respectively. Connected. As shown in FIG. 10, these pretreatment devices include filters 12a and 12b for removing dust, pumps 14a and 14b for sucking gas, needle valves 16a and 16b for adjusting the gas flow rate, and gas. Electronic coolers 18a and 18b using Peltier elements are provided to dehumidify the water.
[0006]
As the reference gas, it is necessary that the concentration of the measurement target component contained in the reference gas does not affect the measurement, and the atmosphere or a gas obtained by removing the measurement target component by passing the atmosphere through a purifier is used.
[0007]
[Patent Document 1]
JP-A-9-49797
[Problems to be solved by the invention]
When measuring SO 2 and NO with an infrared gas analyzer, there is an interference error due to water vapor having an absorption wavelength band overlapping with the infrared absorption wavelength bands of SO 2 and NO. In the pretreatment apparatus as shown in FIG. 10, the water vapor in the gas is removed by the electronic cooler, but due to the problem of freezing of the drain generated in the electronic cooler, the temperature of the electronic cooler is about 1 ° C. at the lowest. . However, at 1 ° C., about 7000 ppm of water vapor is contained in the gas at normal pressure.
[0009]
Therefore, in SO 2 and NO measurement, the detector signal is affected by water vapor in the gas. Therefore, the temperature of each electronic cooler used in the reference gas and the sample gas is the same, and the reference gas and the sample introduced by switching to the sample cell. The water vapor error is eliminated by equalizing the amount of water vapor contained in the gas.
[0010]
However, it is difficult to control the temperature of the two electronic coolers exactly the same over a long period of time, and if the operating environment temperature of the electronic cooler rises, the temperature cannot be controlled due to the limit of the cooling capacity of the Peltier element. There was a problem that the measurement error increased due to the temperature difference of the cooler. As a countermeasure, a so-called two-line electronic cooler in which two flow paths are installed in the same cooling block in order to make the temperatures of the two electronic coolers the same may be used. Nevertheless, it is difficult to make the temperature of the cooling block completely the same without temperature distribution.
[0011]
Even if the temperatures of the two electronic coolers can be made exactly the same, if the atmosphere as the reference gas is dry and the gas dew point is lower than the electronic cooler temperature, the reference gas to be switched and introduced into the sample cell There was a problem that the amount of water vapor in the sample gas was different, resulting in a large measurement error.
Further, when water vapor is removed by an electronic cooler, water condensed from the gas comes into contact with the gas, so that there is a problem that water-soluble gas such as SO 2 is absorbed by the condensed water and lost.
[0012]
The present invention has been made to solve the above-described problems, and aims to overcome errors and other problems caused by the cooling capacity of the electronic cooler.
[0013]
[Means for Solving the Problems]
The present invention provides a semipermeable membrane between a three-way solenoid valve for gas switching and a sample cell, instead of removing the water vapor in the reference gas and the sample gas using an electronic cooler, which is a pretreatment for gas analysis by infrared rays. We propose to reduce the water vapor concentration difference between the two gases by installing a water vapor exchange material.
[0014]
That is, the infrared gas analyzer of the present invention includes a switching valve that selectively supplies a reference gas and a sample gas to the sample cell, and a gas stream in the gas in contact with the switching valve that is installed in the middle of the introduction of the gas from the switching valve to the sample cell. A water vapor concentration adjusting means for adjusting the water vapor concentration of both gases by adsorbing and releasing the semipermeable membrane water vapor exchange material in accordance with its concentration, and allowing both the reference gas and the sample gas to pass through the semipermeable membrane water vapor exchange material A light source for irradiating the sample cell with infrared light, an intermittent means for interrupting infrared light from the light source, a detector for detecting infrared light transmitted through the sample cell, and switching of the switching valve The measurement gas concentration in the sample gas is obtained based on the controller that performs control and the intermittent control of the intermittent means, and the detection values of the infrared light transmitted through the reference gas and the sample gas in the detector. And a signal processing unit.
[0015]
[Action]
The semipermeable membrane water vapor exchange material has a so-called humidity control function of taking water vapor in the gas into the material or conversely releasing water vapor into the gas depending on the water vapor concentration in the gas in contact therewith. Even when the water vapor concentrations in the reference gas and the sample gas are different, by alternately flowing the reference gas and the sample gas through the semipermeable membrane water exchange material, the water vapor concentrations in both gases that have passed through the semipermeable membrane water exchange material are equal. Therefore, the measurement error caused by the difference in water vapor concentration can be reduced.
In addition, when the water vapor concentration difference between the reference gas and the sample gas is large, it is less by using an electronic cooler and a semipermeable membrane water vapor exchange material together and providing a semipermeable membrane water vapor exchange material downstream of the electronic cooler. It is possible to reduce the measurement error caused by the difference in water vapor concentration with the amount of semipermeable membrane water vapor exchange material.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
FIG. 1 is a flow chart of an infrared analyzer according to one embodiment, and the same reference numerals are used for the same parts as in FIG.
The sample cell 1 has a gas introduction port 1a and a gas discharge port 1b, and a sample gas or a reference gas is supplied from the introduction port 1a into the sample cell 1 through a three-way valve 7 which is a switching valve. Discharged.
[0017]
In this embodiment, in the flow path between the three-way valve 7 and the sample cell 1, a water vapor concentration adjusting means 10 containing a semipermeable membrane water vapor exchange material 11 having a function of adsorbing and releasing water vapor in the gas is installed, Both the sample gas and the reference gas supplied from the three-way valve 7 are led to the sample cell 1 via the water vapor concentration adjusting means 10.
[0018]
Since the water vapor concentration adjusting means 10 is disposed in the flow path between the three-way valve 7 and the sample cell 1, a cooler is not required for the pretreatment device that supplies the reference gas and the sample gas. That is, in order to supply each of the sample gas and the reference gas, the pretreatment apparatus has filters 12a and 12b for removing dust, pumps 14a and 14b for sucking gas, and gas flow rates as shown in FIG. Only the needle valves 16a and 16b to be adjusted are included, and a cooler for dehumidifying the gas is omitted.
[0019]
A light source 5 that emits infrared light is disposed at one end of the sample cell 1, and a detector 2 for detecting infrared light that has passed through the sample cell 1 is disposed at the other end of the sample cell 1.
[0020]
A sector 3 for interrupting infrared light is provided between the light source 5 and the end portion of the sample cell 1. As shown in FIG. 3, the sector 3 includes a light shielding portion 3a and a cutout portion 3b, and is configured such that the sector 3 rotates about the sector rotation shaft 3c. 1 s represents the end face of the sample cell 1. When the sector 3 rotates and the notch 3b is on the optical axis of the sample cell 1, infrared light is irradiated into the sample cell 1, and when the light-shielding portion 3a is on the optical axis of the sample cell 1, the sample cell The infrared light irradiation into 1 is cut off.
[0021]
The controller 6 controls the rotational position of the sector 3 via the motor 4, and controls the driving of the three-way valve 7 via the driver 8.
The three-way valve 7 is switched by the controller 6 at a constant period of about 2 to 10 seconds, and the reference gas and the sample gas are alternately introduced into the sample cell 1. The detector 2 measures the infrared absorbance of the gas in the sample cell 1 when each gas replaces the sample cell 1.
[0022]
The detector 2 has a measurement target gas in the sample gas sealed therein, and detects infrared light intensity at a frequency unique to the measurement target gas based on a change in internal pressure. The detection output from the detector 2 is subjected to predetermined signal processing by the signal processing circuit 9, the detector output with the sample gas is corrected with the detector output with the reference gas, and the concentration is calculated from the absorbance.
[0023]
The semipermeable membrane water vapor exchange material 11 is a water retention material such as a water vapor exchange material in which a hydrophilic functional group such as a sulfone group is modified with respect to PTFE (polytetrafluoroethylene), polystyrene, or the like as a polymer of a base material. It is a substance that can be released and is made into small pieces of about several millimeters, an appropriate amount is put in a container, and is installed as a water vapor concentration adjusting means 10 between the flow path between the three-way valve 7 and the sample cell 1.
[0024]
The function of the semipermeable membrane water exchange material 11 will be described below.
Assuming that the water vapor concentration in the sample gas is higher than that of the reference gas, the inlet gas of the water vapor concentration adjusting means 10 when the sample gas and the reference gas are switched to each other at a long cycle and introduced into the semipermeable membrane water vapor exchange material 11 The time change of the water vapor concentration in the outlet gas is shown in FIGS. 4 (A) and 4 (B).
The semipermeable membrane water vapor exchange material 11 takes in and discharges water vapor and serves as a condenser for water vapor. For this reason, the inlet gas has a rectangular shape as shown in FIG. 4A due to gas switching, but the water vapor concentration in the outlet gas is rectangular as shown in FIG. It will start to change as if it has been lost.
[0025]
FIGS. 5A and 5B show a case where the switching cycle of introduction of the reference gas and the sample gas in FIG. 4 is shortened.
When the gas switching cycle is shortened, the water vapor concentration in the inlet gas is rectangular, but in the outlet gas, as shown in FIG. 5B, the change in the water vapor concentration in the outlet gas disappears, and the reference gas and the sample The water vapor concentration in the gas becomes equal.
[0026]
The capacity of the water vapor condenser is determined by the amount of the semipermeable membrane water vapor exchange material 11 to be used, and the capacity increases as the amount increases. Therefore, if the amount of the semipermeable membrane water vapor exchange material 11 is increased, the outlet gas can be increased even if the gas switching period is longer, the gas flow rate is increased, or the difference in the water vapor concentration between the reference gas and the sample gas is increased. The water vapor concentration difference in the inside can be made constant. Accordingly, the difference in water vapor concentration between the reference gas and the sample gas is determined by determining the amount of the semipermeable membrane water vapor exchange material 11 in consideration of the actually required switching period, flow rate, water vapor concentration difference between the reference gas and the sample gas, and the like. Can be the same.
[0027]
As described above, by using the semipermeable membrane water vapor exchange material 11 and making the difference in water vapor concentration of the reference gas and the sample gas the same, the measurement of SO 2 or NO that is affected by water vapor is not affected by water vapor. Can be implemented.
The shape of the semipermeable membrane water exchange material 11 may be a tube shape that is generally available, or a shape obtained by cutting it short, and the shape is not particularly limited.
The semipermeable membrane water exchange material 11 can be used not only for an infrared gas analyzer but also for a gas analyzer based on the principle of being affected by water vapor.
[0028]
Also, when a large amount of semipermeable membrane water exchange material 11 is required, such as when the difference in water vapor concentration between the reference gas and the sample gas is large, an electronic cooler is provided upstream of the semipermeable membrane water vapor exchange material, and It is also possible to make the installation amount of the semipermeable membrane water vapor exchange material 11 small by reducing the difference in water vapor concentration. By doing so, the volume from the switching valve to the sample cell can be reduced, and the analyzer main body can be downsized.
[0029]
FIG. 6 shows an embodiment of the signal processing circuit 9.
The comparator 9b outputs a signal proportional to the difference between the predetermined voltage Vr determined in advance and the comparison signal that is the detection output of the infrared light that has passed through the reference gas, and the amplifier 9a gains due to the output of the comparator 9b. It is configured to be adjusted. Therefore, the gain of the amplifier 9a is adjusted so that the amplified output of the reference gas is held at a constant value Vr, and the measurement signal that is the detection output of the sample gas is multiplied by the gain here. As a result, an output ratio with respect to the reference gas is obtained.
[0030]
The output of the amplifier 9a is appropriately switched to the measurement input or comparison input of the subtractor 9c by the controller 6 according to the supply state of the sample gas or reference gas, and the subtractor 9c takes the difference between the two and outputs it. Here, when the comparison signal of the detector 2 is R and the measurement signal is M, the amplification factor of the amplifier 9a is Vr / R so that the comparison signal R is set to a constant value Vr. Therefore, the output V of the subtractor 9c Is
V = (Vr / R) · (R−M)
= Vr (1-M / R)
Thus, an output corresponding to the ratio between the measurement signal M and the comparison signal R can be obtained.
[0031]
As described above, since the infrared light transmitted through the sample gas and the reference gas is separately detected and the detection output ratio between them is obtained, the change in the light amount due to the applied voltage of the light source, the ambient temperature, or the deterioration of the light source itself, the sample Even if there is a cell transmission window, dirt inside the cell, or a change in sensitivity of the detector, the problem of a decrease in detection accuracy can be solved.
[0032]
Next, the operation of the controller 6 will be described based on the flowchart of FIG. First, in a state where the sector 3 is rotated via the motor 4 and infrared light is blocked (step S1), the three-way valve 7 is set via the driver 8 so as to supply a gas different from the gas previously supplied. Switching (steps S2, S3, S4). Then, after waiting for a time for the supplied gas to completely replace the previously supplied gas and be filled in the sample cell 1 (step S5), the sector 3 is rotated again via the motor 4 to emit infrared light. Is irradiated into the sample cell 1 (step S6). Then, after waiting for a time for infrared light to be detected by the detector 2, the sector 3 is rotated again via the motor 4 to shut off the infrared light, and the operations in steps S1 to S7 are repeated.
[0033]
FIG. 8 is a timing chart showing the opening / closing operation of the sector 3 when the controller 6 is operated as described above, and the filling state of the sample gas in the sample cell 1. In this figure, the inner diameter of the sample cell 1 8 mm, 50 mm length, internal volume 2.51Cm 3, a gas flow rate of 1 l / min, an example in which switching the three-way valve 7 every 0.5 seconds shown ing. In this case, the time for completely replacing the gas is 0.15 seconds, and the state of the sample gas in the sample cell is as shown in the upper diagram of FIG. Here, the portion where the sample gas does not exist indicates that the reference gas is filled.
[0034]
As shown in the lower diagram of FIG. 8, the timing at which the sector 6 is driven by the controller 6 is the time from switching the three-way valve 7 to driving the sector 3 and irradiating the sample cell 1 with infrared light. If it is about 0.3 seconds, which is about twice the time until the gas is completely replaced, infrared light is incident with the gas completely replaced, so that more accurate measurement is possible. At the same time, even if the gas flow rate is reduced to about 0.5 liter / min, the measurement accuracy is not affected.
[0035]
In this way, the time during which the gas in the sample cell 1 is completely replaced is obtained in advance, and the sector 3 is driven by waiting for the time after switching the three-way valve 7 or with a margin, and the infrared light. If the sample cell 1 is irradiated, the influence on the detection accuracy due to the flow rate change when the gas is replaced can be reduced.
[0036]
In the embodiment described above, the sample cell 1 is intermittently irradiated with infrared light by rotationally driving the sector 3, but the power supply to the light source is intermittently provided instead of providing the sector. In this way, the infrared light irradiation may be interrupted.
[0037]
【The invention's effect】
The infrared gas analyzer of the present invention, it was established a water vapor concentration adjusting means incorporating a semi-permeable membrane steam exchange material between the switching valve and the sample cell for switching the supply of the reference gas and the sample gas, water, such as SO 2 It is possible to realize a gas analyzer with no loss of property gas and quick response.
In addition, when water vapor was removed by an electronic cooler in a situation where the operating environment temperature was high, there was a problem that the cooling capacity of the electronic cooler was insufficient and temperature control became impossible, but instead a semipermeable membrane water vapor exchange material was used. For example, measurement can be performed without being affected by the temperature of the use environment.
[0038]
When an electronic cooler is used, the error due to water vapor increases when the reference gas dries and the dew point is lower than the electronic cooler temperature. Even in such a dry reference gas, a semipermeable membrane water exchange material should be used. Thus, measurement errors due to the influence of water vapor can be reduced.
In addition, since the water vapor concentration adjusting means incorporating the semipermeable membrane water vapor exchange material does not require power supply and is small in size, it is possible to construct a gas analyzer that is smaller and less expensive than when an electronic cooler is used. it can.
[Brief description of the drawings]
FIG. 1 is a flow chart showing an infrared analyzer according to one embodiment.
FIG. 2 is a flow chart showing a pretreatment device for gas supplied in the same embodiment.
FIG. 3 is a plan view showing a sector in the embodiment;
FIG. 4 is a diagram for explaining the function of a semipermeable membrane water vapor exchange material when a long period is switched between a reference gas and a sample gas, (A) is a water vapor concentration in the gas at the inlet of the water vapor concentration adjusting means; B) is a graph showing the water vapor concentration in the gas at the outlet of the water vapor concentration adjusting means.
FIG. 5 is a diagram for explaining the function of the semipermeable membrane water vapor exchange material when switching between the reference gas and the sample gas in a short period, (A) is the water vapor concentration in the gas at the inlet of the water vapor concentration adjusting means; B) is a graph showing the water vapor concentration in the gas at the outlet of the water vapor concentration adjusting means.
FIG. 6 is a circuit diagram showing a signal processing circuit in the same example;
FIG. 7 is a flowchart showing the operation of the embodiment.
FIG. 8 is a timing chart showing the operation of the embodiment.
FIG. 9 is a flow chart showing a conventional infrared analyzer.
FIG. 10 is a flow chart showing a pretreatment device for gas supplied in the conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample cell 1a Gas inlet 1b Gas outlet 2 Detector 3 Sector 5 Light source 6 Controller 7 Three-way valve 8 Driver 10 Water vapor concentration control means 11 Semipermeable membrane water vapor exchange material

Claims (4)

基準ガスと試料ガスを選択的に試料セルに供給する切換弁と、
前記切換弁から試料セルヘガスが導入される流路に設置され、接するガス中の水蒸気をその濃度によって吸着・放出する半透膜水蒸気交換物質を内部に備え、基準ガスと試料ガスがともに前記半透膜水蒸気交換物質を通過することによって両ガスの水蒸気濃度を調節する水蒸気濃度調節手段と、
前記試料セルに赤外光を照射する光源と、
前記光源からの赤外光を断続する断続手段と、
前記試料セルを透過した赤外光を検出する検出器と、
前記切換弁の切換え制御と前記断続手段の断続制御とを行うコントローラと、基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値に基づいて試料ガス中の測定ガス濃度を求める信号処理手段とを備えたことを特徴とする赤外線ガス分析計。
A switching valve for selectively supplying a reference gas and a sample gas to the sample cell;
A semipermeable membrane water vapor exchange material is provided in the flow path through which gas is introduced from the switching valve to the sample cell, and adsorbs and releases the water vapor in the gas in contact with its concentration. Both the reference gas and the sample gas are contained in the semipermeable membrane. Water vapor concentration adjusting means for adjusting the water vapor concentration of both gases by passing through the membrane water vapor exchange material;
A light source for irradiating the sample cell with infrared light;
Intermittent means for interrupting infrared light from the light source;
A detector for detecting infrared light transmitted through the sample cell;
A controller that performs switching control of the switching valve and intermittent control of the intermittent means, and a measurement gas concentration in the sample gas based on a detection value in the detector of each infrared light transmitted through the reference gas and the sample gas An infrared gas analyzer comprising: a signal processing means to be obtained.
前記水蒸気濃度調節手段が設けられている流路において、
前記水蒸気濃度調節手段の上流側に電子クーラを設けた請求項1に記載の赤外線ガス分析計
In the flow path provided with the water vapor concentration adjusting means,
The infrared gas analyzer according to claim 1, wherein an electronic cooler is provided upstream of the water vapor concentration adjusting means.
前記コントローラは、基準ガス又は試料ガスを試料セルに供給して試料セル内が基準ガス又は試料ガスに完全に置換された後、前記光源からの赤外光が前記試料セルに照射されるように前記断続手段を制御するものである請求項1又は2に記載の赤外線ガス分析計。  The controller supplies a reference gas or sample gas to the sample cell, and after the inside of the sample cell is completely replaced with the reference gas or sample gas, the sample cell is irradiated with infrared light from the light source. The infrared gas analyzer according to claim 1 or 2, which controls the intermittent means. 前記信号処理手段は、基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値の比に基づいて測定ガス濃度を求める処理を行うものである請求項1から3のいずれかに記載の赤外線ガス分析計。  4. The signal processing unit according to claim 1, wherein the signal processing unit performs a process of obtaining a measurement gas concentration based on a ratio of detection values of the infrared light transmitted through the reference gas and the sample gas in the detector. An infrared gas analyzer as described in 1.
JP2003174252A 2003-06-19 2003-06-19 Infrared gas analyzer Expired - Lifetime JP4042638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174252A JP4042638B2 (en) 2003-06-19 2003-06-19 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174252A JP4042638B2 (en) 2003-06-19 2003-06-19 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JP2005010007A JP2005010007A (en) 2005-01-13
JP4042638B2 true JP4042638B2 (en) 2008-02-06

Family

ID=34097787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174252A Expired - Lifetime JP4042638B2 (en) 2003-06-19 2003-06-19 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP4042638B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721659A (en) * 2012-07-05 2012-10-10 昆明斯派特光谱科技有限责任公司 Air chamber structure for nondispersive spectrum gas analyser
EP3163299B1 (en) * 2015-10-29 2019-05-15 Inficon GmbH Gas detection using gas modulation
CN106198530B (en) * 2016-08-29 2019-09-10 厦门市吉龙德环境工程有限公司 Nutrient salt analyzer structure and its analysis method
JPWO2023282282A1 (en) * 2021-07-09 2023-01-12
CN113686787B (en) * 2021-08-13 2024-07-12 力合科技(湖南)股份有限公司 Filtering pool packaging structure and packaging process

Also Published As

Publication number Publication date
JP2005010007A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US8584505B2 (en) Measuring instrument and method for detecting the content of oil, hydrocarbons and oxidizable gases in air or compressed air
US8206311B2 (en) Analyzer for nitric oxide in exhaled breath with multiple-use sensor
US7240535B2 (en) Method and apparatus for gas measurement at substantially constant pressure
US20050150274A1 (en) Leak detector
US20220074890A1 (en) System having a pre-separation unit
JP2003172700A (en) Method and device for infrared-ray gas analysis
US6360584B1 (en) Devices for measuring gases with odors
JP4042638B2 (en) Infrared gas analyzer
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP3941679B2 (en) Infrared gas analyzer
JP4165341B2 (en) Infrared gas analyzer
EP1099949B1 (en) Device for measuring gases with odors
JP2006349639A (en) Differential infrared gas analysis system and its calibration method
JPH11226341A (en) Method and apparatus for clarification of gas
JP3584863B2 (en) Continuous gas analyzer
JP3777753B2 (en) Odor measuring device
JP3931602B2 (en) Calibration method for concentration measuring device
JP3646389B2 (en) Switching device for gas analyzer
JP2002139431A (en) Gas analyzer for trace organic matter
JP2004226098A (en) Fluid modulation type measuring apparatus
JP2578032B2 (en) Check method of dehumidifier in gas analyzer
WO2023282282A1 (en) Gas measurement device
WO2021059905A1 (en) Gas analysis method and gas analysis device
JP7571482B2 (en) Infrared gas analyzer and calibration method thereof
JPH08101111A (en) Method and device for determining quantity of water vapor ingas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4042638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

EXPY Cancellation because of completion of term