WO2021059905A1 - Gas analysis method and gas analysis device - Google Patents

Gas analysis method and gas analysis device Download PDF

Info

Publication number
WO2021059905A1
WO2021059905A1 PCT/JP2020/033247 JP2020033247W WO2021059905A1 WO 2021059905 A1 WO2021059905 A1 WO 2021059905A1 JP 2020033247 W JP2020033247 W JP 2020033247W WO 2021059905 A1 WO2021059905 A1 WO 2021059905A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentrator
flow path
carrier gas
sample
Prior art date
Application number
PCT/JP2020/033247
Other languages
French (fr)
Japanese (ja)
Inventor
亨久 板橋
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202080064347.6A priority Critical patent/CN114375395A/en
Publication of WO2021059905A1 publication Critical patent/WO2021059905A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample

Definitions

  • the present invention relates to a gas analysis method and a gas analyzer.
  • a heat desorption type gas analyzer when analyzing a very small amount of components in a sample gas, such as when analyzing an environmental pollutant in the air, a heat desorption type gas analyzer may be used (for example, Patent Document 1 below). reference).
  • environmental pollutants include VOCs (Volatile Organic Compounds).
  • This type of gas analyzer is equipped with a concentrator for concentrating the sample gas.
  • the concentrator is provided with a trap tube filled with a collecting agent inside.
  • the components in the sample gas can be collected in the trap tube.
  • the components collected in the trap tube can be desorbed by heating the trap tube.
  • the desorbed high-concentration component can be supplied to the detector for detection.
  • the concentration of the component in the sample gas detected by the detector is measured using a calibration curve.
  • the calibration curve is created using a standard gas containing a component to be measured (target component) at a known concentration. Since a commercially available standard gas contains a target component at a relatively high concentration, it is generally used after being diluted to a low concentration with a diluting gas.
  • the diluted standard gas is supplied to the detector without passing through the concentrator, and the components in the standard gas are detected by the detector.
  • the components in the sample gas are once collected by the concentrator and then detected by the detector.
  • the components in the standard gas are detected by the detector without going through the concentrator. Therefore, the error of the concentration ratio in the concentrator may affect the measurement result of the concentration of the component in the sample gas.
  • the standard gas is once introduced into the concentrator, the components in the standard gas are collected by the concentrator, and then the components are desorbed and supplied to the detector. Can be considered.
  • the components in the standard gas are concentrated in the concentrator and then detected by the detector, there is an advantage that the influence of the error of the concentration ratio by the concentrator on the measurement result can be suppressed.
  • the present invention has been made in view of the above circumstances, and provides a gas analysis method and a gas analyzer capable of optimizing the configuration in a configuration in which a sample gas and a standard gas are introduced into a concentrator, respectively. With the goal.
  • a first aspect of the present invention includes a step of concentrating a component in a sample gas with a concentrator, a step of supplying the concentrated component to a detector by supplying a carrier gas to the concentrator, and a standard gas. After concentrating the components in the mixed gas generated by mixing the carrier gas with the concentrator, the concentrated components are supplied to the detector by supplying the carrier gas to the concentrator.
  • the gas analysis method includes a step of measuring the concentration of the component in the sample gas based on the detection intensity of the component in the sample gas and the component in the mixed gas in the detector.
  • a second aspect of the present invention includes a concentrator, a detector, a carrier gas supply unit, a standard gas supply unit, a sample gas flow path, a standard gas flow path, a carrier gas flow path, a pump, and the like. It is a gas analyzer including a flow meter and a mixer.
  • the concentrator is for concentrating the sample gas introduced from the sample introduction section.
  • the detector is for detecting the components in the sample gas concentrated by the concentrator with the detector.
  • the carrier gas supply unit supplies the carrier gas.
  • the standard gas supply unit supplies standard gas.
  • the sample gas flow path communicates the upstream side of the concentrator with the sample introduction section.
  • the standard gas supply section is communicated with the sample gas flow path at the first confluence section, and the standard gas is introduced into the concentrator from the upstream side via the sample gas flow path.
  • the carrier gas flow path communicates the downstream side of the concentrator with the carrier gas supply unit, and causes the concentrator to introduce the carrier gas from the downstream side.
  • the pump is provided on the downstream side of the first confluence portion, and causes the concentrator to introduce a sample gas or a standard gas from the upstream side.
  • the flow meter is provided on the downstream side of the first confluence and measures the flow rate of the sample gas or standard gas introduced into the concentrator.
  • the mixer mixes the carrier gas supplied from the carrier gas supply unit with the standard gas introduced into the concentrator via the standard gas flow path.
  • the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively.
  • the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively.
  • FIG. 1 is a flow path diagram showing an embodiment of the gas analyzer.
  • This gas analyzer performs analysis by detecting the components in the sample gas introduced from the sample introduction unit 1 with a detector.
  • the detector is, for example, a gas chromatograph 2, and the components in the sample gas are separated by a column (not shown) and detected.
  • Examples of the components to be analyzed include, but are not limited to, environmental pollutants such as VOCs contained in the atmosphere.
  • the sample gas that has passed through the filter 3 can be directly supplied to the gas chromatograph 2 via the flow path 101, but is supplied to the concentrator 4 via the flow path 102 that branches from the flow path 101 at the branch portion 111. You can also do it.
  • the pump 7 connected to the gas chromatograph 2 is driven, so that the sample gas is drawn into the gas chromatograph 2 from the flow path 101.
  • the sample gas supplied from the flow path 101 to the concentrating device 4 via the flow path 102 is concentrated in the concentrating device 4 and then supplied to the gas chromatograph 2 via the flow path 103.
  • the carrier gas supply unit 5 and the standard gas supply unit 6 are fluidly connected to the concentrator 4.
  • the carrier gas supply unit 5 supplies an inert gas such as nitrogen gas as a carrier gas.
  • the standard gas supply unit 6 supplies the standard gas.
  • As the standard gas a span gas (calibration gas) containing one or a plurality of target components at a predetermined concentration is used.
  • the carrier gas supply unit 5 and the standard gas supply unit 6 may each be composed of a gas cylinder that houses the gas in a compressed state.
  • the concentrator 4 has a configuration in which a concentrator 41, a flow meter 42, a pump 43, a mixer 44, and the like are housed in a housing 40.
  • the concentrator 41 is for concentrating components in a gas such as a sample gas introduced from the sample introduction unit 1, and includes a trap tube 411, a heating unit 412, a cooling unit 413, and the like.
  • the trap tube 411 is filled with a collecting agent for collecting the components in the gas.
  • the heating unit 412 is for heating the trap tube 411, and includes, for example, an electric heater.
  • the cooling unit 413 is for cooling the trap pipe 411, and includes, for example, a Peltier element.
  • the components in the gas can be collected and concentrated in the trap pipe 411.
  • the components collected in the trap tube 411 can be desorbed by heating the trap tube 411 with the heating unit 412. If a carrier gas is introduced into the trap tube 411 while desorbing the components collected in the trap tube 411, the desorbed high-concentration component can be derived from the concentrator 41.
  • the flow path 102 for introducing the sample gas into the concentrator 4 communicates with the upstream side of the trap pipe 411 via the valve 212 and the flow path 104.
  • the valve 212 is, for example, a three-way valve, and communicates with the above-mentioned flow path 103 in addition to the flow paths 102 and 104.
  • the valve 212 is in the off state, the flow paths 102 and 104 are in communication, and when the valve 212 is energized and turned on, the flow paths 103 and 104 are in communication.
  • the flow paths 102, 103, and 104 can be selectively communicated with each other.
  • the flow paths 102 and 104 form a sample gas flow path 110 that communicates the upstream side of the concentrator 41 with the sample introduction section 1.
  • the sample gas can be introduced into the concentrator 41 via the sample gas flow path 110, and the components in the sample gas can be concentrated by the concentrator 41.
  • a flow path 105 communicates with the downstream side of the trap pipe 411.
  • the flow path 105 communicates with the flow path 106 via a valve 213.
  • the valve 213 is, for example, a three-way valve, which communicates with the flow path 107 in addition to the flow paths 105 and 106.
  • the valve 213 is in the off state, the flow paths 105 and 106 are in communication, and when the valve 213 is energized and turned on, the flow paths 105 and 107 are in communication. By switching the valve 213 in this way, the flow paths 105, 106, and 107 can be selectively communicated with each other.
  • the flow path 107 constitutes an exhaust flow path that communicates with the outside of the concentrator 4.
  • the flow meter 42 and the pump 43 are provided in the flow path 107 in this order from the upstream side (trap pipe 411 side).
  • gas for example, sample gas
  • the pump 43 is driven after the pump 43 is communicated with the trap pipe 411 with the valve 213 turned on, gas (for example, sample gas) is introduced into the trap pipe 411 from the upstream side, and the inside of the trap pipe 411 is filled.
  • the passing gas is exhausted to the outside through the flow path 107.
  • a valve 210 that can be manually opened and closed may be provided between the flow meter 42 and the pump 43 in the flow path 107.
  • the flow path 106 communicates with the carrier gas supply unit 5 and the standard gas supply unit 6 via the mixer 44. Specifically, the flow path 106 is branched into two flow paths 162 and 163 at the branch portion 161, one flow path 162 communicates with the carrier gas supply unit 5, and the other flow path 163 is a standard gas. It communicates with the supply unit 6.
  • the mixer 44 is a flow rate controller capable of controlling the ratio of gas flowing through the two flow paths 162 and 163, respectively.
  • the flow path 102 and the flow path 106 can communicate with each other via the flow path 108. That is, the flow path 108 branches from the flow path 106 at the branch portion 164 and joins the flow path 102 at the merging portion 121.
  • the branch portion 164 is provided between, for example, the branch portion 161 and the valve 213.
  • the flow path 108 is provided with, for example, a valve 211 composed of a two-way valve. When the valve 211 is in the off state, the flow path 108 is shut off, and when the valve 211 is energized and turned on, the flow path 108 is opened.
  • the flow paths 106, 108, and 163 form a standard gas flow path 130 that communicates the standard gas supply unit 6 with the sample gas flow path 110 at the confluence unit (first confluence unit) 121.
  • the standard gas flow path 130 causes the concentrator 41 to introduce the standard gas from the upstream side from the confluence portion 121 via the sample gas flow path 110.
  • the standard gas diluted by mixing the carrier gas in the mixer 44 can be concentrated in the concentrator 41.
  • At least one of the flow meter 42 and the pump 43 is preferably provided on the downstream side of the merging portion 121, and may be provided not only in the flow path 107 but also in the other flow paths 102, 104, 105. ..
  • the flow paths 105, 106, and 162 form a carrier gas flow path 140 that communicates the downstream side of the concentrator 41 with the carrier gas supply unit 5.
  • the flow paths 105 and 106 are in communication with each other, and the carrier gas can be introduced from the carrier gas flow path 140 into the concentrator 41 from the downstream side.
  • the flow path 107 communicates with the carrier gas flow path 140 at a valve (second merging portion) 213.
  • the flow paths 103 and 104 form a lead-out flow path 120 that communicates the upstream side of the concentrator 41 with the gas chromatograph 2.
  • the sample gas or standard gas concentrated in the concentrator 41 is led out to the outlet flow path 120 by the carrier gas introduced from the carrier gas flow path 140 to the downstream side of the concentrator 41.
  • the flow path 102 and the flow path 107 can communicate with each other via the flow path 109. That is, the flow path 109 branches from the flow path 102 at the branch portion 122 and joins the flow path 107 at the merging portion 171.
  • the merging portion 171 is provided between, for example, the flow meter 42 and the pump 43.
  • the flow path 109 is provided with a valve 214 composed of, for example, a two-way valve. When the valve 214 is in the off state, the flow path 109 is shut off, and when the valve 214 is energized and turned on, the flow path 109 is opened.
  • the carrier gas supplied from the carrier gas supply unit 5 can be mixed with the standard gas introduced into the concentrator 41 via the standard gas flow path 130.
  • the mixer 44 can arbitrarily adjust the mixing ratio of the carrier gas to the standard gas. It is also possible to introduce only one of the carrier gas and the standard gas into the flow path 106.
  • the concentration of the component in the sample gas detected in the gas chromatograph 2 is measured using a calibration curve.
  • zero calibration and span calibration are performed in order to create a calibration curve.
  • the carrier gas supplied from the carrier gas supply unit 5 is supplied to the gas chromatograph 2 as a zero gas (a gas containing no target component), so that the detection intensity at that time is measured as a zero point.
  • the standard gas supplied from the standard gas supply unit 6 (a gas containing the target component at a known concentration) is diluted with a carrier gas, introduced into the concentrator 41, and then concentrated in the concentrator 41.
  • the detection intensity at that time is measured as a span point. Based on the zero point and the span point measured in this way, a calibration curve showing the relationship between the detected intensity and the concentration of the target component can be created.
  • Each valve 211,212,213,214 is composed of, for example, a solenoid valve.
  • a temperature sensor, a heating unit, a cooling unit, etc. are provided in association with each valve 211,212,213,214. You may.
  • a control unit including, for example, a CPU (Central Processing Unit).
  • FIGS. 2A and 2B are flow path diagrams for explaining the operation during zero calibration.
  • the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
  • valves 211 and 213 are switched to the on state, and the driving of the pump 43 is started. Further, by controlling the mixer 44, the carrier gas is supplied from the carrier gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 108, 102, 104 in this order and flows into the trap pipe 411 from the upstream side. Then, it is discharged through the flow paths 105 and 107. As a result, the carrier gas can be ventilated in the trap pipe 411 to perform purging before zero calibration.
  • valves 211 and 213 are switched to the off state, and the heating of the trap pipe 411 by the heating unit 412 is started.
  • the temperature of the trap tube 411 gradually rises toward the target temperature (for example, 280 ° C.).
  • the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
  • the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier.
  • Carrier gas is supplied from the gas supply unit 5.
  • the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103.
  • the carrier gas that has passed through the trap tube 411 is supplied to the gas chromatograph 2 as zero gas, and the detection intensity in the gas chromatograph 2 at that time is measured as a zero point.
  • the carrier gas can be supplied to the gas chromatograph 2 as zero gas (zero calibration step).
  • FIGS. 3A to 3C are flow path diagrams for explaining the operation during span calibration.
  • the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
  • valves 211 and 213 are switched to the ON state, and the driving of the pump 43 is started. Further, by controlling the mixer 44, the carrier gas is supplied from the carrier gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 108, 102, 104 in this order and flows into the trap pipe 411 from the upstream side. Then, it is discharged through the flow paths 105 and 107. As a result, the carrier gas can be ventilated in the trap pipe 411 to perform purging before span calibration.
  • the valves 211 and 213 are returned to the off state, the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
  • the cooling unit 413 starts cooling the trap pipe 411.
  • the temperature of the trap tube 411 gradually drops toward the target temperature (for example, 40 ° C.).
  • the valves 211 and 213 are switched on again while controlling the cooling unit 413 so as to maintain the target temperature, and the driving of the pump 43 is restarted.
  • the standard gas is supplied from the standard gas supply unit 6 by controlling the mixer 44. At this time, the standard gas is diluted by mixing the carrier gas supplied from the carrier gas supply unit 5.
  • the standard gas supplied from the standard gas supply unit 6 is diluted with the carrier gas supplied from the carrier gas supply unit 5, and then the flow paths 106, 108, 102 , 104 flow in this order, flow into the trap pipe 411 from the upstream side, and then are discharged through the flow paths 105 and 107.
  • the components in the diluted standard gas can be collected in the trap tube 411 and concentrated.
  • the standard gas collected in the trap pipe 411 based on the flow rate and the mixing ratio (dilution ratio) in the mixer 44. The concentration ratio of the components inside can be calculated.
  • valves 211 and 213 are switched to the off state, and the heating of the trap pipe 411 by the heating unit 412 is started.
  • the temperature of the trap tube 411 is gradually raised toward the target temperature (for example, 280 ° C.).
  • the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
  • the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier.
  • Carrier gas is supplied from the gas supply unit 5.
  • the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, the components in the standard gas desorbed from the trap tube 411 are supplied to the gas chromatograph 2, and the detection intensity in the gas chromatograph 2 at that time is measured as a span point.
  • the components in the mixed gas generated by mixing the carrier gas with the standard gas are concentrated by the concentrator 41, and then the carrier gas is supplied to the concentrator 41.
  • the concentrated component can be supplied to the gas chromatograph 2 (span calibration step).
  • a calibration curve is created based on the detection intensity of the component in the mixed gas measured by the span calibration step and the detection intensity of the component in the carrier gas measured by the zero calibration step (calibration curve creation step). ).
  • the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5. As a result, even after the desorption of the components in the standard gas from the trap pipe 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 3C is maintained, so that the purging in the flow path 103 can be performed.
  • FIGS. 4A to 4D are flow path diagrams for explaining the operation during analysis.
  • the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
  • valve 214 is first switched to the ON state, and the pump 43 is started to be driven. Further, the carrier gas is supplied from the carrier gas supply unit 5 by starting the cooling of the trap pipe 411 by the cooling unit 413 and controlling the mixer 44. At this time, the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged through the flow paths 104, 109, 107. As a result, the gas remaining in the trap pipe 411 and other flow paths can be replaced with the carrier gas.
  • valve 214 is returned to the off state, the drive of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
  • the cooling unit 413 continues to cool the trap pipe 411, and the temperature of the trap pipe 411 gradually drops toward the target temperature (for example, 40 ° C.).
  • the valves 213 and 214 are switched to the ON state while controlling the cooling unit 413 so as to maintain the target temperature, and the driving of the pump 43 is restarted.
  • the sample gas introduced from the sample introduction unit 1 flows through the flow paths 101, 102, 104 in this order, flows into the trap tube 411 from the upstream side, and then flows. It is discharged through the roads 105 and 107.
  • the components in the sample gas can be collected in the trap tube 411 and concentrated.
  • the flow rate of the gas passing through the trap pipe 411 with the flow meter 42, it is possible to calculate the concentration ratio of the components in the sample gas collected in the trap pipe 411 based on the flow rate. it can.
  • a part of the sample gas introduced from the sample introduction section 1 flows from the branch section 122 to the flow path 109, and is discharged from the merging section 171 via the flow path 107 without passing through the trap pipe 411.
  • the resistance in the flow path 109 is sufficiently larger than the resistance in the trap tube 411, and the inside of the flow path 102 can be filled with the sample gas.
  • valves 213 and 214 are switched to the off state while the cooling unit 413 is maintained at the target temperature, the driving of the pump 43 is stopped, and the mixer 44 is controlled to control the carrier gas supply unit. Carrier gas is supplied from 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged from the sample introduction unit 1 via the flow paths 104, 102, 101. As a result, oxygen in the trap tube 411 can be removed.
  • the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier.
  • Carrier gas is supplied from the gas supply unit 5.
  • the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, the components in the sample gas desorbed from the trap tube 411 are supplied to the gas chromatograph 2, and the detection intensity of the components in the sample gas is measured in the gas chromatograph 2.
  • the concentrated components can be supplied to the gas chromatograph 2 by concentrating the components in the sample gas with the concentrator 41 and then supplying the carrier gas to the concentrator 41.
  • analysis step the concentration of the component in the sample gas can be measured based on the detection intensity of the component in the sample gas measured in the analysis step and the detection intensity of the component in the mixed gas measured in the span calibration step.
  • concentration measurement step More specifically, in the concentration measurement step, the component concentration in the sample gas is measured based on the detection intensity of the component in the sample gas measured in the analysis step and the calibration curve created in the calibration curve creation step. can do.
  • the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5. As a result, even after the desorption of the components in the sample gas from the trap tube 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 4D is maintained, so that the purging in the flow path 103 can be performed.
  • FIGS. 5A and 5B are flow path diagrams for explaining the operation during reproduction.
  • “Regeneration” means, for example, regenerating the trap tube 411 to its original state by removing and removing the components remaining in the trap tube 411.
  • the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
  • the valve 211 is first switched to the ON state, and the heating unit 412 starts heating the trap pipe 411.
  • the temperature of the trap tube 411 is gradually raised toward the target temperature (for example, 280 ° C.).
  • the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
  • the valve 211 is switched to the off state and the valve 214 is switched to the on state while controlling the heating unit 412 so as to maintain the target temperature.
  • the carrier gas is supplied from the carrier gas supply unit 5 by controlling the mixer 44.
  • the standard gas is not supplied from the standard gas supply unit 6.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged through the flow paths 104, 109, 107. As a result, the component desorbed from the trap tube 411 is removed from the trap tube 411.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged through the flow paths 104, 109, 107.
  • the component desorbed from the trap tube 411 is removed from the trap tube 411.
  • the present embodiment by supplying the carrier gas to the concentrator 41 while heating the concentrator 41 (trap pipe 411), the components remaining in the concentrator 41 can be discharged (regeneration). Step).
  • the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5.
  • the valve 212 is switched to the on state and the valve 214 is switched to the off state.
  • the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, even after the desorption of the components remaining in the trap tube 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 5B is maintained, so that the purging in the flow path 103 can be performed.
  • the configuration may be such that the target component is detected by using a detector other than the gas chromatograph 2.
  • the flow path configuration can be arbitrarily changed, and the flow path switching is not limited to the configuration using the valves 211,212,213,214.
  • at least a part of the operation during reproduction as illustrated in FIGS. 5A and 5B may be manually performed by an operator instead of automatic control by the control unit.
  • the gas analysis method is The step of concentrating the components in the sample gas with a concentrator, The step of supplying the concentrated component to the detector by supplying the carrier gas to the concentrator, and After concentrating the components in the mixed gas generated by mixing the carrier gas with the standard gas with the concentrator, the concentrated components are supplied to the detector by supplying the carrier gas to the concentrator. Steps to do and It may include a step of measuring the concentration of the component in the sample gas based on the detection intensity of the component in the sample gas and the component in the mixed gas in the detector.
  • the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively.
  • the configuration can be optimized.
  • the step of supplying the carrier gas to the detector It further includes a step of creating a calibration curve based on the detection intensity of the components in the mixed gas and the components in the carrier gas in the detector.
  • the concentration of the component in the sample gas may be measured based on the detection intensity of the component in the sample gas in the detector and the calibration curve.
  • a calibration curve is prepared based on the detection intensities of the components in the standard gas (components in the mixed gas) diluted with the carrier gas and the components in the carrier gas. , The concentration of the component in the sample gas can be measured using the calibration curve.
  • the gas analyzer is A concentrator for concentrating the sample gas introduced from the sample introduction section, A detector for detecting the components in the sample gas concentrated by the concentrator, and The carrier gas supply unit that supplies the carrier gas and The standard gas supply unit that supplies standard gas and A sample gas flow path that communicates the upstream side of the concentrator with the sample introduction section, A standard gas flow path in which the standard gas supply unit is communicated with the sample gas flow path at the first confluence and the standard gas is introduced into the concentrator from the upstream side via the sample gas flow path.
  • a carrier gas flow path that communicates the downstream side of the concentrator with the carrier gas supply unit and introduces the carrier gas into the concentrator from the downstream side.
  • a pump provided on the downstream side of the first confluence and for introducing the sample gas or standard gas into the concentrator from the upstream side.
  • a flow meter provided on the downstream side of the first confluence and measuring the flow rate of the sample gas or standard gas introduced into the concentrator.
  • a mixer that mixes the carrier gas supplied from the carrier gas supply unit with the standard gas introduced into the concentrator via the standard gas flow path may be provided.
  • the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively.
  • the configuration can be optimized.
  • the components concentrated by the carrier gas introduced into the carrier gas flow path are used. It can be supplied to the detector from the lead-out flow path.
  • the sample gas introduced from the sample introduction section can flow into the concentrator and be discharged through the exhaust flow path.
  • the pump and the flow meter in the exhaust flow path, it is possible to prevent foreign matter and the like from being mixed into the concentrator from the pump or the flow meter.
  • the mixer may be capable of adjusting the mixing ratio of the carrier gas to the standard gas.
  • the standard gas can be diluted at an arbitrary dilution ratio by adjusting the mixing ratio of the carrier gas to the standard gas.

Abstract

A sample gas flow path 110 allows the upstream side of a concentrator 41 to be in communication with a sample introduction unit 1. A standard gas flow path 130 allows a standard gas supply part 6 to be in communication with the sample gas flow path 110 at a convergence part 121 and allows a standard gas to enter the concentrator 41 from the upstream side thereof. A carrier gas flow path 140 allows the downstream side of the concentrator 41 to be in communication with a carrier gas supply part 5 and allows the carrier gas to enter the concentrator 41 from the downstream side thereof. A mixer 44 mixes the carrier gas supplied from the carrier gas supply part 5 into the standard gas to enter the concentrator 41 via the standard gas flow path 6.

Description

ガス分析方法及びガス分析装置Gas analysis method and gas analyzer
 本発明は、ガス分析方法及びガス分析装置に関するものである。 The present invention relates to a gas analysis method and a gas analyzer.
 例えば空気中の環境汚染物質を分析する場合のように、サンプルガス中の極微量の成分を分析する際に、加熱脱離方式のガス分析装置が用いられる場合がある(例えば、下記特許文献1参照)。環境汚染物質としては、VOC(Volatile Organic Compounds:揮発性有機化合物)などが挙げられる。 For example, when analyzing a very small amount of components in a sample gas, such as when analyzing an environmental pollutant in the air, a heat desorption type gas analyzer may be used (for example, Patent Document 1 below). reference). Examples of environmental pollutants include VOCs (Volatile Organic Compounds).
 この種のガス分析装置には、サンプルガスを濃縮するための濃縮器が備えられている。濃縮器には、内部に捕集剤が充填されたトラップ管が設けられている。低温状態のトラップ管にサンプルガスを導入することにより、サンプルガス中の成分をトラップ管に捕集することができる。トラップ管に捕集された成分は、トラップ管を加熱することにより脱離させることができる。トラップ管に捕集された成分を脱離させながら、トラップ管内にキャリアガスを導入することにより、脱離された高濃度の成分を検出器に供給して検出することができる。 This type of gas analyzer is equipped with a concentrator for concentrating the sample gas. The concentrator is provided with a trap tube filled with a collecting agent inside. By introducing the sample gas into the trap tube in a low temperature state, the components in the sample gas can be collected in the trap tube. The components collected in the trap tube can be desorbed by heating the trap tube. By introducing a carrier gas into the trap tube while desorbing the components collected in the trap tube, the desorbed high-concentration component can be supplied to the detector for detection.
 検出器で検出されるサンプルガス中の成分の濃度は、検量線を用いて測定される。検量線は、測定対象となる成分(対象成分)が既知の濃度で含まれる標準ガスを用いて作成される。市販されている標準ガスは、比較的高濃度で対象成分を含んでいるため、希釈ガスにより低濃度に希釈した上で使用することが一般的である。希釈された標準ガスは、濃縮器を経由することなく検出器に供給され、標準ガス中の成分が検出器により検出される。 The concentration of the component in the sample gas detected by the detector is measured using a calibration curve. The calibration curve is created using a standard gas containing a component to be measured (target component) at a known concentration. Since a commercially available standard gas contains a target component at a relatively high concentration, it is generally used after being diluted to a low concentration with a diluting gas. The diluted standard gas is supplied to the detector without passing through the concentrator, and the components in the standard gas are detected by the detector.
特開2006-337158号公報Japanese Unexamined Patent Publication No. 2006-337158
 上記のような従来の構成では、サンプルガス中の成分は濃縮器で一旦捕集された後に検出器で検出される。一方、標準ガス中の成分は濃縮器を経由することなく検出器で検出される。そのため、濃縮器における濃縮倍率の誤差が、サンプルガス中の成分の濃度の測定結果に影響を与える可能性がある。 In the conventional configuration as described above, the components in the sample gas are once collected by the concentrator and then detected by the detector. On the other hand, the components in the standard gas are detected by the detector without going through the concentrator. Therefore, the error of the concentration ratio in the concentrator may affect the measurement result of the concentration of the component in the sample gas.
 そこで、サンプルガスと同様に、標準ガスを濃縮器に一旦導入して標準ガス中の成分を濃縮器で捕集した後、当該成分を脱離させて検出器に供給するような構成とすることが考えられる。この場合、標準ガス中の成分は、濃縮器において濃縮された上で検出器により検出されるため、濃縮器による濃縮倍率の誤差が測定結果に与える影響を抑制できるという利点がある。 Therefore, as with the sample gas, the standard gas is once introduced into the concentrator, the components in the standard gas are collected by the concentrator, and then the components are desorbed and supplied to the detector. Can be considered. In this case, since the components in the standard gas are concentrated in the concentrator and then detected by the detector, there is an advantage that the influence of the error of the concentration ratio by the concentrator on the measurement result can be suppressed.
 本発明は、上記実情に鑑みてなされたものであり、サンプルガス及び標準ガスをそれぞれ濃縮器に導入する構成において、その構成を最適化することができるガス分析方法及びガス分析装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a gas analysis method and a gas analyzer capable of optimizing the configuration in a configuration in which a sample gas and a standard gas are introduced into a concentrator, respectively. With the goal.
 本発明の第1の態様は、サンプルガス中の成分を濃縮器で濃縮するステップと、前記濃縮器にキャリアガスを供給することにより、濃縮された成分を検出器に供給するステップと、標準ガスに前記キャリアガスを混合させることにより生成される混合ガス中の成分を前記濃縮器で濃縮した後、前記濃縮器にキャリアガスを供給することにより、濃縮された成分を前記検出器に供給するステップと、前記検出器におけるサンプルガス中の成分及び混合ガス中の成分の検出強度に基づいて、サンプルガス中の成分の濃度を測定するステップとを含む、ガス分析方法である。 A first aspect of the present invention includes a step of concentrating a component in a sample gas with a concentrator, a step of supplying the concentrated component to a detector by supplying a carrier gas to the concentrator, and a standard gas. After concentrating the components in the mixed gas generated by mixing the carrier gas with the concentrator, the concentrated components are supplied to the detector by supplying the carrier gas to the concentrator. The gas analysis method includes a step of measuring the concentration of the component in the sample gas based on the detection intensity of the component in the sample gas and the component in the mixed gas in the detector.
 本発明の第2の態様は、濃縮器と、検出器と、キャリアガス供給部と、標準ガス供給部と、サンプルガス流路と、標準ガス流路と、キャリアガス流路と、ポンプと、流量計と、混合器とを備えるガス分析装置である。前記濃縮器は、サンプル導入部から導入されるサンプルガスを濃縮するためのものである。前記検出器は、前記濃縮器により濃縮されたサンプルガス中の成分を検出器で検出するためのものである。前記キャリアガス供給部は、キャリアガスを供給する。前記標準ガス供給部は、標準ガスを供給する。前記サンプルガス流路は、前記濃縮器の上流側を前記サンプル導入部に連通させる。前記標準ガス流路は、前記標準ガス供給部を第1合流部において前記サンプルガス流路に連通させ、前記サンプルガス流路を介して、前記濃縮器に上流側から標準ガスを導入させる。前記キャリアガス流路は、前記濃縮器の下流側を前記キャリアガス供給部に連通させ、前記濃縮器に下流側からキャリアガスを導入させる。前記ポンプは、前記第1合流部よりも下流側に設けられ、前記濃縮器に上流側からサンプルガス又は標準ガスを導入させる。前記流量計は、前記第1合流部よりも下流側に設けられ、前記濃縮器に導入されるサンプルガス又は標準ガスの流量を測定する。前記混合器は、前記標準ガス流路を介して前記濃縮器に導入される標準ガスに対して、前記キャリアガス供給部から供給されるキャリアガスを混合させる。 A second aspect of the present invention includes a concentrator, a detector, a carrier gas supply unit, a standard gas supply unit, a sample gas flow path, a standard gas flow path, a carrier gas flow path, a pump, and the like. It is a gas analyzer including a flow meter and a mixer. The concentrator is for concentrating the sample gas introduced from the sample introduction section. The detector is for detecting the components in the sample gas concentrated by the concentrator with the detector. The carrier gas supply unit supplies the carrier gas. The standard gas supply unit supplies standard gas. The sample gas flow path communicates the upstream side of the concentrator with the sample introduction section. In the standard gas flow path, the standard gas supply section is communicated with the sample gas flow path at the first confluence section, and the standard gas is introduced into the concentrator from the upstream side via the sample gas flow path. The carrier gas flow path communicates the downstream side of the concentrator with the carrier gas supply unit, and causes the concentrator to introduce the carrier gas from the downstream side. The pump is provided on the downstream side of the first confluence portion, and causes the concentrator to introduce a sample gas or a standard gas from the upstream side. The flow meter is provided on the downstream side of the first confluence and measures the flow rate of the sample gas or standard gas introduced into the concentrator. The mixer mixes the carrier gas supplied from the carrier gas supply unit with the standard gas introduced into the concentrator via the standard gas flow path.
 本発明の第1の態様によれば、サンプルガス及び標準ガスをそれぞれ濃縮器に導入する構成において、キャリアガスを用いて標準ガスを希釈することができる。これにより、希釈器を別途設ける必要がないため、構成を最適化することができる。 According to the first aspect of the present invention, the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively. As a result, it is not necessary to separately provide a diluter, so that the configuration can be optimized.
 本発明の第2の態様によれば、サンプルガス及び標準ガスをそれぞれ濃縮器に導入する構成において、キャリアガスを用いて標準ガスを希釈することができる。これにより、希釈器を別途設ける必要がないため、構成を最適化することができる。 According to the second aspect of the present invention, the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively. As a result, it is not necessary to separately provide a diluter, so that the configuration can be optimized.
ガス分析装置の一実施形態を示した流路図である。It is a flow path diagram which showed one Embodiment of a gas analyzer. ゼロ校正時の動作について説明するための流路図である。It is a flow path diagram for demonstrating the operation at the time of zero calibration. ゼロ校正時の動作について説明するための流路図である。It is a flow path diagram for demonstrating the operation at the time of zero calibration. スパン校正時の動作について説明するための流路図である。It is a flow path diagram for demonstrating the operation at the time of span calibration. スパン校正時の動作について説明するための流路図である。It is a flow path diagram for demonstrating the operation at the time of span calibration. スパン校正時の動作について説明するための流路図である。It is a flow path diagram for demonstrating the operation at the time of span calibration. 分析時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of analysis. 分析時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of analysis. 分析時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of analysis. 分析時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of analysis. 再生時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of reproduction. 再生時の動作について説明するための流路図である。It is a flow path diagram for demonstrating operation at the time of reproduction.
1.ガス分析装置の全体構成
 図1は、ガス分析装置の一実施形態を示した流路図である。このガス分析装置は、サンプル導入部1から導入されるサンプルガス中の成分を検出器で検出することにより分析を行う。検出器は、例えばガスクロマトグラフ2であり、サンプルガス中の成分をカラム(図示せず)で分離して検出する。分析対象となる成分としては、例えば大気中に含まれるVOCなどの環境汚染物質を例示することができるが、これに限られるものではない。
1. 1. Overall Configuration of Gas Analyzer FIG. 1 is a flow path diagram showing an embodiment of the gas analyzer. This gas analyzer performs analysis by detecting the components in the sample gas introduced from the sample introduction unit 1 with a detector. The detector is, for example, a gas chromatograph 2, and the components in the sample gas are separated by a column (not shown) and detected. Examples of the components to be analyzed include, but are not limited to, environmental pollutants such as VOCs contained in the atmosphere.
 サンプル導入部1から導入されるサンプルガスは、フィルタ3を通過することにより異物が除去される。フィルタ3を通過したサンプルガスは、流路101を介してガスクロマトグラフ2に直接供給することもできるが、流路101から分岐部111において分岐する流路102を介して、濃縮装置4に供給することもできる。 Foreign matter is removed from the sample gas introduced from the sample introduction unit 1 by passing through the filter 3. The sample gas that has passed through the filter 3 can be directly supplied to the gas chromatograph 2 via the flow path 101, but is supplied to the concentrator 4 via the flow path 102 that branches from the flow path 101 at the branch portion 111. You can also do it.
 サンプルガスをガスクロマトグラフ2に直接供給する際には、ガスクロマトグラフ2に接続されたポンプ7が駆動されることにより、流路101からガスクロマトグラフ2にサンプルガスが引き込まれる。一方、流路101から流路102を介して濃縮装置4に供給されるサンプルガスは、濃縮装置4において濃縮された後、流路103を介してガスクロマトグラフ2に供給される。 When the sample gas is directly supplied to the gas chromatograph 2, the pump 7 connected to the gas chromatograph 2 is driven, so that the sample gas is drawn into the gas chromatograph 2 from the flow path 101. On the other hand, the sample gas supplied from the flow path 101 to the concentrating device 4 via the flow path 102 is concentrated in the concentrating device 4 and then supplied to the gas chromatograph 2 via the flow path 103.
 濃縮装置4には、キャリアガス供給部5及び標準ガス供給部6が流体的に接続されている。キャリアガス供給部5は、例えば窒素ガスなどの不活性ガスをキャリアガスとして供給する。標準ガス供給部6は、標準ガスを供給する。標準ガスとして、1つ又は複数の対象成分をそれぞれ所定の濃度で含むスパンガス(校正ガス)が用いられる。キャリアガス供給部5及び標準ガス供給部6は、それぞれガスを圧縮された状態で収容するガスボンベにより構成されていてもよい。 The carrier gas supply unit 5 and the standard gas supply unit 6 are fluidly connected to the concentrator 4. The carrier gas supply unit 5 supplies an inert gas such as nitrogen gas as a carrier gas. The standard gas supply unit 6 supplies the standard gas. As the standard gas, a span gas (calibration gas) containing one or a plurality of target components at a predetermined concentration is used. The carrier gas supply unit 5 and the standard gas supply unit 6 may each be composed of a gas cylinder that houses the gas in a compressed state.
 濃縮装置4は、濃縮器41、流量計42、ポンプ43及び混合器44などが筐体40内に収容された構成を有している。濃縮器41は、サンプル導入部1から導入されるサンプルガスなどのガス中の成分を濃縮するためのものであり、トラップ管411、加熱部412及び冷却部413などを備えている。トラップ管411内には、ガス中の成分を捕集するための捕集剤が充填されている。加熱部412は、トラップ管411を加熱するためのものであり、例えば電気ヒータを含む。冷却部413は、トラップ管411を冷却するためのものであり、例えばペルチェ素子を含む。 The concentrator 4 has a configuration in which a concentrator 41, a flow meter 42, a pump 43, a mixer 44, and the like are housed in a housing 40. The concentrator 41 is for concentrating components in a gas such as a sample gas introduced from the sample introduction unit 1, and includes a trap tube 411, a heating unit 412, a cooling unit 413, and the like. The trap tube 411 is filled with a collecting agent for collecting the components in the gas. The heating unit 412 is for heating the trap tube 411, and includes, for example, an electric heater. The cooling unit 413 is for cooling the trap pipe 411, and includes, for example, a Peltier element.
 濃縮器41では、冷却部413によりトラップ管411を冷却しながら、トラップ管411にガスを供給することにより、ガス中の成分をトラップ管411内に捕集して濃縮することができる。トラップ管411に捕集された成分は、トラップ管411を加熱部412で加熱することにより脱離させることができる。トラップ管411に捕集された成分を脱離させながら、トラップ管411内にキャリアガスを導入すれば、脱離された高濃度の成分を濃縮器41から導出することができる。 In the concentrator 41, by supplying gas to the trap pipe 411 while cooling the trap pipe 411 by the cooling unit 413, the components in the gas can be collected and concentrated in the trap pipe 411. The components collected in the trap tube 411 can be desorbed by heating the trap tube 411 with the heating unit 412. If a carrier gas is introduced into the trap tube 411 while desorbing the components collected in the trap tube 411, the desorbed high-concentration component can be derived from the concentrator 41.
 濃縮装置4にサンプルガスを導入する流路102は、バルブ212及び流路104を介してトラップ管411の上流側に連通している。バルブ212は、例えば三方弁であり、流路102,104の他に、上述の流路103に連通している。バルブ212がオフ状態のときには流路102,104が連通しており、バルブ212が通電されてオン状態になると流路103,104が連通する。 The flow path 102 for introducing the sample gas into the concentrator 4 communicates with the upstream side of the trap pipe 411 via the valve 212 and the flow path 104. The valve 212 is, for example, a three-way valve, and communicates with the above-mentioned flow path 103 in addition to the flow paths 102 and 104. When the valve 212 is in the off state, the flow paths 102 and 104 are in communication, and when the valve 212 is energized and turned on, the flow paths 103 and 104 are in communication.
 このように、バルブ212を切り替えることにより、流路102,103,104を選択的に連通させることができる。流路102,104は、濃縮器41の上流側をサンプル導入部1に連通させるサンプルガス流路110を構成している。これにより、サンプルガス流路110を介して濃縮器41にサンプルガスを導入し、そのサンプルガス中の成分を濃縮器41で濃縮することができる。 By switching the valve 212 in this way, the flow paths 102, 103, and 104 can be selectively communicated with each other. The flow paths 102 and 104 form a sample gas flow path 110 that communicates the upstream side of the concentrator 41 with the sample introduction section 1. As a result, the sample gas can be introduced into the concentrator 41 via the sample gas flow path 110, and the components in the sample gas can be concentrated by the concentrator 41.
 トラップ管411の下流側には、流路105が連通している。この流路105は、バルブ213を介して流路106に連通している。バルブ213は、例えば三方弁であり、流路105,106の他に、流路107に連通している。バルブ213がオフ状態のときには流路105,106が連通しており、バルブ213が通電されてオン状態になると流路105,107が連通する。このように、バルブ213を切り替えることにより、流路105,106,107を選択的に連通させることができる。 A flow path 105 communicates with the downstream side of the trap pipe 411. The flow path 105 communicates with the flow path 106 via a valve 213. The valve 213 is, for example, a three-way valve, which communicates with the flow path 107 in addition to the flow paths 105 and 106. When the valve 213 is in the off state, the flow paths 105 and 106 are in communication, and when the valve 213 is energized and turned on, the flow paths 105 and 107 are in communication. By switching the valve 213 in this way, the flow paths 105, 106, and 107 can be selectively communicated with each other.
 流路107は、濃縮装置4の外部に連通する排気流路を構成している。流量計42及びポンプ43は、上流側(トラップ管411側)からこの順序で流路107に設けられている。バルブ213をオン状態としてポンプ43をトラップ管411に連通させた上で、ポンプ43を駆動させれば、トラップ管411内に上流側からガス(例えばサンプルガス)が導入され、トラップ管411内を通過したガスが流路107を介して外部に排気される。このとき、流量計42を通過するガスの流量を測定することにより、トラップ管411内に導入されるガスの流量を測定することができる。流路107における流量計42とポンプ43との間には、手動で開閉可能なバルブ210が設けられていてもよい。 The flow path 107 constitutes an exhaust flow path that communicates with the outside of the concentrator 4. The flow meter 42 and the pump 43 are provided in the flow path 107 in this order from the upstream side (trap pipe 411 side). When the pump 43 is driven after the pump 43 is communicated with the trap pipe 411 with the valve 213 turned on, gas (for example, sample gas) is introduced into the trap pipe 411 from the upstream side, and the inside of the trap pipe 411 is filled. The passing gas is exhausted to the outside through the flow path 107. At this time, by measuring the flow rate of the gas passing through the flow meter 42, the flow rate of the gas introduced into the trap pipe 411 can be measured. A valve 210 that can be manually opened and closed may be provided between the flow meter 42 and the pump 43 in the flow path 107.
 流路106は、混合器44を介してキャリアガス供給部5及び標準ガス供給部6に連通している。具体的には、流路106は、分岐部161において2つの流路162,163に分岐しており、一方の流路162がキャリアガス供給部5に連通し、他方の流路163が標準ガス供給部6に連通している。混合器44は、2つの流路162,163をそれぞれ流れるガスの比率を制御可能な流量制御器である。 The flow path 106 communicates with the carrier gas supply unit 5 and the standard gas supply unit 6 via the mixer 44. Specifically, the flow path 106 is branched into two flow paths 162 and 163 at the branch portion 161, one flow path 162 communicates with the carrier gas supply unit 5, and the other flow path 163 is a standard gas. It communicates with the supply unit 6. The mixer 44 is a flow rate controller capable of controlling the ratio of gas flowing through the two flow paths 162 and 163, respectively.
 流路102と流路106は、流路108を介して連通可能となっている。すなわち、流路108は、流路106から分岐部164において分岐し、流路102に対して合流部121で合流している。分岐部164は、例えば分岐部161とバルブ213との間に設けられている。流路108には、例えば二方弁により構成されるバルブ211が設けられている。バルブ211がオフ状態のときには流路108が遮断されており、バルブ211が通電されてオン状態になると流路108が開放される。 The flow path 102 and the flow path 106 can communicate with each other via the flow path 108. That is, the flow path 108 branches from the flow path 106 at the branch portion 164 and joins the flow path 102 at the merging portion 121. The branch portion 164 is provided between, for example, the branch portion 161 and the valve 213. The flow path 108 is provided with, for example, a valve 211 composed of a two-way valve. When the valve 211 is in the off state, the flow path 108 is shut off, and when the valve 211 is energized and turned on, the flow path 108 is opened.
 流路106,108,163は、標準ガス供給部6を合流部(第1合流部)121においてサンプルガス流路110に連通させる標準ガス流路130を構成している。標準ガス流路130は、合流部121からサンプルガス流路110を介して、濃縮器41に上流側から標準ガスを導入させる。これにより、混合器44においてキャリアガスが混合されることによって希釈された標準ガスを濃縮器41で濃縮することができる。流量計42及びポンプ43の少なくとも一方は、合流部121よりも下流側に設けられていることが好ましく、流路107に限らず、他の流路102,104,105に設けられていてもよい。 The flow paths 106, 108, and 163 form a standard gas flow path 130 that communicates the standard gas supply unit 6 with the sample gas flow path 110 at the confluence unit (first confluence unit) 121. The standard gas flow path 130 causes the concentrator 41 to introduce the standard gas from the upstream side from the confluence portion 121 via the sample gas flow path 110. As a result, the standard gas diluted by mixing the carrier gas in the mixer 44 can be concentrated in the concentrator 41. At least one of the flow meter 42 and the pump 43 is preferably provided on the downstream side of the merging portion 121, and may be provided not only in the flow path 107 but also in the other flow paths 102, 104, 105. ..
 流路105,106,162は、濃縮器41の下流側をキャリアガス供給部5に連通させるキャリアガス流路140を構成している。バルブ213がオフ状態のときには、流路105,106が連通しており、キャリアガス流路140から濃縮器41に下流側からキャリアガスを導入させることができる。流路107は、キャリアガス流路140に対してバルブ(第2合流部)213において連通している。流路103,104は、濃縮器41の上流側をガスクロマトグラフ2に連通させる導出流路120を構成している。濃縮器41で濃縮されたサンプルガス又は標準ガスは、キャリアガス流路140から濃縮器41の下流側に導入されるキャリアガスによって、導出流路120に導出される。 The flow paths 105, 106, and 162 form a carrier gas flow path 140 that communicates the downstream side of the concentrator 41 with the carrier gas supply unit 5. When the valve 213 is in the off state, the flow paths 105 and 106 are in communication with each other, and the carrier gas can be introduced from the carrier gas flow path 140 into the concentrator 41 from the downstream side. The flow path 107 communicates with the carrier gas flow path 140 at a valve (second merging portion) 213. The flow paths 103 and 104 form a lead-out flow path 120 that communicates the upstream side of the concentrator 41 with the gas chromatograph 2. The sample gas or standard gas concentrated in the concentrator 41 is led out to the outlet flow path 120 by the carrier gas introduced from the carrier gas flow path 140 to the downstream side of the concentrator 41.
 流路102と流路107は、流路109を介して連通可能となっている。すなわち、流路109は、流路102から分岐部122において分岐し、流路107に対して合流部171で合流している。合流部171は、例えば流量計42とポンプ43との間に設けられている。流路109には、例えば二方弁により構成されるバルブ214が設けられている。バルブ214がオフ状態のときには流路109が遮断されており、バルブ214が通電されてオン状態になると流路109が開放される。 The flow path 102 and the flow path 107 can communicate with each other via the flow path 109. That is, the flow path 109 branches from the flow path 102 at the branch portion 122 and joins the flow path 107 at the merging portion 171. The merging portion 171 is provided between, for example, the flow meter 42 and the pump 43. The flow path 109 is provided with a valve 214 composed of, for example, a two-way valve. When the valve 214 is in the off state, the flow path 109 is shut off, and when the valve 214 is energized and turned on, the flow path 109 is opened.
 混合器44を制御すれば、標準ガス流路130を介して濃縮器41に導入される標準ガスに対して、キャリアガス供給部5から供給されるキャリアガスを混合させることができる。混合器44は、標準ガスに対するキャリアガスの混合比率を任意に調整可能である。また、キャリアガス又は標準ガスのいずれか一方のみを流路106に導入させることも可能である。 If the mixer 44 is controlled, the carrier gas supplied from the carrier gas supply unit 5 can be mixed with the standard gas introduced into the concentrator 41 via the standard gas flow path 130. The mixer 44 can arbitrarily adjust the mixing ratio of the carrier gas to the standard gas. It is also possible to introduce only one of the carrier gas and the standard gas into the flow path 106.
 ガスクロマトグラフ2において検出されるサンプルガス中の成分の濃度は、検量線を用いて測定される。本実施形態に係るガス分析装置では、検量線を作成するためにゼロ校正及びスパン校正が行われる。ゼロ校正では、キャリアガス供給部5から供給されるキャリアガスが、ゼロガス(対象成分を含まないガス)としてガスクロマトグラフ2に供給されることにより、そのときの検出強度がゼロ点として測定される。スパン校正では、標準ガス供給部6から供給される標準ガス(対象成分を既知の濃度で含むガス)が、キャリアガスにより希釈されてから濃縮器41に導入され、濃縮器41で濃縮された後にガスクロマトグラフ2に供給されることにより、そのときの検出強度がスパン点として測定される。このようにして測定されたゼロ点及びスパン点に基づいて、対象成分の検出強度と濃度との関係を表す検量線を作成することができる。 The concentration of the component in the sample gas detected in the gas chromatograph 2 is measured using a calibration curve. In the gas analyzer according to the present embodiment, zero calibration and span calibration are performed in order to create a calibration curve. In the zero calibration, the carrier gas supplied from the carrier gas supply unit 5 is supplied to the gas chromatograph 2 as a zero gas (a gas containing no target component), so that the detection intensity at that time is measured as a zero point. In the span calibration, the standard gas supplied from the standard gas supply unit 6 (a gas containing the target component at a known concentration) is diluted with a carrier gas, introduced into the concentrator 41, and then concentrated in the concentrator 41. By being supplied to the gas chromatograph 2, the detection intensity at that time is measured as a span point. Based on the zero point and the span point measured in this way, a calibration curve showing the relationship between the detected intensity and the concentration of the target component can be created.
 各バルブ211,212,213,214は、例えば電磁弁により構成されている。各バルブ211,212,213,214の温調を行うために、温度センサ、加熱部及び冷却部など(いずれも図示せず)が各バルブ211,212,213,214に対応付けて設けられていてもよい。各バルブ211,212,213,214、濃縮器41、ポンプ43及び混合器44などは、例えばCPU(Central Processing Unit)を含む制御部により制御される。 Each valve 211,212,213,214 is composed of, for example, a solenoid valve. In order to control the temperature of each valve 211,212,213,214, a temperature sensor, a heating unit, a cooling unit, etc. (none of which are shown) are provided in association with each valve 211,212,213,214. You may. Each valve 211,212,213,214, a concentrator 41, a pump 43, a mixer 44, and the like are controlled by a control unit including, for example, a CPU (Central Processing Unit).
2.ゼロ校正時の動作
 図2A及び図2Bは、ゼロ校正時の動作について説明するための流路図である。ゼロ校正時には、バルブ211,212,213,214が加熱され、所定の温度(例えば150℃)になるように温調される。
2. Operation during zero calibration FIGS. 2A and 2B are flow path diagrams for explaining the operation during zero calibration. At the time of zero calibration, the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
 ゼロ校正時には、まず、バルブ211,213がオン状態に切り替えられるとともに、ポンプ43の駆動が開始される。また、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 At the time of zero calibration, first, the valves 211 and 213 are switched to the on state, and the driving of the pump 43 is started. Further, by controlling the mixer 44, the carrier gas is supplied from the carrier gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図2Aに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,108,102,104をこの順序で流れてトラップ管411に上流側から流入し、その後に流路105,107を介して排出される。これにより、トラップ管411内にキャリアガスを通気させて、ゼロ校正前のパージを行うことができる。 In this case, as shown by the broken line in FIG. 2A, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 108, 102, 104 in this order and flows into the trap pipe 411 from the upstream side. Then, it is discharged through the flow paths 105 and 107. As a result, the carrier gas can be ventilated in the trap pipe 411 to perform purging before zero calibration.
 その後、バルブ211,213がオフ状態に切り替えられ、加熱部412によるトラップ管411の加熱が開始される。これにより、トラップ管411の温度が目標温度(例えば280℃)に向かって徐々に上昇する。このとき、ポンプ43の駆動が停止され、混合器44からのガスの供給も停止される。 After that, the valves 211 and 213 are switched to the off state, and the heating of the trap pipe 411 by the heating unit 412 is started. As a result, the temperature of the trap tube 411 gradually rises toward the target temperature (for example, 280 ° C.). At this time, the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
 そして、トラップ管411が目標温度まで加熱されると、目標温度を維持するように加熱部412を制御しながら、バルブ212がオン状態に切り替えられるとともに、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 Then, when the trap tube 411 is heated to the target temperature, the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier. Carrier gas is supplied from the gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図2Bに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,103を介してガスクロマトグラフ2に供給される。これにより、トラップ管411内を通過したキャリアガスが、ゼロガスとしてガスクロマトグラフ2に供給され、そのときのガスクロマトグラフ2における検出強度がゼロ点として測定される。このように、本実施形態におけるゼロ校正時には、キャリアガスをゼロガスとしてガスクロマトグラフ2に供給することができる(ゼロ校正ステップ)。 In this case, as shown by the broken line in FIG. 2B, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, the carrier gas that has passed through the trap tube 411 is supplied to the gas chromatograph 2 as zero gas, and the detection intensity in the gas chromatograph 2 at that time is measured as a zero point. As described above, at the time of zero calibration in the present embodiment, the carrier gas can be supplied to the gas chromatograph 2 as zero gas (zero calibration step).
3.スパン校正時の動作
 図3A~図3Cは、スパン校正時の動作について説明するための流路図である。スパン校正時には、バルブ211,212,213,214が加熱され、所定の温度(例えば150℃)になるように温調される。
3. 3. Operation during span calibration FIGS. 3A to 3C are flow path diagrams for explaining the operation during span calibration. At the time of span calibration, the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
 スパン校正時には、まず、バルブ211,213がオン状態に切り替えられるとともに、ポンプ43の駆動が開始される。また、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 At the time of span calibration, first, the valves 211 and 213 are switched to the ON state, and the driving of the pump 43 is started. Further, by controlling the mixer 44, the carrier gas is supplied from the carrier gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図3Aに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,108,102,104をこの順序で流れてトラップ管411に上流側から流入し、その後に流路105,107を介して排出される。これにより、トラップ管411内にキャリアガスを通気させて、スパン校正前のパージを行うことができる。 In this case, as shown by the broken line in FIG. 3A, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 108, 102, 104 in this order and flows into the trap pipe 411 from the upstream side. Then, it is discharged through the flow paths 105 and 107. As a result, the carrier gas can be ventilated in the trap pipe 411 to perform purging before span calibration.
 その後、バルブ211,213がオフ状態に戻されるとともに、ポンプ43の駆動が停止され、混合器44からのガスの供給も停止される。この状態で、冷却部413によるトラップ管411の冷却が開始される。これにより、トラップ管411の温度が目標温度(例えば40℃)に向かって徐々に降下する。そして、トラップ管411が目標温度まで冷却されると、目標温度を維持するように冷却部413を制御しながら、バルブ211,213が再びオン状態に切り替えられ、ポンプ43の駆動が再開されるとともに、混合器44が制御されることにより、標準ガス供給部6から標準ガスが供給される。このとき、標準ガスは、キャリアガス供給部5から供給されるキャリアガスが混合されることにより希釈される。 After that, the valves 211 and 213 are returned to the off state, the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped. In this state, the cooling unit 413 starts cooling the trap pipe 411. As a result, the temperature of the trap tube 411 gradually drops toward the target temperature (for example, 40 ° C.). Then, when the trap pipe 411 is cooled to the target temperature, the valves 211 and 213 are switched on again while controlling the cooling unit 413 so as to maintain the target temperature, and the driving of the pump 43 is restarted. , The standard gas is supplied from the standard gas supply unit 6 by controlling the mixer 44. At this time, the standard gas is diluted by mixing the carrier gas supplied from the carrier gas supply unit 5.
 この場合、図3Bに破線で示すように、標準ガス供給部6から供給される標準ガスが、キャリアガス供給部5から供給されるキャリアガスにより希釈された上で、流路106,108,102,104をこの順序で流れてトラップ管411に上流側から流入し、その後に流路105,107を介して排出される。これにより、希釈された標準ガス中の成分をトラップ管411内に捕集し、濃縮することができる。このとき、トラップ管411内を通過したガスの流量を流量計42で測定することにより、その流量と混合器44における混合比率(希釈率)に基づいて、トラップ管411に捕集された標準ガス中の成分の濃縮倍率を算出することができる。 In this case, as shown by the broken line in FIG. 3B, the standard gas supplied from the standard gas supply unit 6 is diluted with the carrier gas supplied from the carrier gas supply unit 5, and then the flow paths 106, 108, 102 , 104 flow in this order, flow into the trap pipe 411 from the upstream side, and then are discharged through the flow paths 105 and 107. As a result, the components in the diluted standard gas can be collected in the trap tube 411 and concentrated. At this time, by measuring the flow rate of the gas passing through the trap pipe 411 with the flow meter 42, the standard gas collected in the trap pipe 411 based on the flow rate and the mixing ratio (dilution ratio) in the mixer 44. The concentration ratio of the components inside can be calculated.
 その後、バルブ211,213がオフ状態に切り替えられ、加熱部412によるトラップ管411の加熱が開始される。これにより、トラップ管411の温度が目標温度(例えば280℃)に向かって徐々に昇温される。このとき、ポンプ43の駆動が停止され、混合器44からのガスの供給も停止される。 After that, the valves 211 and 213 are switched to the off state, and the heating of the trap pipe 411 by the heating unit 412 is started. As a result, the temperature of the trap tube 411 is gradually raised toward the target temperature (for example, 280 ° C.). At this time, the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
 そして、トラップ管411の温度が目標温度に到達すると、目標温度を維持するように加熱部412を制御しながら、バルブ212がオン状態に切り替えられるとともに、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 Then, when the temperature of the trap tube 411 reaches the target temperature, the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier. Carrier gas is supplied from the gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図3Cに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,103を介してガスクロマトグラフ2に供給される。これにより、トラップ管411から脱離された標準ガス中の成分がガスクロマトグラフ2に供給され、そのときのガスクロマトグラフ2における検出強度がスパン点として測定される。 In this case, as shown by the broken line in FIG. 3C, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, the components in the standard gas desorbed from the trap tube 411 are supplied to the gas chromatograph 2, and the detection intensity in the gas chromatograph 2 at that time is measured as a span point.
 このように、本実施形態におけるスパン校正時には、標準ガスにキャリアガスを混合させることにより生成される混合ガス中の成分を濃縮器41で濃縮した後、濃縮器41にキャリアガスを供給することにより、濃縮された成分をガスクロマトグラフ2に供給することができる(スパン校正ステップ)。そして、スパン校正ステップにより測定された混合ガス中の成分の検出強度と、ゼロ校正ステップにより測定されたキャリアガス中の成分の検出強度とに基づいて、検量線が作成される(検量線作成ステップ)。 As described above, at the time of span calibration in the present embodiment, the components in the mixed gas generated by mixing the carrier gas with the standard gas are concentrated by the concentrator 41, and then the carrier gas is supplied to the concentrator 41. , The concentrated component can be supplied to the gas chromatograph 2 (span calibration step). Then, a calibration curve is created based on the detection intensity of the component in the mixed gas measured by the span calibration step and the detection intensity of the component in the carrier gas measured by the zero calibration step (calibration curve creation step). ).
 その後、キャリアガス供給部5からのキャリアガスの供給を継続した状態のまま、冷却部413によるトラップ管411の冷却が開始される。これにより、トラップ管411からの標準ガス中の成分の脱離が終了した後も、図3Cに破線で示すキャリアガスの流れが維持されるため、流路103内のパージを行うことができる。 After that, the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5. As a result, even after the desorption of the components in the standard gas from the trap pipe 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 3C is maintained, so that the purging in the flow path 103 can be performed.
4.分析時の動作
 図4A~図4Dは、分析時の動作について説明するための流路図である。サンプルガス中の成分の分析時には、バルブ211,212,213,214が加熱され、所定の温度(例えば150℃)になるように温調される。
4. Operation during analysis FIGS. 4A to 4D are flow path diagrams for explaining the operation during analysis. At the time of analysis of the components in the sample gas, the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
 分析時には、まず、バルブ214がオン状態に切り替えられるとともに、ポンプ43の駆動が開始される。また、冷却部413によるトラップ管411の冷却が開始されるとともに、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 At the time of analysis, the valve 214 is first switched to the ON state, and the pump 43 is started to be driven. Further, the carrier gas is supplied from the carrier gas supply unit 5 by starting the cooling of the trap pipe 411 by the cooling unit 413 and controlling the mixer 44. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図4Aに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,109,107を介して排出される。これにより、トラップ管411及びその他の流路に残留しているガスをキャリアガスで置換することができる。 In this case, as shown by the broken line in FIG. 4A, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged through the flow paths 104, 109, 107. As a result, the gas remaining in the trap pipe 411 and other flow paths can be replaced with the carrier gas.
 その後、バルブ214がオフ状態に戻されるとともに、ポンプ43の駆動が停止され、混合器44からのガスの供給も停止される。この状態で、冷却部413によるトラップ管411の冷却が継続され、トラップ管411の温度が目標温度(例えば40℃)に向かって徐々に降下する。そして、トラップ管411が目標温度まで冷却されると、目標温度を維持するように冷却部413を制御しながら、バルブ213,214がオン状態に切り替えられるとともに、ポンプ43の駆動が再開される。 After that, the valve 214 is returned to the off state, the drive of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped. In this state, the cooling unit 413 continues to cool the trap pipe 411, and the temperature of the trap pipe 411 gradually drops toward the target temperature (for example, 40 ° C.). Then, when the trap pipe 411 is cooled to the target temperature, the valves 213 and 214 are switched to the ON state while controlling the cooling unit 413 so as to maintain the target temperature, and the driving of the pump 43 is restarted.
 この場合、図4Bに破線で示すように、サンプル導入部1から導入されるサンプルガスが、流路101,102,104をこの順序で流れてトラップ管411に上流側から流入し、その後に流路105,107を介して排出される。これにより、サンプルガス中の成分をトラップ管411内に捕集し、濃縮することができる。このとき、トラップ管411内を通過したガスの流量を流量計42で測定することにより、その流量に基づいて、トラップ管411に捕集されたサンプルガス中の成分の濃縮倍率を算出することができる。なお、サンプル導入部1から導入されるサンプルガスの一部は、分岐部122から流路109に流れ、トラップ管411を経由することなく合流部171から流路107を介して排出される。流路109内の抵抗は、トラップ管411内の抵抗よりも十分大きく、流路102内をサンプルガスで満たすことができる。 In this case, as shown by the broken line in FIG. 4B, the sample gas introduced from the sample introduction unit 1 flows through the flow paths 101, 102, 104 in this order, flows into the trap tube 411 from the upstream side, and then flows. It is discharged through the roads 105 and 107. As a result, the components in the sample gas can be collected in the trap tube 411 and concentrated. At this time, by measuring the flow rate of the gas passing through the trap pipe 411 with the flow meter 42, it is possible to calculate the concentration ratio of the components in the sample gas collected in the trap pipe 411 based on the flow rate. it can. A part of the sample gas introduced from the sample introduction section 1 flows from the branch section 122 to the flow path 109, and is discharged from the merging section 171 via the flow path 107 without passing through the trap pipe 411. The resistance in the flow path 109 is sufficiently larger than the resistance in the trap tube 411, and the inside of the flow path 102 can be filled with the sample gas.
 その後、冷却部413を目標温度に維持した状態のまま、バルブ213,214がオフ状態に切り替えられ、ポンプ43の駆動が停止されるとともに、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 After that, the valves 213 and 214 are switched to the off state while the cooling unit 413 is maintained at the target temperature, the driving of the pump 43 is stopped, and the mixer 44 is controlled to control the carrier gas supply unit. Carrier gas is supplied from 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図4Cに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,102,101を介してサンプル導入部1から排出される。これにより、トラップ管411内の酸素を除去することができる。 In this case, as shown by the broken line in FIG. 4C, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged from the sample introduction unit 1 via the flow paths 104, 102, 101. As a result, oxygen in the trap tube 411 can be removed.
 その後、加熱部412によるトラップ管411の加熱が開始される。これにより、トラップ管411の温度が目標温度(例えば280℃)に向かって徐々に昇温される。このとき、混合器44からのガスの供給は停止される。 After that, heating of the trap tube 411 by the heating unit 412 is started. As a result, the temperature of the trap tube 411 is gradually raised toward the target temperature (for example, 280 ° C.). At this time, the supply of gas from the mixer 44 is stopped.
 そして、トラップ管411の温度が目標温度に到達すると、目標温度を維持するように加熱部412を制御しながら、バルブ212がオン状態に切り替えられるとともに、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 Then, when the temperature of the trap tube 411 reaches the target temperature, the valve 212 is switched to the ON state while controlling the heating unit 412 so as to maintain the target temperature, and the mixer 44 is controlled to carry the carrier. Carrier gas is supplied from the gas supply unit 5. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図4Dに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,103を介してガスクロマトグラフ2に供給される。これにより、トラップ管411から脱離されたサンプルガス中の成分がガスクロマトグラフ2に供給され、サンプルガス中の成分の検出強度がガスクロマトグラフ2において測定される。 In this case, as shown by the broken line in FIG. 4D, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, the components in the sample gas desorbed from the trap tube 411 are supplied to the gas chromatograph 2, and the detection intensity of the components in the sample gas is measured in the gas chromatograph 2.
 このように、本実施形態における分析時には、サンプルガス中の成分を濃縮器41で濃縮した後、濃縮器41にキャリアガスを供給することにより、濃縮された成分をガスクロマトグラフ2に供給することができる(分析ステップ)。そして、分析ステップで測定されたサンプルガス中の成分の検出強度、及び、スパン校正ステップで測定された混合ガス中の成分の検出強度に基づいて、サンプルガス中の成分の濃度を測定することができる(濃度測定ステップ)。より具体的には、濃度測定ステップでは、分析ステップで測定されたサンプルガス中の成分の検出強度、及び、検量線作成ステップで作成された検量線に基づいて、サンプルガス中の成分濃度を測定することができる。 As described above, at the time of analysis in the present embodiment, the concentrated components can be supplied to the gas chromatograph 2 by concentrating the components in the sample gas with the concentrator 41 and then supplying the carrier gas to the concentrator 41. Yes (analysis step). Then, the concentration of the component in the sample gas can be measured based on the detection intensity of the component in the sample gas measured in the analysis step and the detection intensity of the component in the mixed gas measured in the span calibration step. Yes (concentration measurement step). More specifically, in the concentration measurement step, the component concentration in the sample gas is measured based on the detection intensity of the component in the sample gas measured in the analysis step and the calibration curve created in the calibration curve creation step. can do.
 その後、キャリアガス供給部5からのキャリアガスの供給を継続した状態のまま、冷却部413によるトラップ管411の冷却が開始される。これにより、トラップ管411からのサンプルガス中の成分の脱離が終了した後も、図4Dに破線で示すキャリアガスの流れが維持されるため、流路103内のパージを行うことができる。 After that, the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5. As a result, even after the desorption of the components in the sample gas from the trap tube 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 4D is maintained, so that the purging in the flow path 103 can be performed.
5.再生時の動作
 図5A及び図5Bは、再生時の動作について説明するための流路図である。「再生」とは、例えばトラップ管411に残った成分を脱離させて除去することにより、トラップ管411を元の状態に再生させることを意味している。トラップ管411の再生時には、バルブ211,212,213,214が加熱され、所定の温度(例えば150℃)になるように温調される。
5. Operation during reproduction FIGS. 5A and 5B are flow path diagrams for explaining the operation during reproduction. “Regeneration” means, for example, regenerating the trap tube 411 to its original state by removing and removing the components remaining in the trap tube 411. At the time of regeneration of the trap tube 411, the valves 211,212,213,214 are heated and temperature-controlled so as to reach a predetermined temperature (for example, 150 ° C.).
 再生時には、まず、バルブ211がオン状態に切り替えられるとともに、加熱部412によるトラップ管411の加熱が開始される。これにより、トラップ管411の温度が目標温度(例えば280℃)に向かって徐々に昇温される。このとき、ポンプ43の駆動は停止されており、混合器44からのガスの供給も停止されている。 At the time of regeneration, the valve 211 is first switched to the ON state, and the heating unit 412 starts heating the trap pipe 411. As a result, the temperature of the trap tube 411 is gradually raised toward the target temperature (for example, 280 ° C.). At this time, the driving of the pump 43 is stopped, and the supply of gas from the mixer 44 is also stopped.
 そして、トラップ管411の温度が目標温度に到達すると、目標温度を維持するように加熱部412を制御しながら、バルブ211がオフ状態に切り替えられるとともに、バルブ214がオン状態に切り替えられる。この状態で、混合器44が制御されることにより、キャリアガス供給部5からキャリアガスが供給される。このとき、標準ガス供給部6から標準ガスは供給されない。 Then, when the temperature of the trap pipe 411 reaches the target temperature, the valve 211 is switched to the off state and the valve 214 is switched to the on state while controlling the heating unit 412 so as to maintain the target temperature. In this state, the carrier gas is supplied from the carrier gas supply unit 5 by controlling the mixer 44. At this time, the standard gas is not supplied from the standard gas supply unit 6.
 この場合、図5Aに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,109,107を介して排出される。これにより、トラップ管411から脱離された成分がトラップ管411内から除去される。このように、本実施形態では、濃縮器41(トラップ管411)を加熱しながら、濃縮器41にキャリアガスを供給することにより、濃縮器41中に残った成分を排出させることができる(再生ステップ)。 In this case, as shown by the broken line in FIG. 5A, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is discharged through the flow paths 104, 109, 107. As a result, the component desorbed from the trap tube 411 is removed from the trap tube 411. As described above, in the present embodiment, by supplying the carrier gas to the concentrator 41 while heating the concentrator 41 (trap pipe 411), the components remaining in the concentrator 41 can be discharged (regeneration). Step).
 その後、キャリアガス供給部5からのキャリアガスの供給を継続した状態のまま、冷却部413によるトラップ管411の冷却が開始される。このとき、バルブ212がオン状態に切り替えられるとともに、バルブ214がオフ状態に切り替えられる。 After that, the cooling unit 413 starts cooling the trap pipe 411 while continuing to supply the carrier gas from the carrier gas supply unit 5. At this time, the valve 212 is switched to the on state and the valve 214 is switched to the off state.
 この場合、図5Bに破線で示すように、キャリアガス供給部5から供給されるキャリアガスが、流路162,106,105をこの順序で流れてトラップ管411に下流側から流入し、その後に流路104,103を介してガスクロマトグラフ2に供給される。これにより、トラップ管411に残った成分の脱離が終了した後も、図5Bに破線で示すキャリアガスの流れが維持されるため、流路103内のパージを行うことができる。 In this case, as shown by the broken line in FIG. 5B, the carrier gas supplied from the carrier gas supply unit 5 flows through the flow paths 162, 106, 105 in this order and flows into the trap pipe 411 from the downstream side, and then flows into the trap pipe 411. It is supplied to the gas chromatograph 2 via the flow paths 104 and 103. As a result, even after the desorption of the components remaining in the trap tube 411 is completed, the flow of the carrier gas shown by the broken line in FIG. 5B is maintained, so that the purging in the flow path 103 can be performed.
6.変形例
 以上の実施形態では、検出器がガスクロマトグラフ2である場合について説明したが、ガスクロマトグラフ2以外の検出器を用いて対象成分が検出されるような構成であってもよい。また、流路構成は任意に変更可能であり、流路の切替についてもバルブ211,212,213,214を用いて行う構成に限られるものではない。
6. Modifications In the above embodiment, the case where the detector is a gas chromatograph 2 has been described, but the configuration may be such that the target component is detected by using a detector other than the gas chromatograph 2. Further, the flow path configuration can be arbitrarily changed, and the flow path switching is not limited to the configuration using the valves 211,212,213,214.
 図2A及び図2Bに例示されるようなゼロ校正時の動作、図3A~図3Cに例示されるようなスパン校正時の動作、図4A~図4Dに例示されるような分析時の動作、及び、図5A及び図5Bに例示されるような再生時の動作の少なくとも一部が、制御部による自動制御ではなく、作業者により手動で行われてもよい。 Operation during zero calibration as illustrated in FIGS. 2A and 2B, operation during span calibration as exemplified in FIGS. 3A-3C, operation during analysis as exemplified in FIGS. 4A-4D, In addition, at least a part of the operation during reproduction as illustrated in FIGS. 5A and 5B may be manually performed by an operator instead of automatic control by the control unit.
7.態様
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
7. Aspects It will be understood by those skilled in the art that the plurality of exemplary embodiments described above are specific examples of the following embodiments.
(第1項)一態様に係るガス分析方法は、
 サンプルガス中の成分を濃縮器で濃縮するステップと、
 前記濃縮器にキャリアガスを供給することにより、濃縮された成分を検出器に供給するステップと、
 標準ガスに前記キャリアガスを混合させることにより生成される混合ガス中の成分を前記濃縮器で濃縮した後、前記濃縮器にキャリアガスを供給することにより、濃縮された成分を前記検出器に供給するステップと、
 前記検出器におけるサンプルガス中の成分及び混合ガス中の成分の検出強度に基づいて、サンプルガス中の成分の濃度を測定するステップとを含んでいてもよい。
(Section 1) The gas analysis method according to one aspect is
The step of concentrating the components in the sample gas with a concentrator,
The step of supplying the concentrated component to the detector by supplying the carrier gas to the concentrator, and
After concentrating the components in the mixed gas generated by mixing the carrier gas with the standard gas with the concentrator, the concentrated components are supplied to the detector by supplying the carrier gas to the concentrator. Steps to do and
It may include a step of measuring the concentration of the component in the sample gas based on the detection intensity of the component in the sample gas and the component in the mixed gas in the detector.
 第1項に記載のガス分析方法によれば、サンプルガス及び標準ガスをそれぞれ濃縮器に導入する構成において、キャリアガスを用いて標準ガスを希釈することができる。これにより、希釈器を別途設ける必要がないため、構成を最適化することができる。 According to the gas analysis method described in paragraph 1, the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively. As a result, it is not necessary to separately provide a diluter, so that the configuration can be optimized.
(第2項)第1項に記載のガス分析方法において、
 前記キャリアガスを前記検出器に供給するステップと、
 前記検出器における混合ガス中の成分及びキャリアガス中の成分の検出強度に基づいて、検量線を作成するステップとをさらに含み、
 前記濃度を測定するステップでは、前記検出器におけるサンプルガス中の成分の検出強度及び前記検量線に基づいて、サンプルガス中の成分の濃度を測定してもよい。
(Section 2) In the gas analysis method described in paragraph 1,
The step of supplying the carrier gas to the detector,
It further includes a step of creating a calibration curve based on the detection intensity of the components in the mixed gas and the components in the carrier gas in the detector.
In the step of measuring the concentration, the concentration of the component in the sample gas may be measured based on the detection intensity of the component in the sample gas in the detector and the calibration curve.
 第2項に記載のガス分析方法によれば、キャリアガスを用いて希釈された標準ガス中の成分(混合ガス中の成分)とキャリアガス中の成分の検出強度に基づいて検量線を作成し、その検量線を用いてサンプルガス中の成分の濃度を測定することができる。 According to the gas analysis method described in Section 2, a calibration curve is prepared based on the detection intensities of the components in the standard gas (components in the mixed gas) diluted with the carrier gas and the components in the carrier gas. , The concentration of the component in the sample gas can be measured using the calibration curve.
(第3項)第1項又は第2項に記載のガス分析方法において、
 分析後に、前記濃縮器に前記キャリアガスを供給することにより、前記濃縮器中に残った成分を排出させるステップをさらに含んでいてもよい。
(Section 3) In the gas analysis method according to paragraph 1 or 2,
After the analysis, a step of discharging the components remaining in the concentrator by supplying the carrier gas to the concentrator may be further included.
 第3項に記載のガス分析方法によれば、濃縮器中に残った成分が、次回の分析時におけるサンプルガス中の成分の濃度の測定結果に悪影響を与えることを防止できる。 According to the gas analysis method described in paragraph 3, it is possible to prevent the components remaining in the concentrator from adversely affecting the measurement result of the concentration of the components in the sample gas at the time of the next analysis.
(第4項)一態様に係るガス分析装置は、
 サンプル導入部から導入されるサンプルガスを濃縮するための濃縮器と、
 前記濃縮器により濃縮されたサンプルガス中の成分を検出するための検出器と、
 キャリアガスを供給するキャリアガス供給部と、
 標準ガスを供給する標準ガス供給部と、
 前記濃縮器の上流側を前記サンプル導入部に連通させるサンプルガス流路と、
 前記標準ガス供給部を第1合流部において前記サンプルガス流路に連通させ、前記サンプルガス流路を介して、前記濃縮器に上流側から標準ガスを導入させる標準ガス流路と、
 前記濃縮器の下流側を前記キャリアガス供給部に連通させ、前記濃縮器に下流側からキャリアガスを導入させるキャリアガス流路と、
 前記第1合流部よりも下流側に設けられ、前記濃縮器に上流側からサンプルガス又は標準ガスを導入させるポンプと、
 前記第1合流部よりも下流側に設けられ、前記濃縮器に導入されるサンプルガス又は標準ガスの流量を測定する流量計と、
 前記標準ガス流路を介して前記濃縮器に導入される標準ガスに対して、前記キャリアガス供給部から供給されるキャリアガスを混合させる混合器とを備えていてもよい。
(Section 4) The gas analyzer according to one aspect is
A concentrator for concentrating the sample gas introduced from the sample introduction section,
A detector for detecting the components in the sample gas concentrated by the concentrator, and
The carrier gas supply unit that supplies the carrier gas and
The standard gas supply unit that supplies standard gas and
A sample gas flow path that communicates the upstream side of the concentrator with the sample introduction section,
A standard gas flow path in which the standard gas supply unit is communicated with the sample gas flow path at the first confluence and the standard gas is introduced into the concentrator from the upstream side via the sample gas flow path.
A carrier gas flow path that communicates the downstream side of the concentrator with the carrier gas supply unit and introduces the carrier gas into the concentrator from the downstream side.
A pump provided on the downstream side of the first confluence and for introducing the sample gas or standard gas into the concentrator from the upstream side.
A flow meter provided on the downstream side of the first confluence and measuring the flow rate of the sample gas or standard gas introduced into the concentrator.
A mixer that mixes the carrier gas supplied from the carrier gas supply unit with the standard gas introduced into the concentrator via the standard gas flow path may be provided.
 第4項に記載のガス分析装置によれば、サンプルガス及び標準ガスをそれぞれ濃縮器に導入する構成において、キャリアガスを用いて標準ガスを希釈することができる。これにより、希釈器を別途設ける必要がないため、構成を最適化することができる。 According to the gas analyzer described in paragraph 4, the standard gas can be diluted with the carrier gas in the configuration in which the sample gas and the standard gas are introduced into the concentrator, respectively. As a result, it is not necessary to separately provide a diluter, so that the configuration can be optimized.
(第5項)第4項に記載のガス分析装置において、
 前記濃縮器の上流側を前記検出器に連通させる導出流路をさらに備え、
 前記濃縮器で濃縮されたサンプルガス中の成分又は標準ガス中の成分が、前記キャリアガス流路から前記濃縮器の下流側に導入されるキャリアガスによって、前記導出流路に導出されてもよい。
(Section 5) In the gas analyzer according to paragraph 4,
Further provided with a lead-out flow path for communicating the upstream side of the concentrator with the detector.
The components in the sample gas concentrated by the concentrator or the components in the standard gas may be led out to the outlet flow path by the carrier gas introduced from the carrier gas flow path to the downstream side of the concentrator. ..
 第5項に記載のガス分析装置によれば、サンプルガス中の成分及び標準ガス中の成分をそれぞれ濃縮器で濃縮した後、キャリアガス流路に導入されるキャリアガスによって、濃縮された成分を導出流路から検出器に供給することができる。 According to the gas analyzer according to the fifth item, after concentrating the components in the sample gas and the components in the standard gas with a concentrator, the components concentrated by the carrier gas introduced into the carrier gas flow path are used. It can be supplied to the detector from the lead-out flow path.
(第6項)第4項又は第5項に記載のガス分析装置において、
 前記キャリアガス流路に対して第2合流部において連通する排気流路をさらに備え、
 前記ポンプ及び前記流量計の少なくとも一方は、前記排気流路に設けられていてもよい。
(Section 6) In the gas analyzer according to paragraph 4 or 5,
An exhaust flow path that communicates with the carrier gas flow path at the second confluence is further provided.
At least one of the pump and the flow meter may be provided in the exhaust flow path.
 第6項に記載のガス分析装置によれば、ポンプを駆動させることにより、サンプル導入部から導入されるサンプルガスを濃縮器に流入させ、排気流路を介して排出することができる。ポンプ及び流量計の少なくとも一方が排気流路に設けられることにより、ポンプ又は流量計から濃縮器に異物等が混入するのを防止することができる。 According to the gas analyzer described in item 6, by driving the pump, the sample gas introduced from the sample introduction section can flow into the concentrator and be discharged through the exhaust flow path. By providing at least one of the pump and the flow meter in the exhaust flow path, it is possible to prevent foreign matter and the like from being mixed into the concentrator from the pump or the flow meter.
(第7項)第4項~第6項のいずれか一項に記載のガス分析装置において、
 前記混合器は、標準ガスに対するキャリアガスの混合比率を調整可能であってもよい。
(Section 7) In the gas analyzer according to any one of paragraphs 4 to 6,
The mixer may be capable of adjusting the mixing ratio of the carrier gas to the standard gas.
 第7項に記載のガス分析装置によれば、標準ガスに対するキャリアガスの混合比率を調整することにより、任意の希釈率で標準ガスを希釈することができる。 According to the gas analyzer described in paragraph 7, the standard gas can be diluted at an arbitrary dilution ratio by adjusting the mixing ratio of the carrier gas to the standard gas.
1 サンプル導入部
2 ガスクロマトグラフ
3 フィルタ
4 濃縮装置
5 キャリアガス供給部
6 標準ガス供給部
7 ポンプ
40 筐体
41 濃縮器
42 流量計
43 ポンプ
44 混合器
101~109,162,163 流路
110 サンプルガス流路
111,122,161,164 分岐部
120 導出流路
121,171 合流部
130 標準ガス流路
140 キャリアガス流路
210~214 バルブ
411 トラップ管
412 加熱部
413 冷却部
1 Sample introduction part 2 Gas chromatograph 3 Filter 4 Concentrator 5 Carrier gas supply part 6 Standard gas supply part 7 Pump 40 Housing 41 Concentrator 42 Flow meter 43 Pump 44 Mixer 101-109, 162, 163 Flow path 110 Sample gas Flow path 111, 122, 161, 164 Branch part 120 Derivation flow path 121, 171 Confluence part 130 Standard gas flow path 140 Carrier gas flow path 210 to 214 Valve 411 Trap pipe 412 Heating part 413 Cooling part

Claims (7)

  1.  サンプルガス中の成分を濃縮器で濃縮するステップと、
     前記濃縮器にキャリアガスを供給することにより、濃縮された成分を検出器に供給するステップと、
     標準ガスに前記キャリアガスを混合させることにより生成される混合ガス中の成分を前記濃縮器で濃縮した後、前記濃縮器にキャリアガスを供給することにより、濃縮された成分を前記検出器に供給するステップと、
     前記検出器におけるサンプルガス中の成分及び混合ガス中の成分の検出強度に基づいて、サンプルガス中の成分の濃度を測定するステップとを含む、ガス分析方法。
    The step of concentrating the components in the sample gas with a concentrator,
    The step of supplying the concentrated component to the detector by supplying the carrier gas to the concentrator, and
    After concentrating the components in the mixed gas generated by mixing the carrier gas with the standard gas with the concentrator, the concentrated components are supplied to the detector by supplying the carrier gas to the concentrator. Steps to do and
    A gas analysis method comprising the step of measuring the concentration of a component in a sample gas based on the detection intensity of a component in a sample gas and a component in a mixed gas in the detector.
  2.  前記キャリアガスを前記検出器に供給するステップと、
     前記検出器における混合ガス中の成分及びキャリアガス中の成分の検出強度に基づいて、検量線を作成するステップとをさらに含み、
     前記濃度を測定するステップでは、前記検出器におけるサンプルガス中の成分の検出強度及び前記検量線に基づいて、サンプルガス中の成分の濃度を測定する、請求項1に記載のガス分析方法。
    The step of supplying the carrier gas to the detector,
    It further includes a step of creating a calibration curve based on the detection intensity of the components in the mixed gas and the components in the carrier gas in the detector.
    The gas analysis method according to claim 1, wherein in the step of measuring the concentration, the concentration of the component in the sample gas is measured based on the detection intensity of the component in the sample gas in the detector and the calibration curve.
  3.  分析後に、前記濃縮器に前記キャリアガスを供給することにより、前記濃縮器中に残った成分を排出させるステップをさらに含む、請求項1に記載のガス分析方法。 The gas analysis method according to claim 1, further comprising a step of discharging the components remaining in the concentrator by supplying the carrier gas to the concentrator after the analysis.
  4.  サンプル導入部から導入されるサンプルガスを濃縮するための濃縮器と、
     前記濃縮器により濃縮されたサンプルガス中の成分を検出するための検出器と、、
     キャリアガスを供給するキャリアガス供給部と、
     標準ガスを供給する標準ガス供給部と、
     前記濃縮器の上流側を前記サンプル導入部に連通させるサンプルガス流路と、
     前記標準ガス供給部を第1合流部において前記サンプルガス流路に連通させ、前記サンプルガス流路を介して、前記濃縮器に上流側から標準ガスを導入させる標準ガス流路と、
     前記濃縮器の下流側を前記キャリアガス供給部に連通させ、前記濃縮器に下流側からキャリアガスを導入させるキャリアガス流路と、
     前記第1合流部よりも下流側に設けられ、前記濃縮器に上流側からサンプルガス又は標準ガスを導入させるポンプと、
     前記第1合流部よりも下流側に設けられ、前記濃縮器に導入されるサンプルガス又は標準ガスの流量を測定する流量計と、
     前記標準ガス流路を介して前記濃縮器に導入される標準ガスに対して、前記キャリアガス供給部から供給されるキャリアガスを混合させる混合器とを備える、ガス分析装置。
    A concentrator for concentrating the sample gas introduced from the sample introduction section,
    A detector for detecting components in the sample gas concentrated by the concentrator, and
    The carrier gas supply unit that supplies the carrier gas and
    The standard gas supply unit that supplies standard gas and
    A sample gas flow path that communicates the upstream side of the concentrator with the sample introduction section,
    A standard gas flow path in which the standard gas supply unit is communicated with the sample gas flow path at the first confluence and the standard gas is introduced into the concentrator from the upstream side via the sample gas flow path.
    A carrier gas flow path that communicates the downstream side of the concentrator with the carrier gas supply unit and introduces the carrier gas into the concentrator from the downstream side.
    A pump provided on the downstream side of the first confluence and for introducing the sample gas or standard gas into the concentrator from the upstream side.
    A flow meter provided on the downstream side of the first confluence and measuring the flow rate of the sample gas or standard gas introduced into the concentrator.
    A gas analyzer comprising a mixer that mixes a carrier gas supplied from the carrier gas supply unit with a standard gas introduced into the concentrator via the standard gas flow path.
  5.  前記濃縮器の上流側を前記検出器に連通させる導出流路をさらに備え、
     前記濃縮器で濃縮されたサンプルガス中の成分又は標準ガス中の成分が、前記キャリアガス流路から前記濃縮器の下流側に導入されるキャリアガスによって、前記導出流路に導出される、請求項4に記載のガス分析装置。
    Further provided with a lead-out flow path for communicating the upstream side of the concentrator with the detector.
    A claim that a component in a sample gas or a component in a standard gas concentrated by the concentrator is led out to the outlet flow path by a carrier gas introduced from the carrier gas flow path to the downstream side of the concentrator. Item 4. The gas analyzer according to item 4.
  6.  前記キャリアガス流路に対して第2合流部において連通する排気流路をさらに備え、
     前記ポンプ及び前記流量計の少なくとも一方は、前記排気流路に設けられている、請求項4に記載のガス分析装置。
    An exhaust flow path that communicates with the carrier gas flow path at the second confluence is further provided.
    The gas analyzer according to claim 4, wherein at least one of the pump and the flow meter is provided in the exhaust flow path.
  7.  前記混合器は、標準ガスに対するキャリアガスの混合比率を調整可能である、請求項4に記載のガス分析装置。 The gas analyzer according to claim 4, wherein the mixer can adjust the mixing ratio of the carrier gas to the standard gas.
PCT/JP2020/033247 2019-09-25 2020-09-02 Gas analysis method and gas analysis device WO2021059905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080064347.6A CN114375395A (en) 2019-09-25 2020-09-02 Gas analysis method and gas analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-174366 2019-09-25
JP2019174366 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021059905A1 true WO2021059905A1 (en) 2021-04-01

Family

ID=75166582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033247 WO2021059905A1 (en) 2019-09-25 2020-09-02 Gas analysis method and gas analysis device

Country Status (2)

Country Link
CN (1) CN114375395A (en)
WO (1) WO2021059905A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273525A (en) * 1988-11-21 1990-11-08 L'air Liquide Manufacture of low concentration gas mixture and apparatus therefor
US5214952A (en) * 1991-08-16 1993-06-01 Praxair Technology, Inc. Calibration for ultra high purity gas analysis
JPH09203728A (en) * 1995-11-13 1997-08-05 Tekmar Co Gas sampler with trap, trap and its detachment/ attachment method
JPH10104130A (en) * 1996-09-12 1998-04-24 Air Prod And Chem Inc Generator for gas mixture for low concentration calibration
JP2000155106A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Odor measuring apparatus
JP2002168737A (en) * 2000-12-01 2002-06-14 Shimadzu Corp Ventirating implment, ventirating mechanism, and purge- and-trap system
US20120205533A1 (en) * 2009-08-19 2012-08-16 Ariya Parisa A Methods and systems for the quantitative chemical speciation of heavy metals and other toxic pollutants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770858B (en) * 2016-12-28 2019-08-27 浙江富春江环保科技研究有限公司 A kind of standard gas sample introduction regulating system for dioxin on-line checking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273525A (en) * 1988-11-21 1990-11-08 L'air Liquide Manufacture of low concentration gas mixture and apparatus therefor
US5214952A (en) * 1991-08-16 1993-06-01 Praxair Technology, Inc. Calibration for ultra high purity gas analysis
JPH09203728A (en) * 1995-11-13 1997-08-05 Tekmar Co Gas sampler with trap, trap and its detachment/ attachment method
JPH10104130A (en) * 1996-09-12 1998-04-24 Air Prod And Chem Inc Generator for gas mixture for low concentration calibration
JP2000155106A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Odor measuring apparatus
JP2002168737A (en) * 2000-12-01 2002-06-14 Shimadzu Corp Ventirating implment, ventirating mechanism, and purge- and-trap system
US20120205533A1 (en) * 2009-08-19 2012-08-16 Ariya Parisa A Methods and systems for the quantitative chemical speciation of heavy metals and other toxic pollutants

Also Published As

Publication number Publication date
CN114375395A (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US8584507B2 (en) Gas sample introduction device and a gas chromatograph using the same
JP5148933B2 (en) Sample concentration method and apparatus
JP5817738B2 (en) Total organic carbon measuring device and method
JP7100766B2 (en) Water removal method for gas concentration sampling, sample introduction method and their equipment
CN106093251B (en) Method and apparatus for pre-concentration gaseous sample
JP5203006B2 (en) Sample gas collector and gas chromatograph
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
WO2021059905A1 (en) Gas analysis method and gas analysis device
JP2000187027A (en) Method and device for analyzing trace amount of organic compound
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
JP6653175B2 (en) Volatile organic compound measuring device and volatile organic compound measuring method
CN113155552B (en) Sample acquisition device applied to online detection
JP6551102B2 (en) Breath analyzer
JP4118745B2 (en) Concentration analyzer and method
KR20190098601A (en) Method of analyzing gas samples and analyzing apparatus thereof
JP2000002679A (en) Odor measuring apparatus
JP3133856U (en) Total organic carbon meter
JP4042638B2 (en) Infrared gas analyzer
JP2000241404A (en) Carbon fractionation analysis device
JP3471569B2 (en) Air pollution hazardous substance measuring device
JP2007205968A (en) Hydrogen flame ionization (detector) type analyzer
JP4165341B2 (en) Infrared gas analyzer
JP2019211344A (en) Separation method by gas chromatography, gas chromatography device, gas analyzer, concentration tube, concentrator, concentration tube manufacturing method, and gas detector
JP2538067Y2 (en) Concentration analyzer
US20230258615A1 (en) Gas spectroscopic device and gas spectroscopic method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP