JP3644653B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP3644653B2
JP3644653B2 JP20865996A JP20865996A JP3644653B2 JP 3644653 B2 JP3644653 B2 JP 3644653B2 JP 20865996 A JP20865996 A JP 20865996A JP 20865996 A JP20865996 A JP 20865996A JP 3644653 B2 JP3644653 B2 JP 3644653B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
substrate
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20865996A
Other languages
Japanese (ja)
Other versions
JPH1048671A (en
Inventor
康裕 森井
文雄 松川
顕 津村
伸 田畑
昌也 水沼
晃 玉谷
雅之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20865996A priority Critical patent/JP3644653B2/en
Publication of JPH1048671A publication Critical patent/JPH1048671A/en
Application granted granted Critical
Publication of JP3644653B2 publication Critical patent/JP3644653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid crystal display device which allows driving with a low voltage and has excellent display characteristics. SOLUTION: Comb-shaped pixel electrodes 11 and common electrodes 12 are arranged on a substrate 13 and a counter substrate 14 in such a manner that the teeth of respective combs are paralleled and alternated with each other. When voltage is impressed on the liquid crystal display device, an electric field in a diagonal direction is generated by the pixel electrodes 11 and the common electrodes 12 and liquid crystal molecules 10b having positive dielectric anisotropy are oriented along the electric field in a diagonal direction. The pixel electrodes 11 and the common electrodes 12 are preferably arranged by parting the spacings therebetween in such a manner that the electric field in a diagonal direction is made more nearly horizontal in order to eliminate the dependence of the liquid crystal molecules 10b on visual field angles. On the other hand, a higher driving voltage is made necessary in order to make the inter-electrode spacing larger. Then, the angle A formed by the electric field direction with the substrate surface with respect to the liquid crystal display device having a cell gap of 4 to 10μm is set larger than 20 deg. and below 45 deg..

Description

【0001】
【発明の属する技術分野】
この発明は、液晶表示装置、特にその駆動電圧の低下と表示特性の向上に関するものである。
【0002】
【従来の技術】
液晶表示装置は、薄型、軽量、低消費電力等の特長を有するため、腕時計、電卓等の表示装置として広く用いられている。特に、薄膜トランジスタ(TFT)等によりアクティブ駆動を行うツイストネマティック(TN)型液晶表示装置は、ワードプロセッサー、パーソナルコンピュータ等の表示装置やテレビ等において、従来の最も一般的な表示装置であるCRTに置き換わりつつある。しかしこのTN型液晶表示装置は、一般的に視野角が狭く、斜め方向から眺めた時に、コントラスト低下、階調反転として観察されるという問題を持っている。特に近年液晶表示装置の大型化が進み、同一の観察点から表示面の上下左右端を眺めた場合にでさえ表示に差が見られるため、視野角の拡大が求められている。
【0003】
この斜め方向から観察したときの表示品位低下の原因としては、TN型液晶表示装置では液晶分子の電界による立ち上がりを利用して表示を行っており、その立ち上がり方向に異方性があるために生じると考えられている。つまり、一方向から立ち上がる液晶分子を種々の方向から眺めると、その光学的寄与が変化するため視野角に対する表示変化が生じると考えられ、TN型液晶表示装置の本質的問題であると言える。このような問題を解決するために、最近、面内応答型液晶表示装置が提案されている。
【0004】
図3は、従来の面内応答型液晶表示装置を示す構造図である。図3−aは、従来より用いられている櫛型の面内応答型液晶表示装置の1画素の上面図を示す。図において、1はソース線、2はゲート線、3は画素部、4および5は櫛型の電極、6はスイッチング素子である薄膜トランジスタ(TFT)部、7はコモン線をそれぞれ示す。一般的な画素構成は、従来よりTN液晶を用いたアクティブマトリクス型TFT素子と同様に、映像信号を伝えるデータ用信号線いわゆるソース線1と画素部3に信号を入力するための走査用信号線いわゆるゲート線2および画素部3に映像信号を書き込むTFT6を有する。面内応答型液晶表示装置の特徴は画素部3にあり、画素部3は、映像信号が書き込まれる櫛型の電極4とこれに面内方向で対応する櫛型の電極5を有し、かつ電極5はコモン線7と接続されている。図3−bは、画素部3の拡大図を示す。TFT6から書き込まれた映像信号は、電極4に一定の電位を発生する。電極5は、コモン線7と接続されているため、コモン線7の電位を調節することにより、ある電位を電極4、5間に与えることができる。
【0005】
図4−aは、上記従来の面内応答型液晶表示装置の電極4、5から発生する電界を示す断面図である。図において、8は櫛形の電極4、5が形成された画素電極基板、9は対向基板である。対向基板9は、従来のTN型液晶用TFTパネルとは異なり、電極を有する必要はなく、画素電極基板8との一定のパネル間隙内に液晶を封入するためのものである。電極4、5間に発生した電界は、図に示すように対向基板9側に近づくにつれ若干山型になる。図4−bは、負の誘電異方性を有する液晶材料を用いた時の図4−aに示す電界に対する液晶の配向状態を示す断面図である。図において10aは負の誘電異方性を有する液晶を示す。負の液晶材料10aは、分子の短軸方向に誘電異方性を有するため、電界方向に対し短軸が沿う。対向基板9方向から見た視野角はTN型液晶用TFTパネルに比べて広くなり、且つ電極4、5間全域にわたりディスクリネーションを発生することがない。
【0006】
【発明が解決しようとする課題】
以上のように、従来の面内応答型液晶表示装置では、表示特性が良好であることから一般的に負の誘電異方性を有する液晶10aが用いられていた。しかし、現在発見されている負の誘電異方性をもつ液晶材料は数が少なく、ディスプレイ用液晶として使用できる特性を持つものは誘電異方性の絶対値が小さく、液晶を駆動するために高い電圧が必要になるという問題があった。このため、現在のTN液晶に代表される正の誘電異方性を有する液晶材料の適用が望まれている。図4−cは、従来の面内応答型液晶表示装置に正の誘電異方性を有する液晶を用いた時の、電界に対する液晶の配向状態を示す断面図である。図において10bは正の誘電異方性を有する液晶を示す。正の誘電異方性を有する液晶材料10bは、駆動電圧、応答速度、電圧保持率等の諸特性は安定しているが、従来の面内応答型液晶表示装置に用いた場合、山型になった電界方向に液晶分子長軸が沿って配向するため、その頂点部分に異なる配向状態の液晶のぶつかりであるディスクリネーションラインが発生する。このディスクリネーションラインの発生/消失はヒステリシスを描くため残像が発生し、表示品位が低下するという問題があった。
【0007】
この発明は、上記のような問題点を解消するためになされたもので、低電圧駆動が可能で、残像が無く、表示特性に優れた液晶表示装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係わる液晶表示装置は、基板上に配置された複数本の走査用信号線とデータ用信号線の各交点に設けられた薄膜トランジスタに接続され、互いに平行に配置された遮光性を有する導電体からなる複数の画素電極、基板と対をなす対向基板上に、画素電極の中間位置に対向して互いに平行に配置された遮光性を有する導電体からなる複数のコモン電極、一対の基板間に配向膜を介して挟持された正の誘電異方性を有する液晶を備え、画素電極およびコモン電極間に電圧を印加し、基板面に斜め方向に電界を発生させ液晶を面内応答させることにより光学特性を制御する液晶表示装置であって、一対の基板の間隔を約4〜10μmとすると共に、斜め方向の電界の角度すなわち画素電極およびコモン電極間の最短距離を結ぶ線と基板とのなす角度が20度より大きく45度以下であるものである。
また、画素電極およびコモン電極は、櫛型電極としたものである。
【0009】
【発明の実施の形態】
実施の形態1.
以下に、本発明の実施の形態1である液晶表示装置を図について説明する。図1−aは、本発明の実施の形態1である液晶表示装置の1画素に対する上下電極パターンを示す斜視図、図1−bは、1画素に対する電極の上面図、図2は電界に対する液晶分子の配向状態を示す断面図である。図において、11は櫛型の画素電極、12は同じく櫛型のコモン電極、13は画素電極11が形成された基板、14はコモン電極12が形成された基板、15は配向膜をそれぞれ示す。なお、図中、同一、相当部分には同一符号を付し、説明を省略する。また、図1に示す電極構成は、1画素を示しているが、同構造は1画素に限定されるものでなく、基板全面が1画素構造をとる場合もある。本実施の形態では、全画素にわたり同様の画素構造をとるものである。
【0010】
本実施の形態による液晶表示装置の作成方法について説明する。例えばガラスよりなる基板13上に、櫛型の画素電極11を形成する。画素電極11は、薄膜トランジスタ(TFT)部6を有し、ゲート線2とソース線1に接続されている。次に対向基板であるガラス基板14上に、櫛型のコモン電極12を形成する。コモン電極12は一定信号が基板面全域の電極に伝わる構造であればどのような構造でもよい。画素電極11およびコモン電極12は、一画素ピッチ毎に櫛型をしており、櫛の歯の部分に当たる電極に対して、櫛の歯の隙間に当たる部分は非導電部であり、光が透過するように透明に近い絶縁体、例えばSiN、SiO2 等が形成されているか、またはガラス基板14が見える構造になっている。また、電極部は、遮光性を有する導電体、例えばCr、AlまたはMo等であることが望ましい。なお、画素電極11およびコモン電極12の電極幅は5〜50μm程度であり、間隔は2〜50μm程度である。ただし、電極幅および電極間隔は、上記の数値に限定するものではなく、電極幅は細いほど、電極間隔は広いほど、開口率が向上するため望ましい。これらの2つの櫛型の電極は、互いにそれぞれの櫛の歯が平行且つ交互に等間隔で配置されている。すなわち、コモン電極12の櫛の歯の隙間に相当する非導電部の中央部に、画素電極11の櫛の歯に相当する電極が配置され、同様に、画素電極11の櫛の歯の隙間に相当する非導電部の中央部に、コモン電極13の櫛の歯に相当する電極が配置されている。このように配置することで、各電極間で発生する電界の強さが等しくなる。
【0011】
画素電極11およびコモン電極12の形成後、それぞれの基板13、14表面にポリイミド配向膜15、例えば日本合成ゴム製Al−1044を形成する。次に、基板13、14を図1−a中に示すR、Fの方向にそれぞれラビングする。ラビング方向は、基本的には画素電極11およびコモン電極12に対し水平方向に行うが、電界が加わった時の液晶分子の回転方向を規制するために、電極に対し0度以上45度以下の角度を有してラビングする場合が多い。
上記のように形成された2枚の基板13、14をそれぞれのラビング方向F、Rが反平行または平行に重ねあわせ、上下基板の間隔を4〜10μmとしてセルを作成する。この基板間に正の誘電異方性を有するネマティック液晶、例えばチッソ製MS5017を注入し、所望の液晶セルが得られる。
【0012】
図2は、本実施の形態による液晶表示装置に電圧を印加した場合の液晶分子の配向状態を示す断面図である。図においてLは画素電極11とコモン電極12との最短距離、Aは上記Lと基板13面とのなす角度であり、電界方向のなす角を示す。電圧を印加すると、画素電極11とコモン電極12により斜め方向の電界が発生し、正の誘電異方性を有する液晶分子10bは、この斜め方向の電界に沿って配向する。本実施の形態による液晶表示装置では、基板13、14間に斜め方向の電界を発生させるため、例えば基板14側から画像を見た場合、液晶分子10bを斜め方向から見ることになる。液晶分子10bは、長軸方向と短軸方向に屈折率の異方性を有するため、視野角の依存性が発生してしまう。これを解消するためには斜め方向の電界がより水平に近くなるように画素電極11およびコモン電極12を配置し、液晶10bの長軸方向が、基板に対しほぼ水平に配向することが望ましい。一方、斜め方向の電界をより水平にするためには、画素電極11およびコモン電極12それぞれの櫛の歯に相当する電極間隔を大きくとらなければならないため、必要な電圧を液晶分子10bに加えるためにより高い駆動電圧が必要となる。
【0013】
以上のことから、セルギャップ4〜10μmの液晶表示装置に対し、基板表面に対する電界方向のなす角度Aを20度より大きく、45度以下にする必要がある。角度Aが45度以上であった場合、ディスクリネーションが大きく発生し、さらに、液晶10bの屈折率異方性が視野角依存性を生じるため、45度以下にする必要がある。また、20度以下であった場合、セルギャップ4μmにおいて画素電極11と対向するコモン電極12の距離Lに対しLcosAが約11μm以上となり、現在の液晶の駆動電圧と、アクティブマトリクス素子を用いた時に液晶部に加えることができる電圧を考慮すると、11μm以上の間隔にすることは難しい。セルギャップが4μm以上の時は、櫛の歯の間隔をさらに大きくする必要があるため、より困難である。なお、セルギャップは薄すぎると駆動電圧が高くなり、厚すぎると応答速度が遅くなるため、本実施の形態における液晶モードには、4〜10μm程度が選択されている。
【0014】
本実施の形態による液晶表示装置の動画特性を計測した結果、ディスクリネーションラインは発生せず、また、視野角依存性も顕著に現われず、残像のない良好な表示特性が得られた。
【0015】
【発明の効果】
以上のように、この発明によれば、対向する基板上に形成された遮光性を有する導電体からなる画素電極およびコモン電極間に電圧を印加し、基板面に斜め方向に電界を発生させ液晶を応答させる液晶表示装置において、一対の基板の間隔を約4〜10μmとすると共に、斜め方向の電界の角度すなわち画素電極およびコモン電極間の最短距離を結ぶ線と基板とのなす角度を20度より大きく45度以下としたので、ディスクリネーションの発生がなく、さらに視野角依存性のない良好な表示特性を有する液晶表示装置を得ることが可能である。
【0016】
さらに、正の誘電異方性を有する液晶を用いることができるので、低電圧駆動が可能で保持率が高く、信頼性の高い液晶表示装置が得られる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1である液晶表示装置の一画素電極を示す斜視図および上面図である。
【図2】 この発明の実施の形態1である液晶表示装置における電圧印加時の液晶の配向状態を示す断面図である。
【図3】 従来の面内応答型液晶表示装置を示す上面図および拡大図である。
【図4】 従来の面内応答型液晶表示装置における電圧印加時に発生する電界と液晶の配向状態を示す断面図である。
【符号の説明】
1 ソース線、2 ゲート線、3 画素部、4、5 電極、
6 薄膜トランジスタ(TFT)部、7 コモン線、8 画素電極基板、
9 対向基板、10a 負の誘電異方性を有する液晶、
10b 正の誘電異方性を有する液晶、11 画素電極、12 コモン電極、
13、14 基板、15 配向膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device, and more particularly to a reduction in driving voltage and an improvement in display characteristics.
[0002]
[Prior art]
Liquid crystal display devices are widely used as display devices for wristwatches, calculators, and the like because they have features such as thinness, light weight, and low power consumption. In particular, twisted nematic (TN) type liquid crystal display devices that are actively driven by thin film transistors (TFTs) and the like are replacing CRTs, which are the most common conventional display devices, in display devices such as word processors and personal computers, and televisions. is there. However, this TN type liquid crystal display device has a problem that the viewing angle is generally narrow, and when viewed from an oblique direction, it is observed as a decrease in contrast and gradation inversion. Particularly, in recent years, liquid crystal display devices have been increased in size, and even when the top, bottom, left, and right edges of the display surface are viewed from the same observation point, a difference in display can be seen.
[0003]
The cause of the deterioration in display quality when observed from the oblique direction is that the TN type liquid crystal display device performs display using the rising of the liquid crystal molecules due to the electric field, and the rising direction has anisotropy. It is believed that. That is, when the liquid crystal molecules rising from one direction are viewed from various directions, the optical contribution is changed, so that it is considered that the display changes with respect to the viewing angle, which is an essential problem of the TN liquid crystal display device. In order to solve such a problem, an in-plane response type liquid crystal display device has been recently proposed.
[0004]
FIG. 3 is a structural view showing a conventional in-plane response type liquid crystal display device. FIG. 3A is a top view of one pixel of a conventional comb-type in-plane response liquid crystal display device. In the figure, 1 is a source line, 2 is a gate line, 3 is a pixel portion, 4 and 5 are comb-shaped electrodes, 6 is a thin film transistor (TFT) portion which is a switching element, and 7 is a common line. A general pixel configuration is a data signal line for transmitting a video signal, a so-called source line 1 and a scanning signal line for inputting a signal to the pixel unit 3 in the same manner as an active matrix TFT element using a TN liquid crystal. A so-called gate line 2 and a TFT 6 for writing a video signal to the pixel portion 3 are provided. The in-plane response type liquid crystal display device is characterized in the pixel unit 3, which has a comb-shaped electrode 4 to which a video signal is written and a comb-shaped electrode 5 corresponding to this in the in-plane direction, and The electrode 5 is connected to the common line 7. FIG. 3B shows an enlarged view of the pixel unit 3. The video signal written from the TFT 6 generates a constant potential at the electrode 4. Since the electrode 5 is connected to the common line 7, a certain potential can be applied between the electrodes 4 and 5 by adjusting the potential of the common line 7.
[0005]
FIG. 4A is a cross-sectional view showing an electric field generated from the electrodes 4 and 5 of the conventional in-plane response type liquid crystal display device. In the figure, 8 is a pixel electrode substrate on which comb-shaped electrodes 4 and 5 are formed, and 9 is a counter substrate. Unlike the conventional TN type liquid crystal TFT panel, the counter substrate 9 does not need to have electrodes, and is for sealing liquid crystal in a certain panel gap with the pixel electrode substrate 8. As shown in the figure, the electric field generated between the electrodes 4 and 5 becomes slightly mountain-shaped as it approaches the counter substrate 9 side. FIG. 4-b is a cross-sectional view showing the alignment state of the liquid crystal with respect to the electric field shown in FIG. 4-a when a liquid crystal material having negative dielectric anisotropy is used. In the figure, reference numeral 10a denotes a liquid crystal having negative dielectric anisotropy. Since the negative liquid crystal material 10a has dielectric anisotropy in the minor axis direction of the molecule, the minor axis is aligned with the electric field direction. The viewing angle viewed from the direction of the counter substrate 9 is wider than that of the TN liquid crystal TFT panel, and disclination does not occur across the entire area between the electrodes 4 and 5.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional in-plane response type liquid crystal display device, the liquid crystal 10a having negative dielectric anisotropy is generally used because of its good display characteristics. However, there are few liquid crystal materials with negative dielectric anisotropy that have been discovered at present, and those with characteristics that can be used as display liquid crystals have a small absolute value of dielectric anisotropy and are high for driving liquid crystals. There was a problem that voltage was required. For this reason, application of a liquid crystal material having positive dielectric anisotropy represented by the current TN liquid crystal is desired. FIG. 4C is a cross-sectional view showing the alignment state of the liquid crystal with respect to the electric field when a liquid crystal having positive dielectric anisotropy is used in the conventional in-plane response type liquid crystal display device. In the figure, reference numeral 10b denotes a liquid crystal having positive dielectric anisotropy. The liquid crystal material 10b having positive dielectric anisotropy has stable characteristics such as drive voltage, response speed, voltage holding ratio, etc., but when used in a conventional in-plane response type liquid crystal display device, it has a mountain shape. Since the major axis of the liquid crystal molecules is aligned along the direction of the electric field, a disclination line, which is a collision of liquid crystals with different alignment states, is generated at the apex portion. The occurrence / disappearance of this disclination line has a problem that a residual image is generated due to a hysteresis and the display quality is deteriorated.
[0007]
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a liquid crystal display device that can be driven at a low voltage, has no afterimage, and has excellent display characteristics.
[0008]
[Means for Solving the Problems]
The liquid crystal display device according to the invention is connected to a thin film transistor provided at each intersection of the plurality of scanning signal lines and data signal lines disposed on the substrate, having a light-shielding property which are arranged parallel to each other A plurality of pixel electrodes made of a conductor, a plurality of common electrodes made of a light-shielding conductor disposed in parallel with each other on a counter substrate that is paired with the substrate, facing a middle position of the pixel electrode, and a pair of substrates A liquid crystal having a positive dielectric anisotropy sandwiched between alignment films is applied. A voltage is applied between the pixel electrode and the common electrode to generate an electric field in an oblique direction on the substrate surface, thereby causing the liquid crystal to respond in-plane. a liquid crystal display device which controls the optical properties by, while about 4~10μm the gap between the pair of substrates, the lines and the substrate connecting the shortest distance between the oblique direction of the electric field of the angles, or the pixel electrode and the common electrode Nasu angle is not more than 45 degrees greater than 20 degrees.
Further, the pixel electrode and the common electrode are comb electrodes.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The liquid crystal display device according to the first embodiment of the present invention will be described below with reference to the drawings. 1A is a perspective view showing an upper and lower electrode pattern for one pixel of the liquid crystal display device according to Embodiment 1 of the present invention, FIG. 1B is a top view of an electrode for one pixel, and FIG. 2 is a liquid crystal against an electric field. It is sectional drawing which shows the orientation state of a molecule | numerator. In the figure, 11 is a comb-shaped pixel electrode, 12 is a comb-shaped common electrode, 13 is a substrate on which the pixel electrode 11 is formed, 14 is a substrate on which the common electrode 12 is formed, and 15 is an alignment film. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof is omitted. Further, although the electrode configuration shown in FIG. 1 shows one pixel, the structure is not limited to one pixel, and the entire substrate surface may have a one-pixel structure. In the present embodiment, the same pixel structure is adopted over all pixels.
[0010]
A method for manufacturing a liquid crystal display device according to this embodiment will be described. For example, a comb-shaped pixel electrode 11 is formed on a substrate 13 made of glass. The pixel electrode 11 has a thin film transistor (TFT) portion 6 and is connected to the gate line 2 and the source line 1. Next, a comb-shaped common electrode 12 is formed on a glass substrate 14 which is a counter substrate. The common electrode 12 may have any structure as long as the constant signal is transmitted to the electrodes on the entire substrate surface. The pixel electrode 11 and the common electrode 12 are comb-shaped for each pixel pitch, and the portion of the comb electrode corresponding to the gap between the comb teeth is a non-conductive portion, and light is transmitted to the electrode corresponding to the portion of the comb teeth. Thus, an insulator that is almost transparent, such as SiN, SiO2, or the like, is formed, or the glass substrate 14 can be seen. The electrode portion is preferably a light-shielding conductor such as Cr, Al, or Mo. The electrode width of the pixel electrode 11 and the common electrode 12 is about 5 to 50 μm, and the interval is about 2 to 50 μm. However, the electrode width and the electrode interval are not limited to the above numerical values, and the thinner the electrode width and the wider the electrode interval, the better the aperture ratio. These two comb-shaped electrodes have their comb teeth arranged in parallel and alternately at equal intervals. That is, an electrode corresponding to the comb teeth of the pixel electrode 11 is arranged in the center of the non-conductive portion corresponding to the gap of the comb teeth of the common electrode 12. An electrode corresponding to a comb tooth of the common electrode 13 is arranged at the center of the corresponding non-conductive portion. By arranging in this way, the strength of the electric field generated between the electrodes becomes equal.
[0011]
After the formation of the pixel electrode 11 and the common electrode 12, a polyimide alignment film 15, for example, Al-1044 made of Japan Synthetic Rubber, is formed on the surfaces of the substrates 13 and 14, respectively. Next, the substrates 13 and 14 are rubbed in the directions of R and F shown in FIG. The rubbing direction is basically performed in a horizontal direction with respect to the pixel electrode 11 and the common electrode 12, but in order to regulate the rotation direction of the liquid crystal molecules when an electric field is applied, the rubbing direction is not less than 0 degree and not more than 45 degrees with respect to the electrode. Rubbing is often performed at an angle.
The two substrates 13 and 14 formed as described above are overlapped so that the rubbing directions F and R are antiparallel or parallel to each other, and a cell is formed with an interval between the upper and lower substrates of 4 to 10 μm. Nematic liquid crystal having positive dielectric anisotropy, for example, MS5017 manufactured by Chisso, is injected between the substrates to obtain a desired liquid crystal cell.
[0012]
FIG. 2 is a cross-sectional view showing the alignment state of liquid crystal molecules when a voltage is applied to the liquid crystal display device according to the present embodiment. In the figure, L is the shortest distance between the pixel electrode 11 and the common electrode 12, and A is an angle formed by L and the surface of the substrate 13, and indicates an angle formed by the electric field direction. When a voltage is applied, an oblique electric field is generated by the pixel electrode 11 and the common electrode 12, and the liquid crystal molecules 10b having positive dielectric anisotropy are aligned along the oblique electric field. In the liquid crystal display device according to the present embodiment, since an electric field in an oblique direction is generated between the substrates 13 and 14, for example, when the image is viewed from the substrate 14 side, the liquid crystal molecules 10b are viewed from the oblique direction. Since the liquid crystal molecules 10b have refractive index anisotropy in the major axis direction and the minor axis direction, dependency on the viewing angle occurs. In order to solve this problem, it is desirable that the pixel electrode 11 and the common electrode 12 are arranged so that the electric field in the oblique direction is closer to the horizontal, and the major axis direction of the liquid crystal 10b is aligned substantially horizontally with respect to the substrate. On the other hand, in order to make the electric field in the oblique direction more horizontal, the electrode interval corresponding to the comb teeth of the pixel electrode 11 and the common electrode 12 must be made large, so that a necessary voltage is applied to the liquid crystal molecules 10b. Therefore, a higher driving voltage is required.
[0013]
From the above, for a liquid crystal display device with a cell gap of 4 to 10 μm, the angle A formed by the electric field direction with respect to the substrate surface needs to be greater than 20 degrees and less than 45 degrees. When the angle A is 45 degrees or more, a large disclination occurs, and furthermore, since the refractive index anisotropy of the liquid crystal 10b has a viewing angle dependency, it is necessary to make it 45 degrees or less. When the angle is 20 degrees or less, LcosA is about 11 μm or more with respect to the distance L of the common electrode 12 facing the pixel electrode 11 in the cell gap of 4 μm, and when the current liquid crystal driving voltage and the active matrix element are used. Considering the voltage that can be applied to the liquid crystal part, it is difficult to set the interval to 11 μm or more. When the cell gap is 4 μm or more, it is more difficult because the interval between the comb teeth needs to be further increased. Note that if the cell gap is too thin, the driving voltage becomes high, and if it is too thick, the response speed becomes slow. Therefore, about 4 to 10 μm is selected as the liquid crystal mode in the present embodiment.
[0014]
As a result of measuring the moving image characteristics of the liquid crystal display device according to the present embodiment, no disclination line was generated, the viewing angle dependency was not remarkably exhibited, and good display characteristics without an afterimage were obtained.
[0015]
【The invention's effect】
As described above, according to the present invention, a voltage is applied between the pixel electrode made of a light-shielding conductor formed on the opposing substrate and the common electrode to generate an electric field in an oblique direction on the surface of the liquid crystal. In the liquid crystal display device that responds to the above, the distance between the pair of substrates is about 4 to 10 μm, and the angle formed between the substrate and the angle of the oblique electric field, that is, the line connecting the shortest distance between the pixel electrode and the common electrode is 20 degrees. Since the angle is larger than 45 degrees, it is possible to obtain a liquid crystal display device having good display characteristics that is free from disclination and has no viewing angle dependency.
[0016]
Further, since a liquid crystal having positive dielectric anisotropy can be used, there is an effect that a liquid crystal display device that can be driven at a low voltage, has a high retention rate, and has high reliability can be obtained.
[Brief description of the drawings]
1 is a perspective view and a top view showing one pixel electrode of a liquid crystal display device according to Embodiment 1 of the present invention;
FIG. 2 is a cross-sectional view showing a liquid crystal alignment state when a voltage is applied in the liquid crystal display device according to the first embodiment of the present invention.
FIG. 3 is a top view and an enlarged view showing a conventional in-plane response type liquid crystal display device.
FIG. 4 is a cross-sectional view showing an electric field generated when a voltage is applied and a liquid crystal alignment state in a conventional in-plane response type liquid crystal display device.
[Explanation of symbols]
1 source line, 2 gate line, 3 pixel part, 4 and 5 electrode,
6 thin film transistor (TFT) section, 7 common line, 8 pixel electrode substrate,
9 counter substrate, 10a liquid crystal having negative dielectric anisotropy,
10b liquid crystal having positive dielectric anisotropy, 11 pixel electrode, 12 common electrode,
13, 14 Substrate, 15 Alignment film.

Claims (2)

基板上に配置された複数本の走査用信号線とデータ用信号線の各交点に設けられた薄膜トランジスタに接続され、互いに平行に配置された遮光性を有する導電体からなる複数の画素電極、
上記基板と対をなす対向基板上に、上記画素電極の中間位置に対向して互いに平行に配置された遮光性を有する導電体からなる複数のコモン電極、
上記一対の基板間に配向膜を介して挟持された正の誘電異方性を有する液晶を備え、上記画素電極およびコモン電極間に電圧を印加し、基板面に斜め方向に電界を発生させ上記液晶を応答させることにより光学特性を制御する液晶表示装置であって、
上記一対の基板の間隔を約4〜10μmとすると共に、上記画素電極およびコモン電極間の最短距離を結ぶ線と上記画素電極基板とのなす角度が20度より大きく45度以下であることを特徴とする液晶表示装置。
Is connected to a thin film transistor provided at each intersection of the plurality of scanning signal lines and data signal lines disposed on the substrate, a plurality of pixel electrodes made of a conductive material having a light shielding property which are arranged parallel to each other,
A plurality of common electrodes made of a light-shielding conductor disposed in parallel with each other on a counter substrate that is paired with the substrate, facing an intermediate position of the pixel electrode;
A liquid crystal having positive dielectric anisotropy sandwiched between the pair of substrates via an alignment film, and applying a voltage between the pixel electrode and the common electrode to generate an electric field in an oblique direction on the substrate surface; A liquid crystal display device that controls optical characteristics by causing liquid crystal to respond,
The distance between the pair of substrates is about 4 to 10 μm, and the angle formed between the line connecting the shortest distance between the pixel electrode and the common electrode and the pixel electrode substrate is greater than 20 degrees and less than 45 degrees. A liquid crystal display device.
上記画素電極および上記コモン電極は、櫛型電極であることを特徴とする請求項1記載の液晶表示装置。  The liquid crystal display device according to claim 1, wherein the pixel electrode and the common electrode are comb electrodes.
JP20865996A 1996-08-07 1996-08-07 Liquid crystal display Expired - Fee Related JP3644653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20865996A JP3644653B2 (en) 1996-08-07 1996-08-07 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20865996A JP3644653B2 (en) 1996-08-07 1996-08-07 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH1048671A JPH1048671A (en) 1998-02-20
JP3644653B2 true JP3644653B2 (en) 2005-05-11

Family

ID=16559926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20865996A Expired - Fee Related JP3644653B2 (en) 1996-08-07 1996-08-07 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3644653B2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497969B2 (en) 2008-02-14 2013-07-30 Japan Display Central Inc. Liquid crystal display device having particular electrodes
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9104075B2 (en) 2012-04-23 2015-08-11 Japan Display Inc. Liquid crystal display device
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134579B2 (en) 2011-09-02 2015-09-15 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9151985B2 (en) 2011-03-31 2015-10-06 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9207510B2 (en) 2011-04-19 2015-12-08 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9341898B2 (en) 2011-07-08 2016-05-17 Japan Display Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
US10353259B2 (en) 2014-09-09 2019-07-16 Japan Display Inc. Liquid crystal display device and display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990048947A (en) 1997-12-11 1999-07-05 김영환 Liquid Crystal Display Device with Electrode Eliminating Color Change and Realizing Wide Viewing Angle
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
JP4364332B2 (en) 1998-06-23 2009-11-18 シャープ株式会社 Liquid crystal display
KR100299381B1 (en) 1998-08-24 2002-06-20 박종섭 Liquid crystal display device having high opening ratio and high transmittance and manufacturing method thereof
KR100311210B1 (en) * 1998-12-29 2002-09-17 주식회사 하이닉스반도체 Liquid crystal display
JP4818588B2 (en) * 2004-02-25 2011-11-16 スタンレー電気株式会社 Liquid crystal display element
CN103460124B (en) 2011-04-08 2016-08-10 株式会社日本显示器 Liquid crystal indicator
CN111338106B (en) * 2020-03-05 2024-03-19 深圳市科创数字显示技术有限公司 Silicon-based liquid crystal spatial light modulator, manufacturing method thereof and wavelength selective switch
CN111338107B (en) * 2020-03-05 2024-03-19 深圳市科创数字显示技术有限公司 Silicon-based liquid crystal spatial light modulator, manufacturing method thereof and wavelength selective switch

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497969B2 (en) 2008-02-14 2013-07-30 Japan Display Central Inc. Liquid crystal display device having particular electrodes
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US8687134B2 (en) 2010-03-29 2014-04-01 Japan Display Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9235094B2 (en) 2011-03-17 2016-01-12 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US9151985B2 (en) 2011-03-31 2015-10-06 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US9207510B2 (en) 2011-04-19 2015-12-08 Japan Display Inc. Liquid crystal display device
US9298049B2 (en) 2011-04-22 2016-03-29 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9817284B2 (en) 2011-04-25 2017-11-14 Japan Display Inc. Liquid crystal display device
US9341898B2 (en) 2011-07-08 2016-05-17 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US8780302B2 (en) 2011-08-08 2014-07-15 Japan Display Inc. Liquid crystal display device
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US11106097B2 (en) 2011-08-09 2021-08-31 Japan Display Inc. Liquid crystal display apparatus
US10345654B2 (en) 2011-08-09 2019-07-09 Japan Display Inc. Liquid crystal display apparatus
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9810959B2 (en) 2011-08-11 2017-11-07 Japan Display Inc. Liquid crystal display including a mainpixel electrode
US9140943B2 (en) 2011-08-11 2015-09-22 Japan Display Inc. Liquid crystal display
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9134579B2 (en) 2011-09-02 2015-09-15 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US9841641B2 (en) 2011-09-16 2017-12-12 Japan Display Inc. Liquid crystal display device
US9372372B2 (en) 2011-09-16 2016-06-21 Japan Display Inc. Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9880430B2 (en) 2011-09-28 2018-01-30 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9104075B2 (en) 2012-04-23 2015-08-11 Japan Display Inc. Liquid crystal display device
US9470936B2 (en) 2012-04-23 2016-10-18 Japan Display, Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9459507B2 (en) 2012-05-22 2016-10-04 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9810957B2 (en) 2012-05-25 2017-11-07 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9733533B2 (en) 2012-05-29 2017-08-15 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9551911B2 (en) 2013-01-15 2017-01-24 Japan Display Inc. Liquid crystal display device
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US10353259B2 (en) 2014-09-09 2019-07-16 Japan Display Inc. Liquid crystal display device and display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US10203568B2 (en) 2015-01-22 2019-02-12 Japan Display Inc. Liquid crystal display device
US10613395B2 (en) 2015-01-22 2020-04-07 Japan Display Inc. Liquid crystal display device

Also Published As

Publication number Publication date
JPH1048671A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3644653B2 (en) Liquid crystal display
US6646707B2 (en) Fringe field switching mode LCD
JP3811811B2 (en) Fringe field switching mode liquid crystal display
JP3120751B2 (en) In-plane switching LCD
NL1008688C2 (en) Method for producing two domains in a layer, and liquid crystal display device and method for manufacturing the same.
JPH06222397A (en) Liquid crystal display device
JPH06273803A (en) Active matrix liquid crystal display device
US20060250561A1 (en) Liquid crystal display device
JPH11133408A (en) Horizontal electric field type liquid crystal display device
US7139051B2 (en) Reflective liquid crystal display of high aperture ratio, high transmittance and wide viewing angle
KR19980081660A (en) Reflective Liquid Crystal Display
US20040070715A1 (en) Vertical alignment mode liquid crystal display device
JP3031317B2 (en) Active matrix liquid crystal display
US20080002078A1 (en) In-plane switching active matrix liquid crystal display apparatus
JP3746333B2 (en) Liquid crystal display
JPH1130784A (en) Liquid crystal display device
JP3130682B2 (en) Liquid crystal display device
JP3681775B2 (en) Liquid crystal display element
JPH10319434A (en) Active matrix type liquid crystal display device
JPH0980436A (en) Liquid crystal display element
KR100674227B1 (en) Vertical aligned-fringe field switching mode lcd improved electric-field
JPH103076A (en) Liquid crystal display element
US6573966B1 (en) Parallel field device with compensating domains held by a boundary surface and stabilized by auxiliary electrodes
KR100675928B1 (en) Fringe field swiching mode lcd
KR20060045268A (en) Fringe field switching mode liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees