JP3644623B2 - Evaporometer - Google Patents

Evaporometer Download PDF

Info

Publication number
JP3644623B2
JP3644623B2 JP25749198A JP25749198A JP3644623B2 JP 3644623 B2 JP3644623 B2 JP 3644623B2 JP 25749198 A JP25749198 A JP 25749198A JP 25749198 A JP25749198 A JP 25749198A JP 3644623 B2 JP3644623 B2 JP 3644623B2
Authority
JP
Japan
Prior art keywords
water
container
tube
unglazed
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25749198A
Other languages
Japanese (ja)
Other versions
JP2000075051A (en
Inventor
忠保 森
Original Assignee
株式会社ウイジン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ウイジン filed Critical 株式会社ウイジン
Priority to JP25749198A priority Critical patent/JP3644623B2/en
Publication of JP2000075051A publication Critical patent/JP2000075051A/en
Application granted granted Critical
Publication of JP3644623B2 publication Critical patent/JP3644623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸発計に関する。
【0002】
【従来の技術】
森林の光合成による2酸化炭素の吸収量や、酸素の発生量は、日射量と水の消費量に比例する。したがって森林の蒸発量を計測すれば、森林の光合成量を知ることができる。それ故、森林の植生別蒸発量を計測することは、森林資源の保護活用のために決定的な役割を果す。
またアフリカなどでは、砂漠化の拡大が懸念されているが、これを防止するためには、先ず乾燥地の蒸発量の実体を把握することが重要である。
このように大気の蒸発量を測定することは、地球環境の保護と地球資源の活用のために著しく重要であるが、蒸発量を測定する蒸発計として従来より知られているものは、気象庁の規定によるタライ式のものしかなかった。このタライ式蒸発計は、口径120cm、深さ25cmのタライに水を満たし、その水位の下降量を蒸発量とするものである。
【0003】
【発明が解決しようとする課題】
上記従来の蒸発計は、口径120cmものタライを用いるものであるから、高価であるほか、森林、砂漠などの計測地への搬送が困難であり、しかも十分な管理を行い難いという問題点がある。また、降雨があったときにはタライの水位は上昇するから、常に雨量計と組み合わせて設置し、降雨による水位の上昇分を差し引かなければならないという問題点もある。更に、特に森林に設置する場合には、落ち葉などのゴミがタライの中に落ちて水面を覆うから、正確な計測を行うためには、常にゴミの清掃を行わなければならず、保守作業が大変であるという問題点もある。
したがって本発明は、構造簡単にして降雨などの影響を受け難く、また保守作業も少ない蒸発計を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、すなわち、水を容れる容器と、該容器内の前記水の水面よりも上方に配置される素焼き管と、該素焼き管の外面から蒸発する前記水を補給するように前記容器内の水を前記素焼き管の内部に導く補給手段とを有する蒸発計である。
その際、前記補給手段としては、上端を前記素焼き管に接続し内部を前記水で満たした補給管と、該補給管の下端を密閉する栓と、該栓を貫通し下端を容器内の前記水の中に浸漬した細管とからなる構成とすることもできるし、上端を前記素焼き管に接続し内部を前記水で満たした補給管と、該補給管の内部から前記容器の内部への前記水の移動は規制し容器の内部から補給管の内部への水の移動は許容する弁とからなる構成とすることもできる。
【0005】
【発明の実施の形態】
本発明の実施の形態を図面によって説明する。図1は本発明による蒸発計の第1実施例を示す。ポリエチレン製の容器4には水6が容れられており、容器4の口はゴム製の容器栓3によって密閉されている。容器栓3には、合成樹脂(例えば硬質塩化ビニル)製の補給管7が貫通しており、補給管7の上端には、断面逆U字状に形成された素焼き管1が接着剤によって固定されている。補給管7の下端には栓8が装着されており、栓8には細管5が貫通しており、細管5の下端は容器4内の水6の中に浸漬されている。また、容器栓3には、容器4内の水面の上部空間と外気とを連通する通気管2も貫通しており、容器栓4の外方に突出した部分の通気管2は、フック2aの形状に形成されている。
【0006】
本実施例は以上のように形成されており、以下にこの蒸発計の使用方法を説明する。先ず容器4に水6を容れる。次いで容器栓3と、これに固定された補給管7、補給管7に固定された素焼き管1、及び通気管2を一体として倒立させて、補給管7と素焼き管1の内部に水6を容れる。次いで、細管5の先端を水中に漬けて、例えば人間の口にて吸い込んで細管5内に水を満たす。次いで、細管5を取付けた栓8によって補給管7の口を塞ぐ。しかる後に、容器栓3、補給管7、素焼き管1、通気管2、栓8及び細管5を一体として正立させて、容器4の口を容器栓3によって密閉する。
【0007】
その後、この蒸発計を計測地に設置する。その際、通気管2の先端はフック2aに形成されているから、蒸発計を枝などに吊す際に便利が良い。
計測地に蒸発計が設置されると、素焼き管1の表面から水が蒸発し、素焼き管1の管壁内の水は減少しようとするが、水は素焼き管1の管壁を濡らそうとするから、容器4の内部の水6が細管5を通じて素焼き管1の内部に補給される。すなわち、細管5の下端が容器4内の水6の中に浸漬されている限り、素焼き管1の内部には常に水6が補給される。
【0008】
したがって、例えば毎日定時に容器4内の水6の減少量を測定することにより、その1日の間の蒸発量を知ることができる。具体的な計測方法としては、例えば容器4を、少なくとも部分的に透明又は半透明に形成して、その部分に目盛りを刻み、この刻みによって前日からの減少量を測定し、容器4内の水量が相当に減少したときには水を補給する、という方法を採用することができる。
また水量の測定に代えて、蒸発計全体の重量を測定することもできる。その際、重量センサーを介してフック2aを吊せば、重量センサーからの信号を遠隔地に送ることにより、水を補給するとき以外は特段の管理が不要となる。
【0009】
以上のように本実施例によれば、構造が著しく簡単な蒸発計を得ることができる。また素焼き管1の管壁は常に水で濡れているから、降雨があっても水が逆流して容器4内の水量が増加することはなく、またゴミ等も付着しにくい。したがって降雨などの影響を受け難く、また保守作業も少ない蒸発計を得ることができる。
【0010】
なお、補給管7の下端に栓8を取り付けないときには、素焼き管1を正立させるときに、素焼き管1内の水が落ちてしまう。すなわち補給管7に取付けた栓8は、素焼き管1を正立させるときに、素焼き管1内の水が落ちないようにする役割を果している。但し、補給管7に栓8を取り付けずに、水中にて作業を行って素焼き管1を正立させることとすれば、素焼き管1の中に水を保有しつつ、素焼き管1を正立させることができるが、実際の作業を考えると、容器4内の水中にて素焼き管1を正立させることは困難である。
【0011】
さて、素焼き管1の内部に水を保有した状態で、素焼き管1を正立させると、素焼き管1は容器内の水位よりも上方に位置しているから、素焼き管1の内部は、水面からの高さに応じて、水頭差で10〜数10cm程度の負圧になる。したがってこのとき、素焼き管1の内部に水を保有した状態が維持されるか、あるいは素焼き管1外の大気が素焼き管1を通過してその内部に侵入するかの、いずれかが生じる。そしてひとたび後者が生じると、素焼き管1内の水は急激に落ちる。
【0012】
前者が生じるか後者が生じるかは、水頭差と素焼き管1の粗密の程度とに依存するが、水頭差が数10cm程度で、且つ、水が適度に表面に滲み出て蒸発管として用いるに適当な密度の素焼き管1を用いると、ほぼ両者がバランスした状態となる。このとき、実際に水が保有されるのか、あるいは水が急激に落ちるかは、水の移動が制限されているか否かに依存する。すなわち、水の移動が制限されているときには、前者が生じて素焼き管1の内部に水を保有した状態が維持され、水の移動が制限されていないときには、後者が生じて素焼き管1内の水は落ちる。
【0013】
したがって、もしも細管5を取付けた栓8によって補給管7の口を塞がない構成にすると、水は補給管7の内外を自由に移動することができるから、素焼き管1の内部に水を保有した状態で素焼き管1を正立させたとしても、素焼き管1外の大気が素焼き管1の内部に侵入して、素焼き管1内の水は落ちてしまう。
しかるに本実施例では、補給管7の内外を細管5によって連通しており、この細管5を水が下降しようとすると、著しい摩擦力を生じる。それ故、素焼き管1内の水は落ちることができず、素焼き管1の内部に水を保有した状態が維持される。
実際には、素焼き管1の表面からは水が蒸発するが、水の蒸発による減少の速度は著しく低速である。それ故、素焼き管1の内部への水が吸い上げが、準静的に行われ、すなわち細管5を水が上昇する際の摩擦力は、吸い上げの際の障害とはならない。
【0014】
以上のように、補給管7の口を塞ぐ栓8と、栓8を貫通する細管8とは、第1に、素焼き管1を正立させる際に、素焼き管1内の水が落ちないようにする機能を果たしている。第2に、素焼き管1を正立させた後に、素焼き管1外の大気が素焼き管1の内部に侵入することを防止する機能を果たしている。第3に、素焼き管1の表面から水が蒸発したときに、これを準静的に補給する機能を果たしている。
【0015】
なお、本実施例では容器4の口を容器栓3によって密閉している。したがってもしも通気管2がないときには、容器4内の水位が低下するに従い、容器4内の上部空間の圧力が負圧になり、素焼き管1への水の補給が困難となる。それ故、容器4内の上部空間を常に大気圧に保つために、通気管2を設けている。換言すれば、容器4の口を容器栓3によって密閉しない構成とすることもでき、そのときには通気管2を設ける必要はない。
【0016】
また、本実施例では補給管7を用いているが、この補給管7を削除した構成とすることもできる。すなわち素焼き管1を直接容器栓3に固定し、素焼き管1を固定した部分の容器栓3を貫通するように、細管5を装着することもできる。この構成によっても、素焼き管1の内部に水6を補給することができるが、素焼き管1の内部に最初に水6を満たす作業が若干面倒になるので、本実施例のように補給管7を用い、その下端を、細管5が貫通した栓8で塞ぐことが好ましい。
【0017】
次に図2は第2実施例の要部を示す。この実施例では、栓8を貫通して内管9が設けられており、内管9の下端は容器4内の水6の中に浸漬されている。内管9の内部には上下にOリング10,12が装着されており、両Oリング10,12の間にボール11が装着されている。下側のOリング10は弁座の役割を果し、ボール11は弁の役割を果し、上側のOリング12は、ボール11の脱落を防止するものである。
既述のごとく、素焼き管1外の大気が素焼き管1の内部に侵入した場合に生じる下降流は急激であり、素焼き管1の外面から蒸発する水分を補給するための上昇流は準静的である。前記第1実施例では、前者が急激であり、後者が準静的であることに着目して、前者を阻止し、後者を許容するように細管5を用いていた。これに対してこの第2実施例では、前者が下降流であり、後者が上昇流であることに着目して、前者を阻止し、後者を許容するように弁を用いたものである。
【0018】
なお、第1実施例の細管5は、下降流を完全に阻止するものではなく、その流速を規制するものであった。したがって第2実施例のボール11も、下降流を完全に阻止できる必要はなく、一定程度規制できれば足りる。
他方、準静的に行われる上昇流については、これを妨げないようにする必要がある。すなわち、素焼き管1の内面と容器内の水6との差圧はごくわずかであるから、ボール11を押し上げるためにその差圧が消費されてしまうと、素焼き管1の内部に水6を補給できなくなる。したがってボール11としては、ごく軽いもの、すなわち比重が1よりも僅かに重い程度のものが好ましい。
【0019】
次に図3は第3実施例の要部を示す。この実施例でも、栓8を貫通して内管9が設けられている。内管9の内部には上下に脱脂綿13,15が装着されており、両脱脂綿13,15の間に水銀14が装着されている。下側の脱脂綿13は弁座の役割を果し、水銀14は弁の役割を果し、上側の脱脂綿15は、水銀14の脱落を防止するものである。
この第3実施例の作用・効果は、上記第2実施例の場合とほぼ同じであるが、上下の脱脂綿13,15は、流速を規制する作用も行っている。また、上昇流は、水銀14を変形させることによって行われる。
【0020】
なお、第2実施例及び第3実施例の構成についても、補給管7を削除することができる。すなわち、素焼き管1を直接容器栓3に固定し、素焼き管1を固定した部分の容器栓3を貫通するように、内管9を装着し、内管9の内部にOリングとボールとを装着し、あるいは内管9の内部に脱脂綿と水銀とを装着することもできる。但し、素焼き管1の内部に最初に水6を満たす作業が若干面倒になる。
【0021】
次に図4は、第1実施例の細管を用いた蒸発計と、第3実施例の水銀を用いた蒸発計とを、従来のタライ型蒸発計と比較した結果を示す。同図に示すように、従来のタライ型蒸発計と本発明による蒸発計との間には、ほぼ完全な相関関係があることが分かる。
【0022】
【発明の効果】
以上のように本発明により、特に商用電源のない森林や砂漠などの人里離れた地域にても、無人で長期間観測することができ、したがって土壌別、植生別の蒸発量を比較観測することができる蒸発計が提供された。
また本発明による蒸発計によれば、1個の蒸発計が安価なので、多くの場所で計測が可能となり、現地に簡単に運べ、置いたり、枝に吊ったりするだけで蒸発量を測ることができるという利点がある。また、蒸発する水面をむき出しにしないため、降雨による影響が少なく、しかもゴミ等がたまらないので、清掃の必要がないという優れた効果を発揮することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す断面図である。
【図2】第2実施例の要部を示す断面図である。
【図3】第3実施例の要部を示す断面図である。
【図4】本発明と従来技術との比較を示す図である。
【符号の説明】
1…素焼き管 2…通気管
2a…フック 3…容器栓
4…容器 5…細管
6…水 7…補給管
8…栓 9…内管
10,12…Oリング 11…ボール
13,15…脱脂綿 14…水銀
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaporometer.
[0002]
[Prior art]
The amount of carbon dioxide absorbed by forest photosynthesis and the amount of oxygen generated are proportional to the amount of solar radiation and water consumption. Therefore, if the amount of forest evaporation is measured, the amount of photosynthesis in the forest can be determined. Therefore, measuring the amount of evaporation by forest vegetation plays a decisive role for the conservation and utilization of forest resources.
In Africa and other countries, there are concerns about the expansion of desertification, but in order to prevent this, it is important to first grasp the substance of evaporation in dry land.
Measuring the amount of evaporation in the atmosphere in this way is extremely important for the protection of the global environment and the utilization of earth resources. However, what is conventionally known as an evaporation meter for measuring the amount of evaporation is that of the Japan Meteorological Agency. There was only a Tarai type by regulation. This Tarai type evaporometer fills Tarai with a diameter of 120 cm and a depth of 25 cm with water, and uses the amount of decrease in the water level as the evaporation amount.
[0003]
[Problems to be solved by the invention]
Since the above conventional evaporator uses a 120 cm caliber Tarai, it is expensive and difficult to transport to measurement sites such as forests and deserts, and it is difficult to perform sufficient management. . In addition, since the water level of Tarai rises when it rains, there is a problem that it must always be installed in combination with a rain gauge and the rise in water level due to rain must be subtracted. Furthermore, especially when installed in forests, litter such as fallen leaves falls into the sea bream and covers the surface of the water. Therefore, in order to perform accurate measurements, it is necessary to always clean the litter and to perform maintenance work. There is also a problem that it is serious.
Accordingly, it is an object of the present invention to provide an evaporometer with a simple structure that is not easily affected by rainfall and the like, and that requires less maintenance work.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, that is, a container for containing water, an unglazed pipe disposed above the water surface of the water in the container, and an evaporation from the outer surface of the unglazed pipe. And a replenishment means for guiding the water in the container to the inside of the unglazed tube so as to replenish the water.
At that time, as the replenishing means, a replenishment pipe whose upper end is connected to the unglazed pipe and the inside is filled with the water, a stopper for sealing the lower end of the replenishment pipe, and a lower end passing through the stopper and the lower end in the container It can be configured by a thin tube immersed in water, or a replenishment tube whose upper end is connected to the unglazed tube and filled with the water, and the inside of the replenishment tube to the inside of the container It is also possible to adopt a configuration comprising a valve that restricts the movement of water and allows the movement of water from the inside of the container to the inside of the supply pipe.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of an evaporator according to the present invention. The polyethylene container 4 contains water 6 and the opening of the container 4 is sealed with a rubber container stopper 3. A synthetic resin (for example, hard vinyl chloride) supply pipe 7 passes through the container plug 3, and an unglazed pipe 1 having an inverted U-shaped cross section is fixed to the upper end of the supply pipe 7 with an adhesive. Has been. A stopper 8 is attached to the lower end of the replenishment pipe 7, and the narrow pipe 5 penetrates the stopper 8, and the lower end of the narrow pipe 5 is immersed in the water 6 in the container 4. The container plug 3 also passes through a vent pipe 2 that communicates the upper space of the water surface in the container 4 with the outside air, and the vent pipe 2 that protrudes outward from the container plug 4 is connected to the hook 2a. It is formed into a shape.
[0006]
The present embodiment is formed as described above, and a method of using this evaporator will be described below. First, water 6 is placed in the container 4. Next, the container plug 3, the replenishment pipe 7 fixed thereto, the unglazed pipe 1 fixed to the replenishment pipe 7, and the ventilation pipe 2 are inverted together so that water 6 is introduced into the replenishment pipe 7 and the unglazed pipe 1. It is acceptable. Next, the tip of the thin tube 5 is soaked in water and sucked in, for example, a human mouth to fill the thin tube 5 with water. Next, the mouth of the supply tube 7 is closed by the stopper 8 to which the thin tube 5 is attached. Thereafter, the container plug 3, the supply pipe 7, the unglazed pipe 1, the ventilation pipe 2, the plug 8 and the narrow pipe 5 are brought upright together, and the opening of the container 4 is sealed with the container plug 3.
[0007]
Then, this evaporator is installed at the measurement site. At that time, since the tip of the vent pipe 2 is formed in the hook 2a, it is convenient when the evaporator is hung on a branch or the like.
When an evaporometer is installed at the measurement site, water evaporates from the surface of the unglazed tube 1 and water in the tube wall of the unglazed tube 1 tends to decrease, but the water seems to wet the tube wall of the unglazed tube 1 Therefore, the water 6 inside the container 4 is supplied to the inside of the unglazed tube 1 through the thin tube 5. That is, as long as the lower end of the thin tube 5 is immersed in the water 6 in the container 4, the water 6 is always supplied to the inside of the unglazed tube 1.
[0008]
Therefore, for example, by measuring the decrease amount of the water 6 in the container 4 at regular time every day, the evaporation amount during the day can be known. As a specific measuring method, for example, the container 4 is formed to be at least partially transparent or translucent, and a graduation is engraved on the part, and the amount of water in the container 4 is measured by measuring the amount of decrease from the previous day. A method of replenishing water when the amount of water is considerably reduced can be employed.
Moreover, it can replace with the measurement of water amount and can also measure the weight of the whole evaporator. At that time, if the hook 2a is suspended via the weight sensor, a special control is not required except when water is replenished by sending a signal from the weight sensor to a remote place.
[0009]
As described above, according to this embodiment, it is possible to obtain an evaporator having a remarkably simple structure. Further, since the tube wall of the unglazed tube 1 is always wet with water, even if it rains, the water does not flow backward and the amount of water in the container 4 does not increase, and dust and the like are not easily attached. Therefore, it is possible to obtain an evaporometer that is not easily affected by rainfall or the like and that requires less maintenance work.
[0010]
In addition, when the stopper 8 is not attached to the lower end of the supply pipe 7, the water in the unglazed pipe 1 falls when the unglazed pipe 1 is erected. That is, the stopper 8 attached to the supply pipe 7 plays a role of preventing water in the unglazed pipe 1 from dropping when the unglazed pipe 1 is erected. However, if the unfired tube 1 is erected by working in water without attaching the stopper 8 to the supply tube 7, the unglazed tube 1 is erected while holding the water in the unglazed tube 1. However, considering the actual work, it is difficult to erect the unglazed tube 1 in the water in the container 4.
[0011]
Now, when the unglazed tube 1 is erected in a state where water is held inside the unglazed tube 1, the unglazed tube 1 is positioned above the water level in the container. Depending on the height from the bottom, a negative pressure of about 10 to several tens of centimeters is caused by the difference in water head. Therefore, at this time, either the state in which water is retained in the unglazed tube 1 is maintained, or the atmosphere outside the unglazed tube 1 passes through the unglazed tube 1 and enters the interior. And once the latter arises, the water in the unglazed tube 1 falls abruptly.
[0012]
Whether the former or the latter occurs depends on the water head difference and the degree of density of the unglazed tube 1, but the water head difference is about several tens of centimeters. When the unglazed tube 1 having an appropriate density is used, the two are almost balanced. At this time, whether water is actually held or whether water falls suddenly depends on whether or not the movement of water is restricted. That is, when the movement of water is restricted, the former occurs and the state where water is held inside the unglazed tube 1 is maintained, and when the movement of water is not restricted, the latter occurs and the inside of the unglazed tube 1 The water falls.
[0013]
Therefore, if the stopper 8 to which the narrow tube 5 is attached does not block the mouth of the supply pipe 7, water can freely move inside and outside the supply pipe 7, so that the water is retained inside the unglazed pipe 1. Even if the unglazed tube 1 is erected in this state, the atmosphere outside the unglazed tube 1 enters the unglazed tube 1 and the water in the unglazed tube 1 drops.
However, in the present embodiment, the inside and outside of the supply pipe 7 are communicated with each other by the narrow pipe 5, and when water tries to descend through the narrow pipe 5, a significant frictional force is generated. Therefore, the water in the unglazed tube 1 cannot fall, and the state in which water is retained in the unglazed tube 1 is maintained.
Actually, water evaporates from the surface of the unglazed tube 1, but the rate of decrease due to the evaporation of water is extremely low. Therefore, the suction of water into the unglazed tube 1 is performed quasi-statically, that is, the frictional force when water rises through the thin tube 5 does not become an obstacle to the suction.
[0014]
As described above, the plug 8 that closes the mouth of the supply tube 7 and the narrow tube 8 that penetrates the plug 8 firstly prevent the water in the unglazed tube 1 from dropping when the unglazed tube 1 is erected. Plays a function. Secondly, after the unglazed tube 1 is erected, the air outside the unglazed tube 1 is prevented from entering the unglazed tube 1. Third, when water evaporates from the surface of the unglazed tube 1, it functions to replenish it semi-statically.
[0015]
In this embodiment, the opening of the container 4 is sealed with the container stopper 3. Therefore, if there is no vent pipe 2, as the water level in the container 4 decreases, the pressure in the upper space in the container 4 becomes negative, making it difficult to supply water to the unglazed pipe 1. Therefore, in order to keep the upper space in the container 4 at atmospheric pressure at all times, the vent pipe 2 is provided. In other words, the opening of the container 4 can be configured not to be sealed by the container stopper 3, and at that time, it is not necessary to provide the vent pipe 2.
[0016]
In this embodiment, the supply pipe 7 is used. However, the supply pipe 7 may be omitted. That is, the unglazed tube 1 can be directly fixed to the container plug 3, and the narrow tube 5 can be attached so as to penetrate the portion of the container plug 3 where the unglazed tube 1 is fixed. Even with this configuration, the water 6 can be replenished inside the unglazed tube 1, but the work of initially filling the water 6 inside the unglazed tube 1 is somewhat cumbersome, so that the refill tube 7 as in the present embodiment. It is preferable to close the lower end with a plug 8 through which the thin tube 5 passes.
[0017]
Next, FIG. 2 shows a main part of the second embodiment. In this embodiment, an inner tube 9 is provided through the stopper 8, and the lower end of the inner tube 9 is immersed in the water 6 in the container 4. O-rings 10 and 12 are mounted on the upper and lower sides of the inner tube 9, and a ball 11 is mounted between the O-rings 10 and 12. The lower O-ring 10 serves as a valve seat, the ball 11 serves as a valve, and the upper O-ring 12 prevents the ball 11 from falling off.
As described above, the downward flow generated when the atmosphere outside the unglazed tube 1 enters the inside of the unglazed tube 1 is abrupt, and the upward flow for replenishing water evaporated from the outer surface of the unglazed tube 1 is quasi-static. It is. In the first embodiment, focusing on the fact that the former is abrupt and the latter is quasi-static, the capillaries 5 are used to prevent the former and allow the latter. On the other hand, in the second embodiment, focusing on the fact that the former is a downward flow and the latter is an upward flow, a valve is used to prevent the former and allow the latter.
[0018]
In addition, the thin tube 5 of the first embodiment does not completely prevent the downward flow, but regulates the flow velocity thereof. Therefore, it is not necessary for the ball 11 of the second embodiment to be able to completely prevent the downward flow.
On the other hand, it is necessary not to prevent the upward flow that is performed quasi-statically. That is, since the differential pressure between the inner surface of the unglazed tube 1 and the water 6 in the container is very small, if the differential pressure is consumed to push up the ball 11, the water 6 is replenished inside the unglazed tube 1. become unable. Therefore, the ball 11 is preferably a very light ball, that is, a ball whose specific gravity is slightly heavier than 1.
[0019]
FIG. 3 shows the main part of the third embodiment. Also in this embodiment, an inner tube 9 is provided through the plug 8. Absorbent cotton 13 and 15 is attached to the inside of the inner tube 9 at the top and bottom, and mercury 14 is attached between the absorbent cottons 13 and 15. The lower absorbent cotton 13 serves as a valve seat, the mercury 14 serves as a valve, and the upper absorbent cotton 15 prevents the mercury 14 from falling off.
The actions and effects of the third embodiment are almost the same as those of the second embodiment, but the upper and lower absorbent cottons 13 and 15 also perform the action of regulating the flow rate. Further, the upward flow is performed by deforming the mercury 14.
[0020]
It should be noted that the supply pipe 7 can also be deleted in the configurations of the second and third embodiments. That is, the unglazed tube 1 is directly fixed to the container stopper 3, the inner tube 9 is attached so as to penetrate the portion of the container stopper 3 to which the unglazed tube 1 is fixed, and an O-ring and a ball are placed inside the inner tube 9. It is also possible to attach absorbent cotton or mercury inside the inner tube 9. However, the work of filling the water 6 into the unglazed tube 1 first is somewhat troublesome.
[0021]
Next, FIG. 4 shows a result of comparing the evaporator using the thin tube of the first embodiment and the evaporator using mercury of the third embodiment with a conventional Tarai type evaporator. As shown in the figure, it can be seen that there is an almost complete correlation between the conventional Tarai type evaporator and the evaporator according to the present invention.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to observe unattended for a long time even in remote areas such as forests and deserts where there is no commercial power supply, and therefore comparatively observe the evaporation amount by soil and by vegetation. An evaporometer that can be provided was provided.
Moreover, according to the evaporator according to the present invention, since one evaporator is inexpensive, it can be measured in many places, and can be easily transported to the site, and can be measured by simply placing it on a branch or hanging it on a branch. There is an advantage that you can. Moreover, since the water surface to evaporate is not exposed, there is little influence by rainfall, and since dust etc. do not accumulate, the outstanding effect that there is no need for cleaning can be exhibited.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a main part of a second embodiment.
FIG. 3 is a cross-sectional view showing a main part of a third embodiment.
FIG. 4 is a diagram showing a comparison between the present invention and the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Unglazed pipe 2 ... Ventilation pipe 2a ... Hook 3 ... Container stopper 4 ... Container 5 ... Thin pipe 6 ... Water 7 ... Supply pipe 8 ... Stopper 9 ... Inner pipe 10, 12 ... O-ring 11 ... Ball 13, 15 ... Absorbent cotton 14 …mercury

Claims (5)

水を容れる容器と、該容器内の前記水の水面よりも上方に配置される素焼き管と、該素焼き管の外面から蒸発する前記水を補給するように前記容器内の水を前記素焼き管の内部に導く補給手段とを有する蒸発計。A container containing water, an unglazed pipe disposed above the surface of the water in the container, and water in the container to replenish the water evaporated from the outer surface of the unglazed pipe. An evaporometer having a replenishing means for guiding the inside. 前記補給手段は、上端を前記素焼き管に接続し内部を前記水で満たした補給管と、該補給管の下端を密閉する栓と、該栓を貫通し下端を容器内の前記水の中に浸漬した細管とからなる、請求項1記載の蒸発計。The replenishing means includes a replenishment pipe having an upper end connected to the clay tube and filled with the water, a stopper for sealing the lower end of the replenishment pipe, and a lower end passing through the stopper into the water in the container. The evaporator according to claim 1, comprising an immersed thin tube. 前記補給手段は、上端を前記素焼き管に接続し内部を前記水で満たした補給管と、該補給管の内部から前記容器の内部への前記水の移動は規制し容器の内部から補給管の内部への水の移動は許容する弁とからなる、請求項1記載の蒸発計。The replenishing means includes an upper end connected to the unglazed tube and an interior filled with the water, and the movement of the water from the inside of the replenishing tube to the inside of the container is restricted, and The evaporator according to claim 1, comprising a valve that allows water to move inside. 前記蒸発計は、前記容器の口を密閉する容器栓と、前記容器内の水面の上部空間と外気とを連通する通気管とを更に有し、
前記補給管と通気管は、共に前記容器栓を貫通するように設けられた、請求項2又は3記載の蒸発計。
The evaporator further includes a container stopper that seals the mouth of the container, and a vent pipe that communicates the upper space of the water surface in the container and the outside air,
The evaporator according to claim 2 or 3, wherein the supply pipe and the vent pipe are both provided so as to penetrate the container stopper.
前記容器栓の外方に突出した前記通気管は、フック形状に形成された、請求項4記載の蒸発計。The evaporator according to claim 4, wherein the vent pipe protruding outward from the container stopper is formed in a hook shape.
JP25749198A 1998-08-26 1998-08-26 Evaporometer Expired - Fee Related JP3644623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25749198A JP3644623B2 (en) 1998-08-26 1998-08-26 Evaporometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25749198A JP3644623B2 (en) 1998-08-26 1998-08-26 Evaporometer

Publications (2)

Publication Number Publication Date
JP2000075051A JP2000075051A (en) 2000-03-14
JP3644623B2 true JP3644623B2 (en) 2005-05-11

Family

ID=17307035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25749198A Expired - Fee Related JP3644623B2 (en) 1998-08-26 1998-08-26 Evaporometer

Country Status (1)

Country Link
JP (1) JP3644623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169193B (en) * 2011-01-26 2012-04-25 甘肃省林业科学研究院 Self-recording instrument for evaporation capacity of sandy land
JP6843446B2 (en) * 2019-07-25 2021-03-17 国立研究開発法人農業・食品産業技術総合研究機構 measuring device

Also Published As

Publication number Publication date
JP2000075051A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
ES2314722T3 (en) PROCEDURE AND DEVICE FOR DETERMINING HUMIDITY IN AN ENVIRONMENT.
US2878671A (en) Soil moisture indicating instrument
Livingston Atmometers of porous porcelain and paper, their use in physiological ecology
Denmead et al. Measurements of non-potential evaporation from wheat
US3438575A (en) Root controlled watering device
US4709585A (en) Method and apparatus for monitoring environmental evapotranspiration
JP3644623B2 (en) Evaporometer
JP3317906B2 (en) High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants
US3916678A (en) Soil moisture detection device
Dixon Design and use of closed‐top infiltrometers
US4819375A (en) Aquapot
Kataoka Diurnal variation in radon concentration and mixing-layer depths
US4418576A (en) Apparatus and method for automatically replenishing liquid and measuring the rate of evaporation of a liquid
JPS6339865B2 (en)
US3760433A (en) Air displacement deodorizer for toilet tanks and the like
US3045477A (en) Soil moisture indicating gage
Wilson Topographic influences on a forest microclimate
US4409834A (en) Evapopsychrometer
US3048032A (en) Irrigation indicator
FR2292419A1 (en) Plant holder with water reserve and without earth - preventing risk of diseased plant contaminating the others
Wilcox A simple evaporimeter for use in cold areas
JP6843446B2 (en) measuring device
Kapupara et al. Plant Evapotranspiration: Concepts and Problems
JPH1090253A (en) Soil moisture detector
JPS6216676Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees