JP3640915B2 - 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置 - Google Patents

交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置 Download PDF

Info

Publication number
JP3640915B2
JP3640915B2 JP2001330531A JP2001330531A JP3640915B2 JP 3640915 B2 JP3640915 B2 JP 3640915B2 JP 2001330531 A JP2001330531 A JP 2001330531A JP 2001330531 A JP2001330531 A JP 2001330531A JP 3640915 B2 JP3640915 B2 JP 3640915B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
electrodes
plasma display
pdp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330531A
Other languages
English (en)
Other versions
JP2003132797A (ja
Inventor
隆 橋本
茂樹 原田
耕 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001330531A priority Critical patent/JP3640915B2/ja
Publication of JP2003132797A publication Critical patent/JP2003132797A/ja
Application granted granted Critical
Publication of JP3640915B2 publication Critical patent/JP3640915B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トリオ配列型ピクセル構造を有するプラズマディスプレイパネル(以下、PDPと称す)を表示部として備える交流型プラズマディスプレイ装置(以下、AC型PDP装置と称す)における、高解像度化の技術に関している。
【0002】
【従来の技術】
マトリクス状に配置されたピクセル(乃至は画素)を有するマトリクス型ディスプレイでは、多くの場合、トリオ配列型ピクセルが用いられている。ここで、図19は、トリオ配列型ピクセルの構造を模式的に示す平面図である。図19に示す様に、トリオ配列型では、ピクセルPの横断面形状(両方向h、vを含む平面で切断したときの断面形状)は略正方形を成しており、各ピクセルPは3つの帯状のサブピクセル(ないしはセル)Cより成る。具体的には、ピクセルPは、赤色(R)用、青色(B)用及び緑色(G)用の3つのサブピクセルCから成る。上記3つのサブピクセルCはディスプレイの列方向vに沿って延在し、且つ列方向vに垂直な行方向hに並んでいる。
【0003】
一般に、トリオ配列型ピクセルは、ピクセル数の割に解像度が低いと言う問題点を有するが、その反面、行方向h及び列方向vにおける直線性に優れているので、図形描画に適している。加えて、トリオ配列型ピクセルでは、ビデオ画像を自然な質感で表示することができる。尚、ビデオ画像とは、被写体をビデオカメラ等の撮像装置で光学的に取り込んで得られる画像(自然画)をいう。
【0004】
図20は、トリオ配列型ピクセルを有するAC(交流)駆動の3電極面放電型PDP500の内部構造を模式的に示す平面図である。PDP500は、基本的には、対面配置された前面ガラス基板および背面ガラス基板を含むガラス容器からなり、当該容器内の放電空間内には放電ガスが充填されている。
【0005】
前面ガラス基板上には、複数の帯状の金属電極乃至はバス電極501が行方向hに沿って形成されている。複数のバス電極501は2本ずつ対を成しており、各電極対間に帯状のブラックストライプ504が形成されている。ブラックストライプ504は、外光反射率を下げてコントラストを向上させるためのものである。各バス電極501に接合して、ブラックストライプ504とは反対側方向へ、透明電極502が張り出している。対を成す2本のバス電極501のそれぞれに接合する透明電極502同士は、放電ギャップ503を介して、互いに対面している。以下、バス電極501及び同電極501に接続された透明電極502から成る構成を「行電極」とも呼ぶ。この定義に基づけば、図20では、対を成す行電極X1、Y1及び対を成す行電極X2、Y2が図示されている。
【0006】
他方、背面ガラス基板上には、複数の帯状の列電極乃至はアドレス電極が列方向vに沿って、従ってバス電極501と(立体)交差して形成されている。尚、図20では、6本の列電極W1乃至W6が図示されている。更に、背面ガラス基板上には、隣接の列電極間に帯状の隔壁ないしはバリアリブ(以下、単に「リブ」とも呼ぶ)505が形成されている。各リブ505は、行方向hにおいて隣接する透明電極502同士を区切る様に、且つ、ガラス容器内を仕切る様に形成されている。更に、各列電極W1〜W6を覆って赤色(R)用、青色(B)用及び緑色(G)用の蛍光体506R、506B、506Gが形成されている。
【0007】
PDP500のサブピクセルCは、隣り合う両バリアリブ505及び隣り合う両ブラックストライプ504で以って区画された領域から成り、行方向hに隣接する赤色(R)、青色(B)及び緑色(G)の光を発する3つのサブピクセルCで以って、ピクセルP(図19参照)が構成される。後述のデルタ配列型ピクセルに比べてトリオ配列型ピクセルが直線性に優れているのは、バリアリブ505やブラックストライプ504が直線的に形成されているからと言うことも出来る。
【0008】
PDP500は行方向hに延在するリブを有さないので、製造を容易にし得る一方、行間での、即ち、列方向vに並ぶサブピクセルC間での放電の干渉が生じると言う問題点を有する。この様な放電干渉を防止するためには、隣接する電極対間の距離を確保する必要がある。そうすると、この距離の確保に伴い、斜線を表示した際には像がぎざぎざとした感じに見えるという表示不具合を、PDP500は呈することになる。この表示不具合は、行方向hに対する傾きが小さい斜線の場合に、又、PDPがブラックストライプ504を有する場合に顕著になる。
【0009】
一般に、AC型PDP500は、リセット動作、アドレス動作、表示動作(ないしは維持動作)及び消去動作を含む一連の動作によって駆動される。
【0010】
先ず、リセット期間では、PDP500内における全ての放電セルの電荷状態を初期化する(リセット動作)。
【0011】
次に、アドレス期間では、各サブピクセルC内に画像データを電荷(ないしは壁電荷)の有無として与える。具体的には、行電極Y1、Y2に順次に走査パルスないしはスキャンパルスを印加し(各電極対間に順次に電位差を与え)、スキャンパルスの順次印加に同期して列電極W1〜W6へのアドレスパルスないしは書き込みパルスの印加/不印加を画像データ中の各サブピクセルCに対応する各データに応じて制御する。
【0012】
その後、表示期間において、上記壁電荷を利用して放電(表示放電または維持放電)を繰り返し発生させ、表示を行う(表示動作)。このとき、表示期間での放電の繰り返し回数によって、各サブピクセルCの輝度が制御される。
【0013】
消去期間では、壁電荷を消去する(消去動作)。
【0014】
PDP500は、所謂サブフィールド階調法(又は単にサブフィールド法)と呼ばれる駆動方法によって、階調表示を行うことが出来る。このサブフィールド階調法では、リセット動作、アドレス動作、表示動作及び消去動作を含む1つのサブフィールド(SF)を形成し、複数のサブフィールドを組み合わせて1つのフレーム(又はフィールド)を形成する。このとき、各サブフィールドの表示期間において、表示放電の繰り返し回数を変えている。
【0015】
図21及び図22は、所謂デルタ配列型ピクセルを有するPDP550の構造を模式的に示す平面図である。尚、両図21、22に示されている構造は、「Proceedings of The 6th International Display Workshops 1999 p.599」の文献に開示されている。PDP550は、図20のPDP500と同様に、行電極X、Yn−1、Yn、Yn+1及び列電極W1〜W11を備える。PDP550のリブ555は、蛇行しつつ列方向vに延在している。このリブ555の形状に起因して、PDP550では、ピクセルP(図22中の破線で示す3角形を参照)を成す3つのサブピクセルCは、3角形を成す様に配置されている。尚、PDP550の複数のピクセルPは、パネル全面においてマトリクス状に配置されている。
【0016】
この様なデルタ配列型ピクセルは、ヘッドマウント型の小型の液晶ディスプレイ(以下、「LCD」とも呼ぶ)や低コストの投射型LCD等でも用いられている。
【0017】
PDP550は、図20のPDP500と同様に駆動される。具体的には、図21に示す様に、行電極Yn−1、Yn、Yn+1に順次にスキャンパルスを印加し、スキャンパルスの順次印加に同期して、列電極W1〜W11への電圧の印加/不印加を画像データ中の各サブピクセルCに対応する各データに応じて制御する。この場合、複数の行電極Xには、共通の電圧が印加される。
【0018】
【発明が解決しようとする課題】
デルタ配列構造がサブピクセル毎にずれているという特徴を利用して擬似インタレース動作を行うことで高精細化及び高品質化を図り得ることが、最近提案されている。しかしながら、この提案に係る技術は未公表技術であるので、ここでは、図面を用いて、このデルタ配列構造における高精細化技術の大要を説明する。
【0019】
図23は、図21に示すPDP550のサブピクセルCの分布をチェック状に図示したものである。今、1フレーム分のプログレッシブ信号(乃至はノンインタレース信号)である画像データをサブピクセルCに割り当てることを考える。このとき、サブピクセルC11、C31、C24、C44は赤色(R)の光を発光する部分、サブピクセルC22、C42、C15、C35は緑色(G)の光を発光する部分、サブピクセルC13、C33、C26、C46は青色(B)の光を発光する部分であるとする。例えば、第3番目の行L3を中心にピクセル(画素)を構成する場合においては、第2及び第3番目の行L2、L3を表示ラインとする場合と、第3及び第4番目の行L3、L4を表示ラインとする場合の、2通りを採ることが出来る。即ち、サブピクセルC31、C22、C33を以って一つのピクセル(画素)とする第1の場合と、サブピクセルC31、C42、C33を以って一つのピクセル(画素)とする第2の場合がある。そこで、1フレームのプログレッシブ信号を奇数行の画像データと偶数行の画像データとに分割し、それぞれの画像データを上記第1及び第2の場合に割り当てる。実際の画像データ数に比べて画素数が少ない構成ではあるが、サブピクセルC31、C22、C33から成る画素の輝度重心とサブピクセルC31、C42、C33から成る画素の輝度重心とが互いにずれているため、列方向vの解像度を向上させることが出来る。
【0020】
以上の通り、デルタ配列型ピクセルでは、擬似インタレースを行うことが可能である。これに対して、トリオ配列型ピクセルでは、構造的に擬似インタレース動作を行うことが出来ない。例えば、デルタ配列型ピクセルにおける擬似インタレース動作では、図23において、サブピクセルC31、C22、C33を表示するフィールドとサブピクセルC31、C42、C33を表示するフィールドとでは、両者の輝度重心の位置関係がおよそ線対象になるため、視感上自然な形で画像を表現することが出来る。これに対して、トリオ配列型ピクセルでは、隣接サブピクセルと組み合わせて2種類のピクセル(画素)を構成しても、輝度重心が等間隔で配列されなくなり、視認性が悪化してしまう。従って、トリオ配列型ピクセルでは、解像度を増すためにはピクセル数を増やさなければならないという問題点があった。
【0021】
他方で、デルタ配列型ピクセルの場合には、行方向h及び列方向vの直線性がトリオ配列型ピクセルに比べて低いという問題点がある。これは、ピクセルを規定するブラックストライプやリブを直線状に形成しにくい、発光している領域が直線状にならない、という2つの理由からである。仮にデルタ配列型ピクセルにおいて擬似インタレース動作を行ったとしても、これらの理由から、トリオ配列型ピクセルと比較すると直線性に問題は残る。
【0022】
本発明はこの様な技術状況に鑑みて成されたものであり、その目的とするところは、デルタ配列型ピクセルの様に擬似インタレース動作可能で、且つ、直線性に優れたトリオ配列型ピクセル構造を有するAC型のプラズマディスプレイ装置、並びに、それを構成するパネルや基板を提供することにある。
【0026】
課題を解決するための手段
請求項1に係る発明は、交流型プラズマディスプレイパネルであって、第1基板と、第1方向に延在し且つ前記第1方向と直交する第2方向に配列する様に前記第1基板上に形成されており、各電極対は対向し合う第1及び第2電極より成る複数の電極対と、前記第1及び第2電極の内の少なくとも一方を被覆する様に前記第1基板上に形成された誘電体と、基板間に空間を形成する様にその周辺部が前記第1基板と接合された第2基板と、前記第2方向に延在して前記複数の電極対と立体交差する様に前記第2基板上に形成された複数の第3電極と、少なくとも前記第2方向に延在して各第3電極を挟み込む様に前記第2基板上に形成されている複数の隔壁と、その各々が前記各第3電極を被覆する様に、少なくとも前記第2基板上に形成された複数の蛍光体とを備えており、前記第1電極は、前記第1方向に延在する金属電極より成る第1部分と、その第1端は前記第1部分に接合されており、前記第1端に対向する第2端は前記第2電極に向かって張り出している第2部分とを有しており、前記第2電極は、前記第1方向に延在する金属電極より成る第3部分と、その第1端は前記第3部分に接合されており、前記第1端に対向する第2端は前記第1電極に向かって張り出して前記第2部分の前記第2端と対向して放電ギャップを形成している第4部分とを有しており、各放電セルは、前記複数の隔壁の内で隣り合う隔壁同士と前記各電極対を成す前記第1及び第3部分とで規定されており、任意の放電セル内の、前記第2部分の有効電極面積と前記第4部分の有効電極面積とは互いに異なっており、前記各放電セル内における前記第2及び第4部分の有効形状は、隣接放電セル毎に、前記第2及び第4部分の有効形状を前記第1方向の周りに反転させることによって得られる形状に相当しており、前記各放電セル内の前記放電ギャップは当該放電セルの中心位置にあることを特徴とする。
【0027】
請求項に係る発明は、請求項記載の交流型プラズマディスプレイパネルであって、各隔壁の内で前記各放電セルを規定する部分は、前記第2方向に対して傾斜した部分を有しており、隣り合う隔壁の各々の当該放電セルを規定する部分同士は前記第2方向に関して線対称の関係にあることを特徴とする。
【0028】
請求項に係る発明は、請求項1又は2に記載の交流型プラズマディスプレイパネルであって、ある表示ラインに属する前記第1方向に沿って一列に並んだ全ての放電セルと当該表示ラインに隣接する表示ラインに属する全ての放電セルに関して、その一方の表示ラインに属する前記第2電極とその他方の表示ラインに属する前記第1電極とは一体化されて両表示ラインの共通電極を成しており、前記共通電極と当該共通電極と対向する前記第1及び第2電極とから成る一組の電極群が所定の間隔で前記第2方向に配列しており、前記誘電体は、前記共通電極又は当該共通電極と対向する前記第1及び第2電極の内の少なくとも一方を被覆していることを特徴とする。
【0029】
請求項に係る発明は、交流型プラズマディスプレイ装置であって、請求項1乃至の何れかに記載の前記交流型プラズマディスプレイパネルと、前記交流型プラズマディスプレイパネルを駆動するための駆動制御部とを備えることを特徴とする。
【0032】
【発明の実施の形態】
(実施の形態1)
本実施の形態は、トリオ配列型ピクセル構造を有するAC3電極面放電型のPDPに関している。特に、本実施の形態では、任意の放電セル内において、放電ギャップが当該放電セルの中心位置からずれる様に、後述する第2部分の有効電極面積と後述する第4部分の有効電極面積とを互いに異ならしめると共に、隣り合う放電セル毎に上記の第2部分及び第4部分の有効形状を第1方向(行方向に相当)の周りに順次に反転させることによって、各放電セル内における第2部分及び第4部分の有効形状を形成している。この電極構造の採用により、PDPを駆動させると、ある放電セル内においては、放電ギャップ及び発光中心が当該放電セルの中心位置から後述する第2電極の金属電極(バス電極に相当)側寄りへずれ、その隣の放電セル内においては、放電ギャップ及び発光中心が当該放電セルの中心位置から後述する第1電極の金属電極(バス電極に相当)側寄りへずれ、この様な隣り合う放電セル間における放電ギャップ及び発光中心のずれパターンが上記の第1方向に繰り返されることになる。従って、この様な特徴を利用することで、トリオ配列型ピクセル構造のPDPにおいても、インタレース動作を実現することが可能となる。以下、図面を参照しつつ、本実施の形態を具体的に記載する。
【0033】
図1は、本実施の形態に係るAC型PDP装置100の構成を模式的に示すブロック図である。同図に示す通り、AC型PDP装置100は、▲1▼表示部としてのAC面放電型PDP101と、▲2▼各種の駆動信号乃至は駆動電圧をAC型PDP101に印加してPDP101を駆動するための駆動制御部102とに、大別される。
【0034】
又、図2は、前面パネルの表示面(図示せず)側からPDP101を眺めた際の、PDP101内部の一部構造を拡大して模式的に示す平面図である。以下、図2を参照しつつ、PDP101の構造を説明する。
【0035】
PDP101は、基本的には、対面配置された前面ガラス基板(第1基板に相当)及び背面ガラス基板(第2基板に相当)(何れも図示せず)の周辺部を、両基板間に放電空間が形成される様にフリットガラスを用いて接合することにより形成されるガラス容器から成り、当該容器内には所定の放電ガスが充填されている。
【0036】
前面ガラス基板上には、2×N(Nは自然数)本の帯状の金属電極乃至はバス電極1が形成されている。各バス電極1は、行方向ないしは第1方向hに延在している。そして、各バス電極1には、互いに有効電極面積(「有効電極面積」とは、放電セルDC内に含まれる範囲内での電極面積に該当する。以下、同じ。)が異なる2種類の(第1)及び(第2)透明電極21、22の第1端が、第1方向hに沿って交互に繰り返される様に、結合している。即ち、両透明電極21、22の第2端(上記第1端に対向する端)は、それぞれバス電極1から列方向vに沿って張り出しており、その張り出し寸法(第1端から第2端までの距離)が互いに異なる結果、両透明電極21、22はそれぞれの大きさを異にしている。ここでは、(透明電極21の有効電極面積)>(透明電極22の有効電極面積)の関係が設定されている。しかも、対を成す一方のバス電極(第1電極の第1部分)11に接合した透明電極21の第2端は、対向する他方のバス電極(第2電極の第3部分)13に接合した透明電極22の第2端に対向して放電ギャップ3を形成しており、同様に、一方のバス電極11に接合した透明電極22の第2端は、対向する他方のバス電極13に接合した透明電極21の第2端に対向して放電ギャップ3を形成している。
【0037】
以下の説明においては、1本のバス電極1及び同電極1に行方向hに沿って交互に結合配列している複数の透明電極21、22から成る電極構成を、「行電極」とも呼ぶ。具体的には、PDP101は交互に配置されたN本の行電極X1〜XN及びN本の行電極Y1〜YNを有しており(図1参照)、図2では、列方向vに沿ってこの順序で並ぶ行電極X1、Y1、X2、Y2が図示されている。更に、以下の記載では、各行電極X1〜XN及び各行電極Y1〜YNを、それぞれ(行)単に電極X及び(行)電極Yとも呼ぶ。
【0038】
上記の構成をより一般化して記載すると、次の通りである。先ず、第1方向hに延在し且つ第1方向hと直交する第2方向vに配列する様に上記第1基板上に形成されている複数の電極対の各々は、対向し合う第1電極X及び第2電極Yより成る。そして、第1電極Xは、第1方向hに帯状に延在する金属電極より成る第1部分11と、その第1端は第1部分11に接合されており、且つ第2端は第2電極Yに向かって張り出している第2部分12(21,22)とを有している。この内、第2部分12の内で少なくとも第2端の周辺部分は透明電極より成る(勿論、図2に示す様に、第2部分12全体が透明電極より構成されていても良い。あるいは、第2部分12全体が金属電極で構成されていても良い。)。同様に、第2電極Yは、第1方向hに帯状に延在する金属電極より成る第3部分13と、その第1端は第3部分13に接合されており、且つ第2端は第1電極Xに向かって張り出して第2部分12の第2端と対向して放電ギャップ3を形成している第4部分14とを有している。この内、第4部分14の内で少なくとも第2端の周辺部分は透明電極より成る(勿論、図2に示す様に、第4部分14全体が透明電極より構成されていても良い。あるいは、第4部分14全体が金属電極で構成されていても良い。)。更に、各放電セルDC内の、第2部分12の有効電極面積と第4部分14の有効電極面積とは互いに異なっており、各放電セルDC内における第2部分12及び第4部分14の有効形状は、隣接放電セル毎に第2部分及び第4部分の有効形状を第1方向hの周りに反転させることによって得られる形状に相当している。
【0039】
又、行電極X1〜XN及び行電極Y1〜YNは、その取り出し端子部分を除いて、上記第1基板上に形成された誘電体層(図示せず)で覆われている。勿論、誘電体層は、第1電極X及び第2電極Yの内の少なくとも一方を被覆する様に、上記第1基板上に形成されていても良い。更に、上記の誘電体層は、放電開始電圧を下げるための、あるいは、放電に対する保護膜として使用するための、MgO層(カソード膜)で覆われている。本実施の形態では、上記の誘電体層とMgO層とを総称して「誘電体」と定義する(MgO層が無い場合には、「誘電体」とは上記の誘電体層に該当する)。
【0040】
後述する様に、PDP101の駆動に際しては、電極Yが走査電極として用いられる。電極Xは維持放電に主に使用されるものであり、電極Yの様に独立した電位を電極Xに与える必要がない。そのため、電極端において電極Xを共通接続する様にしても良い。
【0041】
ブラックストライプ6は、一方の表示ラインに属するバス電極1(第3部分13)と、隣接する他方の表示ラインに属するバス電極1(第1部分11)との間に位置し且つ行方向hに帯状に延在する様に、上記第1基板の表面上又は誘電体層内に形成される。但し、ブラックストライプ6は黒色状の物質であり外光反射率を下げてコントラストを向上させる目的で形成されるものであるが、必ずしも必須のものではないので、ブラックストライプ6を形成しなくてもPDP101の駆動に悪影響は与えない。
【0042】
他方、背面ガラス基板の表面上又は背面ガラス基板上に形成されたグレーズ層(図示せず)の表面上には、M本の帯状の列電極ないしはアドレス電極W1〜WM(図1参照)が、列方向vに沿って、従って複数のバス電極1と(立体)交差しながら延在する様に形成されており、しかも、列電極W1〜WMの各々は、放電ギャップ3を成す対向し合う両透明電極21、22と対面する位置に配置されている。図2では、便宜上、4本の列電極W1〜W4が図示されている。以下では、各列電極W1〜WMを列電極ないしは第3電極Wとも呼ぶ。又、グレーズ層が形成されている場合には、背面ガラス基板とグレーズ層とを併せて「第2基板」と総称する。従って、この場合には、「第2基板の表面」とはグレーズ層の表面に該当することになる。
【0043】
更に、背面ガラス基板の表面上又は上記グレーズ層の表面上には、第2方向vに直線状に延在して各第3電極Wを挟み込む様に、しかも、その各々の頂部は上記誘電体の表面に当接する高さを有する様に、ストライプ状の複数の隔壁ないしはバリアリブ(以下、単にリブと称す)5が形成されている。換言すれば、リブ5は、隣り合う列電極W同士の間に列方向vに沿って延在して形成されている。尚、リブ5をこの様にストライプ形状として構成しても良いし、これに代えて、ブラックストライプ6の下付近にも列方向hに沿って延在したリブを追加形成して格子状としても良い(所謂ワッフル型構造)。
【0044】
ここで、隣り合うリブ5同士及び隣り合うブラックストライプ6同士で規定される空間は、画面上における「サブピクセルないしはセルC」となる。特に、サブピクセルC内において放電可能な空間、即ち、隣り合うリブ5同士と一つの電極対を成す第1部分11及び第3部分13とで規定される空間を、「放電セルDC」と呼ぶ。
【0045】
更に、各放電セルDC内には、赤色(R)、緑色(G)又は青色(B)の何れかの表示色を発する蛍光体4が列電極W上及び/又はリブ5の側面上に渡って配置されており(各蛍光体4は、対応する列電極Wを被覆する様に(その取り出し端部を除く)、第2基板の表面上及び/又は当該列電極Wを挟み込む両リブ5の各々の対向側面上に塗布されている。)、PDP101では、列方向vに並ぶサブピクセルCは、全て同じ表示色を発する。同一行方向hの全ての放電セルDC、即ち、同じX電極とY電極とで構成される全ての放電セルDCは、赤色(R)用、緑色(G)用及び青色(B)用として順次に配列している。さらに電極配列に着目すれば、第1電極Xにおける金属電極11から−V方向に透明電極12が張り出しており、第2電極Yにおける金属電極11からV方向に透明電極12が張り出している。すなわち、金属電極から張り出される透明電極の方向は一定である。これらのことから、PDP101はトリオ配列型と呼ぶことができる。
【0046】
次に、図1の駆動制御部102を説明する。駆動制御部102は、アナログ/デジタル変換器(以下、「A/D」と称す)120、フレームメモリ130、制御部110、Y電極駆動回路141及びX電極駆動回路142を有する。そして、X電極X1〜XNはX電極駆動回路142に共通に接続されており、Y電極Y1〜YNはそれぞれY電極駆動回路141の各出力端に接続されており、列電極W1〜WMはそれぞれW電極駆動回路143の各出力端に接続されている。
【0047】
駆動制御部102の基本的な動作ないしはPDP101の駆動方法を、以下に説明する。駆動制御部102内では、先ず、画像データを与える入力信号VINがA/D120によってアナログデジタル変換され、A/D120から出力されるデジタルデータはフレームメモリ130に蓄えられる。尚、デジタルデータを駆動制御部102へ直接入力し、このデジタルデータをフレームメモリ130に蓄えても良い。つまり、駆動制御部102は、画像データをアナログ信号又はデジタル信号として取得しても構わない。
【0048】
その後、制御部110は、フレームメモリ130に蓄えられているデジタルデータを読み出し、それらのデータに基づいて、Y電極駆動回路141、X電極駆動回路142及びW電極駆動回路143をそれぞれ駆動・制御する各種制御信号を生成し、対応する各駆動回路141〜143へ出力する。そして、上記制御信号を受けて、上記駆動回路141〜143は、走査パルスないしはスキャンパルス11(図4参照)や、アドレスパルスないしは書き込みパルス12(図4参照)やプライミングパルスや維持パルス13(図4参照)等の各駆動信号ないしは各駆動電圧をPDP101の対応する電極へ印加し、これによりPDP101を駆動する。
【0049】
図4は、PDP101の駆動方法を説明するためのタイミングチャートである。AC型のPDP101は、リセット動作、アドレス動作、表示動作(ないしは維持動作)及び消去動作を含む一連の動作によって駆動される。具体的には、次の通りである。
【0050】
先ず、リセット期間では、PDP101における全ての放電セルDC内の電荷状態を初期化する(リセット動作)。
【0051】
次のアドレス期間では、各サブピクセルC内に、画像データを電荷ないしは壁電荷の有無として与える。具体的には、行電極Y1〜YNに順次にスキャンパルス11を印加し(各電極対間に順次に電位差を与え)、スキャンパルス11の順次印加に同期して、列電極W1〜WMへの書き込みパルス12の印加/不印加を画像データ中の各サブピクセルCに対応する各データに応じて制御する。例えば、スキャンパルス11及び書き込みパルス12は、それぞれ160V及び65Vである。又、アドレス期間中、行電極X1〜XNには、所定の電圧(0Vを含む)を印加する。尚、アドレス期間でのより具体的な駆動方法は後述する。
【0052】
その後、表示期間において、上記壁電荷を利用して放電(表示放電又は維持放電)を繰り返し発生させ、表示を行う(表示動作)。具体的には、行電極Y1〜YNと行電極X1〜XNとに交互に(交流的に)維持パルス13を印加する、このとき、表示期間での放電の繰り返し回数、即ち、維持パルス13の印加数によって、各サブピクセルCの輝度が制御される。消去期間では、壁電荷を消去する(消去動作)。
【0053】
更に、図1の駆動制御部102は、PDP101をサブフィールド階調法(単にサブフィールド法とも呼ばれる)によって駆動する。ここで、図5は、サブフィールド階調法を模式的に説明するための図である。サブフィールド階調法では、リセット動作、アドレス動作、表示動作及び消去動作より成る一つのサブフィールド(SF)を形成し、複数のサブフィールドSF1〜SF8を組み合わせて一つのフレーム(又はフィールド)を形成する。このとき、各サブフィールドの表示期間において、表示放電の繰り返し回数を違える(重み付けする)。
【0054】
放電セルDC内においては、発光強度に分布が生じる。即ち、放電の中心となる放電ギャップ3近傍において輝度が最も高くなり、バス電極1に近づくにつれて輝度は低くなる。ここで、図3は、発光分布を模式的に示した図である。具体的には、図2の電極X1及び電極Y1で規定される第1番目の行L1上に、サブピクセルC11、C12、C13、C14、C15及びC16が配列されている。同様に、第2番目の行L2上にサブピクセルC21〜C26が、第3番目の行L3にはサブピクセルC31〜C36が配列される。各サブピクセルCの横断面形状(両方向h、vを含む平面で各サブピクセルCを切断したときの形状)は同一面積を有するが、各サブピクセルCの発光中心の位置は、放電ギャップ3近傍である円で描かれた付近となる。サブピクセルC11に対応する発光中心を発光中心H11と定義する。同様に、各サブピクセルCNMには、それぞれ発光中心HNMが対応している。又、各サブピクセルCの発光中心を発光中心Hとして表示する。
【0055】
図6は、1フレーム分の画像データDの構成を模式的に描いた図である。ここで、画像データDは、プログレッシブ信号ないしはノンインタレース信号に対応する。図6では、表示する画像上にマトリクス状に規定された各地点に、各地点の色に関する色データD11、D12、D21、D22、D31、D32、D41、D42、D51、D52、D61、D62を対応付けて図示している。各色データは、赤色(R)、緑色(G)及び青色(B)に関する各データ(具体的には輝度データ)を含む。例えば、色データD11は、赤色(R)、緑色(G)及び青色(B)に関する各データR11、G11及びB11を含む。尚、色データの赤色(R)、緑色(G)及び青色(B)に関する各データの符号は、その色データの符号中の“D”を“R”、“G”、“B”で置き換えて表記するものとする。
【0056】
図6のデータ構成を有する画像データDがインタレース信号として図1のAC型PDP装置100に入力される場合、画像データDは、奇フィールド分の画像データDOと偶フィールド分の画像データDEとに分けられる。具体的には、模式的なデータ構成図である図7に示す様に、奇フィールド分の画像データDOは、表示する画像上で規定された第1、第3及び第5番目の行IL1、IL3及びIL5に対応する色データD11、D12、D31、D32、D51、D52を含む。他方、図8の模式的なデータ構成図に示す様に、偶フィールド分の画像データDEは、画像上における第2、第4及び第6番目の行IL2、IL4及びIL6の色データD21、D22、D41、D42、D61、D62を含む。尚、各行IL1〜IL6の色データ群を「行データ」と呼ぶ。例えば、第1番目の行IL1の行データは、色データD11、D12等を含む。
【0057】
図1のAC型PDP装置100はプログレッシブ信号とインタレース信号との何れをも入力信号VINとして受信可能である。換言すれば、同装置100は、画像データD(図6)、DO(図7)、DE(図8)の何れをも取得可能である。
【0058】
以下の記載では、PDP101のサブピクセルC内の発光中心H(図3)をチェック状に図示した図9をも用いる。この様な図示化によっても、サブピクセルCの配列の一般性を失うことはない。又、図9ではPDP101の画面の一部(ここでは画面の左上の隅)を図示しており、便宜上、以下の説明では図9に図示した範囲内の発光中心Hについて述べる。ここで、デルタ配列型ピクセルの説明で用いた図23と図9とを比較すると明らかな通り、デルタ配列型ピクセルではピクセル自体で構造を規定するため行数が多いのに対して、本実施の形態で述べる構造では、一つの行内で発光中心をずらしたものを2種類設けているため、行数が少ないと言える。
【0059】
図10及び図11は、AC型PDP100装置の動作を模式的に説明するための図である。図1の駆動制御部102が取得する画像データがインタレース信号に対応している場合、駆動制御部102は、図7で示した奇フィールドの画像データDOのデータR11、G11、B11等を、図10に示す様に、各発光中心Hを含むサブピクセルCに割り当てる。即ち、発光中心H11(サブピクセルC11)には色データD11のデータR11を、発光中心H13には(サブピクセルC13)には色データD11のデータB11を割り当て、発光中心H15(サブピクセルC15)には色データD12のデータG12を割り当てる。又、発光中心H21(サブピクセルC21)、発光中心H12(サブピクセルC12)、発光中心H23(サブピクセルC23)には色データD31のデータR31、G31、B31をそれぞれ割り当て、発光中心H14(サブピクセルC14)、発光中心H25(サブピクセルC25)、発光中心H16(サブピクセルC16)には色データD32のデータR32、G32、B32をそれぞれ割り当てる。
【0060】
これにより、PDP101上の第1番目の行L1で画像上の第1番目の行IL1が表示され、PDP101上の第1番目及び第2番目の行L1、L2で画像上の第3番目の行IL3が表示され、PDP101上の第2番目及び第3番目の行L2、L3で画像上の第5番目の行IL5が表示される。
【0061】
他方、図1の駆動制御部102は、図8における偶フィールドの画像データDE中のデータR21、G21、B21等を、図11に示す様に、各発光中心Hを含む各サブピクセルCに割り当てる。即ち、発光中心H11(サブピクセルC11)、発光中心H12(サブピクセルC12)、発光中心H13(サブピクセルC13)には色データD21のデータR21、G21、B21をそれぞれ割り当て、発光中心H14(サブピクセルC14)、発光中心H15(サブピクセルC15)、発光中心H16(サブピクセルC16)には色データD22のデータR22、G22、B22をそれぞれ割り当てる。又、発光中心H21(サブピクセルC21)、発光中心H22(サブピクセルC22)、発光中心H23(サブピクセルC23)には色データD41のデータR41、G41、B41を割り当て、同様に、発光中心H24(サブピクセルC24)、発光中心H25(サブピクセルC25)、発光中心H26(サブピクセルC26)には色データD42のデータR42、G42、B42をそれぞれ割り当てる。
【0062】
これにより、PDP101上の第1番目の行L1で画像上の第2番目の行IL2が表示され、PDP101上の第2番目の行L2で画像上の第4番目の行IL4が表示される。
【0063】
ここで、図3に示す隣接する4つのサブピクセルC21、C22、C23、C12を一例にあげて説明する。各サブピクセルにおいては、当該サブピクセルの中心から放電ギャップがずれて位置しているため、それぞれ発光中心の位置が当該サブピクセルの中心位置とは異なっている。そのため、サブピクセルC12が保有する発光中心H12と、サブピクセルC21が保有する発光中心H21と、サブピクセルC23が保有する発光中心H23とが作る立体形状の横断面形状(表示面側から見た平面図形)は三角形を成している。しかも、サブピクセルC21が保有する発光中心H21と、サブピクセルC22が保有する発光中心H22と、サブピクセルC23が保有する発光中心H23とが成す立体形状の横断面形状は、上記3角形とはその共通の底辺の周りに線対象な反対側に位置する三角形を成す。そして、各々の三角形の大きさは略等しくなる様に、セル設計を行うものとする。このとき、図1のAC型PDP装置100の動作に関しては、▲1▼奇フィールドでは、図3及び図10に示す様に、三つの発光中心H21、H12、H23をそれぞれ保有する三つのサブピクセルC21、C12、C23から成る第1サブピクセル群で以って一つのピクセルPを形成し(第1表示形態)、▲2▼偶フィールドでは、図3及び図11に示す様に、三つの発光中心H21、H22、H23をそれぞれ保有する三つのサブピクセルC21、C22、C23から成る第2サブピクセル群で以って一つのピクセルPを形成する(第2表示形態)。つまり、赤色(R)表示用サブピクセルC21及び青色(B)表示用サブピクセルC23を含むピクセルPは、緑色(G)表示用サブピクセルCとして、サブピクセルC12及びC22をフィールド毎に交互に切り替える。このとき、第1表示形態におけるピクセルPの輝度重心と第2表示形態におけるピクセルPの輝度重心とは等間隔で配列していると言え、そのため、自然な形で解像度を向上させることが出来る。
【0064】
このような動作(いわゆる擬似インタレース表示)は、既述した通り、デルタ配列型のPDPにおいても実現可能である。本実施の形態で示すトリオ配列型パネル構造であっても、既述したデルタ配列型パネル構造であっても、擬似インタレース動作により、列方向vの解像度を向上させることが出来る。但し、図20に示した従来のトリオ配列型ピクセルでは、擬似インタレース動作を実現することが不可能なことは言うまでもない。この様な従来のトリオ配列型ピクセルにおいて解像度を向上させるためには単純にセル数を倍にするしかなく、高価になる。
【0065】
更に、本実施の形態で示したトリオ配列型パネル構造で擬似インタレース動作を行うならば、デルタ配列型パネル構造で擬似インタレース動作を行うよりも、直線性を良くすることが可能である。デルタ配列型のPDPにおいてはセル構造自体が発光領域を決めているため、発光領域と非発光領域がまだらに(交互に)存在することになる。このため、デルタ配列型では直線性を得にくい。但し、ここで言う「発光領域」とは主に放電セルが存在する場所であり、「非発光領域」とは、バリアリブや、ブラックストライプや、放電ギャップの存在しない空間等の、主に放電不可能な場所あるいは放電しても光が遮蔽されて発光が見えない領域を言う。
【0066】
即ち、デルタ配列型PDPでは、▲1▼発光領域が直線状にない、▲2▼発光領域を埋める様に非発光領域を形成するため、非発光領域も直線状にない、と言った二つの理由から、直線性が得られない。
【0067】
これに対して、本実施の形態に係る構造を有するトリオ配列型PDPでは、発光領域と非発光領域とは格子状となる。即ち、非発光領域であるリブ及びブラックストライプを直線状に形成することが出来るし、発光中心がデルタ配列型に近いとはいえ、発光領域全体がトリオ配列型として発光するため、直線性を改善することが出来る。換言すれば、デルタ配列型ピクセルをチェック状に表現する場合(図23)、非発光領域となる陰影部が完全に発光しないのに対して、本実施の形態では、図9に示す陰影部もまた発光領域であるため(いわば画面全体が発光しているため)、直線性が改善されるのである。
【0068】
(実施の形態2)
本実施の形態では、実施の形態1に係るPDP101のセル構造を改良したものに相当する、別のセル構造について説明する。それ以外の、AC型PDP装置の構成及び駆動方法は、全て実施の形態1で述べたものに等しい。
【0069】
実施の形態1では、発光中心が放電ギャップ付近にあることを利用して擬似インタレース動作を行うことで解像度を向上させ得ることを提案した。又、実際には放電ギャップ近傍だけで発光するわけではなく、放電セル全体が発光し、このため直線性が改善されることも、実施の形態1で記載した。このこと自体は、透明電極全体が放電の生成及び生じた光の取り出しに寄与するため、電極面積が大きい方が発光量の増大につながると言うことであり、厳密には発光中心の位置が放電ギャップの位置のみでは決まらないことを意味する。つまり、発光中心の位置は、放電ギャップの位置から電極面積が大きい方の透明電極寄りにずれることになる。
【0070】
そこで、本実施の形態では、より厳密に放電ギャップが発光中心の位置となる様にするため、実施の形態1と同様に隣接セル毎に放電ギャップの位置を放電セルの中心から等距離だけ反対側へ交互にずらすと共に、第1電極における第2部分の透明電極部分の電極面積と対向する第2電極における第4部分の透明電極部分の電極面積とを略等しく設定すると言う構成を採用している。
【0071】
図12は、本実施の形態に係るPDP101A(図2のPDP101の改良形)の一部を表示面側から眺めた際の構造を模式的に示す平面図である。PDP101Aは、PDP101と同様に、前面ガラス基板上に形成された、2×N(Nは自然数)本の帯状の金属電極(バス電極)1及び各金属電極1に交互に結合されている透明電極21、22を有する。透明電極21、22は、それが結合している金属電極1から他方の金属電極1に向けて列方向vに張り出しており、一つの放電セルDC内においては、両透明電極21、22は、放電ギャップ3を挟んで互いに向かい合っている。
【0072】
本実施の形態における構造上の特徴点は次の点にある。即ち、一方の透明電極21は、▲1▼対向する透明電極22と略等しい電極面積を有しており且つ主として放電を行うための透明電極21(a)(第2端周辺部分に該当)と、▲2▼透明電極21(a)と対応する金属電極1とを互いに接続するための電極21(b)(接続用電極部に該当)とから構成されている。ここで、電極21(b)は金属電極であっても良いし、透明電極であっても良い。勿論、電極21(b)が透明電極であれば、光の取り出し効率が高くなるため、金属電極で構成するよりも発光効率は高くなる。又、光の取出し効率は低下せざるを得ないが、第2端周辺部分である電極21(a)を金属電極で構成することも可能である。他方の透明電極22は、上記の接続用電極部を一切介在させることなく直接的に対応する金属電極1と接続された透明電極部(第2端周辺部分)のみより成る。勿論、第2端周辺部分を成す電極22を金属電極で代用することは可能である。この様な構造を実施の形態1で上述した定義を用いて表現するならば、ある任意の放電セルDCにおいては、第2部分12は接続用電極部21(b)と第2端周辺部分21(a)とから成り、対向する第4部分14は第2端周辺部分21(a)と電極面積が略等しい透明電極部22(第2端周辺部分とも称する)のみより成る。そして、透明電極部22と第2端周辺部分21(a)との間に形成される放電ギャップ3の中心は、当該放電セルDCの中心位置から第4部分14側へ所定の距離だけずれている。これに対して、その隣の放電セルDCにおいては、逆に、第2部分12は透明電極部22(第2端周辺部分とも称する)のみより成り、対向する第4部分14は接続用電極部21(b)と第2端周辺部分21(a)とから成り、透明電極部22と第2端周辺部分21(a)との間に形成される放電ギャップ3の中心は、当該隣の放電セルDCの中心位置から第1部分11側へ上記の所定の距離だけずれている。この様な構造が、行方向hに沿って交互に形成されている。
【0073】
上記の通り、透明電極21及び透明電極22は行方向hに対して交互に繰り返される。これにより、放電ギャップ3の位置も交互に形成されていく。この場合の発光中心も図3の様に模式化して表示することができ、実施の形態1と同様の駆動方法により擬似インタレースを行うことが出来る。即ち、本実施の形態でも図10及び図11を用いて説明することが可能であり、奇フィールドでは、図10に示す様に、三つの発光中心H21、H12、H23を保有するサブピクセルC21、C12、C23から成る第1サブピクセル群で第1表示形態を形成し、偶フィールドでは、図11に示す様に、発光中心H21、H22、H23を保有するサブピクセルC21、C22、C23から成る第2サブピクセル群で第2表示形態を形成し、フィールド毎に表示形態を交互に切り替えることで、解像度向上を図ることが出来る。このとき、デルタ配列型に比べて直線性が得やすい点は、実施の形態1で述べた通りである。
【0074】
更に、本実施の形態に係るPDP101Aのパネルを用いることにより、発光中心の位置を実施の形態1の場合と比較してより一層放電ギャップ3近傍に特定することが出来るため、擬似インタレース動作をより一層容易に行うことが出来ると言う特有の利点が得られる。
【0075】
(変形例1)
図12に示す透明電極22を、透明電極21と同様な形状の電極に置き換えても良い。即ち、透明電極22を、▲1▼透明電極21の第2端周辺部分21(a)と同じ電極面積を有する透明電極部(第2端周辺部分)と、▲2▼当該透明電極部と対応する金属電極1とを接続するための接続用電極部とから成る構造の電極として構成しても(後述の図18の電極部22(a)、22(b)を参照)、実施の形態2と同様の作用・効果が得られる。つまり、透明電極22は、「透明電極又は金属電極より成る第2端周辺部分」を少なくとも含む構造を有していれば良いのである。
【0076】
(変形例2)
実施の形態2では、放電領域を放電ギャップ近傍に特定すべく、透明電極21を2つの透明電極部21(a)及び21(b)に分割して構成する例を示したが、別の方法によっても実現可能である。例えば、実施の形態1で示した図2の構造において、放電抑止体7を、電極面積が大きい方の透明電極21の第1端側(金属電極1との接合部分付近)に設けても良い。放電抑止体7の形成方法としては、例えば、前面ガラス基板側に放電抑止体7を設けるのであれば、誘電体の厚みを部分的に変える、あるいは、放電開始電圧を下げるためのMgO層を部分的に取り除く等の方法で対処可能である。又、背面ガラス基板側に放電抑止体7を設けるのであれば、リブ状のものを部分的に形成する、あるいは、蛍光体の厚みを部分的に極めて厚くして放電しにくくさせる等でも良い。ここでは、放電開始電圧を放電ギャップ近傍におけるそれと異ならせるためのものを、「放電抑止体」と呼ぶ。但し、放電抑止体により完全に光が遮蔽されてしまうとデルタ配列型ピクセルと同様に直線性が得にくくなるため、放電抑止体の材質としては、光を透過させるのものが望ましいと言えるが、必ずしもこの限りではない。ブラックドットと呼ばれるブラックストライプに類するものを前面ガラス基板上に形成し、これを放電抑止体として用いても良い。この様な放電抑止体を設けることにより、実施の形態2と同じ効果を得ることが出来る。
【0077】
(実施の形態3)
実施の形態1及び実施の形態2においては、ある放電セルにおける放電ギャップの位置を当該放電セルの中心位置から所定の距離だけずらすと共に、隣接放電セル毎に放電ギャップを等距離だけ反対側へ順次にずらしていくことで発光中心を制御し、トリオ配列であっても擬似インタレース動作可能なセル構造を実現していた。これに対して、本実施の形態では、各放電セル内の放電ギャップを当該放電セルの中心位置に設定した上で、ある放電セル内における第2部分の有効電極面積及び第4部分の有効電極面積との間に積極的に差をもたせた上で、隣接放電セル毎に、第2部分の有効電極面積と第4部分の有効電極面積との関係を順次に反転させることで、実施の形態1及び実施の形態2と同様に発光中心を変えることとしている。
【0078】
図13は、本実施の形態3に係るPDP101Bの一部を表示面側から眺めた際の構造を模式的に示す平面図である。同図においては、PDP101Bの構成要素の内でPDP101の構成要素と同様の機能をもつものには、同一の符号が付されている。
【0079】
PDP101Bは、PDP101と同様に、前面ガラス基板上に形成された、2×N(Nは自然数)本の帯状の金属電極(バス電極)1、及び、各金属電極1に交互に結合された複数の透明電極21、22を有する。透明電極21、22は、共に金属電極1から列方向vに所定の距離だけ張り出して形成されていると共に、放電セルの中心に位置する放電ギャップ3を挟んで向かい合う様に形成されている。そして、(透明電極21の有効電極面積)>(透明電極22の有効電極面積)の関係が、各放電セルDCにおいて成立する。
【0080】
本実施の形態では、透明電極21、22の横断面形状はおよそ台形形状として設定されている。勿論、この形状は三角形でも良く(この場合には、各三角形の底辺が対向し合い、各三角形の頂点またはその近傍部分が対応する金属電極1と接合することになる)、要は、放電セル内の有効電極面積が異なるもの同士であれば良い。横断面形状が互いに面積の異なる長方形となるもの同士を組み合わせても良いが、放電ギャップ3を形成する対向し合う辺の長さを揃えた方が均一に放電し易いと考えられる。言い換えれば、放電ギャップ3を形成する辺の長さをおよそ揃えた構成であれば、放電ギャップ3を形成する辺の長さ以上の幅を有する電極部を持つ透明電極と、その辺の長さ以下の幅を有する電極部を持つ透明電極とで、各放電セル内の対向する一対の透明電極を構成する電極構造であれば良い。この形状の異なる(従って、有効電極面積の異なる)透明電極21、22の組は、行方向hに沿って、行方向hの周りに交互に反転されながら繰り返される。このとき、各放電ギャップ3の位置は、行方向h及び列方向vに対して、およそ一定である。
【0081】
PDP101Bでは、各放電ギャップ3の位置は一定であるが、放電ギャップ3を形成する両透明電極21、22の有効電極面積が互いに異なるため、各セルCの発光中心が隣接セルC毎に放電セルの中心位置から反対側にずれていくことになり、本実施の形態においても、図3に示す様な模式化を図ることが出来る。従って、実施の形態1及び2と同様に、トリオ配列型構造において擬似インタレースを行うことが出来る。
【0082】
これにより、実施の形態1及び2と同様に、デルタ配列型ピクセルよりも直線性が得やすく、且つ、デルタ配列型と同等の高解像度を得ることが出来る。
【0083】
更に、各放電ギャップ3の位置が放電セルDCの中心位置に常に設定されているため、放電自体の主体は、放電ギャップ3の近傍、即ち、放電セルDCの中央位置において発生させることが出来る。この点は、次の様な特有の効果をもたらす。もし放電ギャップを放電セルの端側に寄せた場合、格子リブであれば、放電で発生する電荷や放電生成物は壁に衝突し易くなる。仮にストライプリブを用いることで障壁が存在しなくても、放電セル端側のギャップ近傍においては、中央部と比較して、放電で生ずる紫外線で励起され得る蛍光体の面積が少なくなるため、蛍光体を励起する紫外線密度が高くなる。これにより、蛍光体が飽和し易くなり、発光効率は不利に働く。従って、図13の様に放電セルDCの中央に放電ギャップ3を形成した方がセル全体の蛍光体を利用することができ(紫外線密度が低くなり)、発光効率は高くなる。
【0084】
(実施の形態4)
本実施の形態では、各隔壁の内で各放電セルを規定する部分は、第2方向(列方向)に対して所定の角度で傾斜しつつ直線状に延在した部分を有しており、隣り合う両隔壁の各々の当該放電セルを規定する部分同士は、第2方向に関して線対称の関係にある。この特徴点により、本実施の形態においても、任意の放電セル内の、第2部分の有効電極面積と第4部分の有効電極面積とは互いに異なっており、しかも、各放電セル内における第2部分及び第4部分の有効形状は、隣接放電セル毎に、第2及び第4部分の有効形状を第1方向の周りに反転させることによって得られる形状に相当している。以下、図面に基づき、本実施の形態を記載する。
【0085】
図14は、本実施の形態に係るAC型PDP101Cの一部を表示面側から眺めた際の構造を模式的に示した平面図である。実施の形態3では、透明電極の横断面形状が例えば台形又は三角形となる様に各透明電極の形状を設定しているが、リブをストライプ状に形成しているため、対向し合う両透明電極の有効電極面積比には限りがある。そこで、行方向hの直線性を確保しながらも列方向vの直線性を弱めて、対向し合う両透明電極の有効電極面積比をより大きく設定可能としたのが、本実施の形態である。
【0086】
図14に示す様に、各金属電極1には横断面形状が台形形状の透明電極21、22が第1方向hに沿って交互に接合されており、放電セルDCの中央付近に放電ギャップ3が形成される点は実施の形態3と同様である。しかし、本実施の形態では、セルCの横断面形状は、長方形状ではなくて、略台形状に、より厳密にはクリスマスツリー状もしくは傘状の形状となる。これは、リブ5の形状に起因している。即ち、リブ5はセルCを囲う様に形成されており、第2方向vに対して平行な直線形状ではなくて、折れ線形状で形成されている。より詳細には、隣り合うリブ5の内で各放電セルDCを規定する部分51、52は、共に第2方向vに対して所定の角度を成す様に傾斜した直線形状の部分を有しており(その傾斜方向は互いに逆の関係にある)、しかも、両部分51、52は互いに第2方向vに関して線対称の関係にある。既述した図21及び図22で示すデルタ配列型ピクセルにおいてはリブが蛇行しているが、セル配列をトリオ配列とする本発明の構成上(非発光領域を直線形状とする本発明の目的上)、リブ形状は蛇行ではなくて図14で示す様な稲妻形状となる。
【0087】
本実施の形態で示す様なリブ構成を採用することで、実施の形態3の場合以上に、対向し合う両透明電極21、22の有効電極面積の間に差をもたせること(発光中心を放電セルの中心から金属電極1側へより一層ずらすこと)が出来る。このとき、発光中心の分布図は、実施の形態1〜3と同様に、図3として表すことが出来る。従って、本実施の形態によれば、より一層容易に擬似インタレースを行うことが可能である。非発光領域となるリブ5は、最早、列方向vに平行な直線形状を有していないため、列方向vの直線性は弱まるが、行方向hの非発光領域であるブラックストライプ6は行方向hに平行な直線形状を保っているため、横方向の直線性は保たれている。即ち、本実施の形態においてもなお、デルタ配列型ピクセルに比べて、直線性は優位にある。
【0088】
尚、実施の形態3(図13)及び実施の形態4(図14)では、透明電極21、22の横断面形状を台形もしくは三角形の様な単純形状としているが、複数の四角形を組み合わせる様な形状を用いても良いことは既に述べた通りである。又、透明電極21、22は、必ずしも直線状に形成される形状を有していなくても良い。透明電極21、22の横断面形状を台形状ないしは三角形状に設定することの意味するところは、透明電極21、22における放電ギャップ3を形成する辺を考えたときに、その辺の長さ以上の幅を有する透明電極と、その辺の長さ以下の幅を有する透明電極との組み合わせを考えている点にある。例えば、図15(A)に示す様に、一方の透明電極は放電ギャップを形成する辺よりも幅が狭い四角形を含む形状を有するものとし、他方の透明電極は放電ギャップを形成する辺と同じ幅を有する一つの四角形状を成すものとしても良い。あるいは、図15(B)に示す様に、一方の透明電極は、放電ギャップから金属電極に近づくにつれて放電ギャップを形成する辺よりも幅が狭くなる様に円弧を描いて形成されるものとしても良く、他方の透明電極は、放電ギャップを形成する辺よりも幅が広くなる台形を組み合わせて形成されるものとしても良い。勿論、これらの全ては如何なる様に組み合わせても良い。1組の電極面積が異なる全ての形状において(発光中心が電極形状により放電セルの中心よりずれる全ての形状において)行方向hに対して交互に繰り返すパターンを形成すれば、トリオ配列型構造のPDPにおいても擬似インタレース動作を行うことができ、高解像度を得ることができる。
【0089】
(変形例)
実施の形態4(図14)では、対向し合う両透明電極21、22の有効電極面積差をリブ5の形状(セル構造)で以って規定している。と言うことは、図14に示す様なリブ5の形状(セル構造)を採用する限り、最早、対向する両透明電極の形状を互いに異ならしめる(変形する)必要性は無いと言える。即ち、先行技術例である図21に示す様に、透明電極21、22を同一面積で行方向hに延在させても良い。この様な変形例を図16の平面図に例示する。この変形例を採用する場合には、電極とリブとの位置合わせ(前面ガラス基板と背面ガラス基板との位置合わせ)を容易に行うことが出来ると言う利点がある。
【0090】
(実施の形態5)
図17は、本実施の形態に係るPDP101Dの一部を表示面側から眺めた際の構造を模式的に示す平面図である。これまで、トリオ配列型ピクセルで擬似インタレース動作を行うためのセル構造として、▲1▼放電ギャップをずらす、▲2▼放電ギャップをずらすことなく透明電極の有効電極面積に差をもたせて発光中心をずらす、の2点に関して説明してきた。勿論この2つを組み合わせても良く、本実施の形態では、実施の形態1あるいは2で示した放電ギャップをずらすと言う構成を採用し、且つ、実施の形態3で示した電極面積に積極的に差をもたせると言う構成をも採用している点に特徴がある。以下、図17に基づいて、その特徴点を説明する。
【0091】
図17に示す様に、各金属電極1には透明電極21、22が交互に結合しており、透明電極21、22は金属電極1から列方向vに張り出して形成されている。一方の透明電極21は、主に放電させるための透明電極21(a)と、透明電極21(a)と金属電極1とを互いに接続するための電極21(b)とに分かれている。この接続用電極部21(b)には、必ずしも透明電極を用いなくても良い。他方の透明電極22は、有効電極面積が透明電極21(a)のそれよりも大きくなる様に形成されており、例えば台形状の横断面形状を有している。透明電極21と透明電極22とは、一つのサブピクセルC内において、放電ギャップ3を挟んで向かい合う様に配置されている。このとき、有効電極面積の大きい透明電極22が結合された金属電極1寄りに、放電ギャップ3を形成する。即ち、放電ギャップ3から金属電極1までの距離は、透明電極22を介した方が、透明電極21を介するよりも短い。更に、透明電極21と透明電極22とは行方向hに対して交互に繰り返して配列されており、これにより、放電ギャップ3の位置も行方向hに対して交互に繰り返してずれる様になっている。
【0092】
又、本実施の形態では、図17に示す様に、ブラックストライプ6の形状を実施の形態1〜4のそれとは異ならせている。具体的には、サブピクセルCの内で、発光中心から離れた(放電ギャップから離れた)領域部分61にまで、ブラックストライプ6をはみ出して形成している。この様に発光領域内においてあまり発光に関わらない領域にブラックストライプ6の枝部分61を設けることにより、発光効率を低下させずに更なるコントラスト向上を図ることが出来る。勿論、この様なコントラスト向上のための追加部分は従来のブラックストライプに枝をつけた様な本構成でなくても良く、ブラックストライプとブラックドットとを組み合わせた構成(図17における行方向hのブラックストライプ6とその枝部分61とを切り分けた構成)としても良いし、ブラックドット単体でも良い。又、背面基板上に形成されるリブ材料で以って上記の枝部分61を代用することにしても良い。コントラスト向上と横方向の直線性との兼ね合いによりブラックドットあるいは本実施の形態に係る枝部分61の大きさが決定されるが、少なくとも黒色物質をブラックストライプ6付近に寄せた本構成とすることにより、横方向の直線性を得ることが出来る。勿論、本構成(枝部分61を設ける点)を実施の形態1〜4のブラックストライプ6に適用しても良い。
【0093】
本実施の形態においても、発光中心の分布図は、実施の形態1と同様に、図3に示す模式図と等しくなる。これにより、擬似インタレース動作が可能となり、高解像度を得ることができる。特に、本実施の形態の様に放電ギャップの位置と電極面積の両方を制御すれば、発光中心をより一層コントロールし易くなるため、より一層容易に擬似インタレース動作を行うことが出来る。
【0094】
(実施の形態6)
実施の形態1〜5で記載した各アイデアを、同じくトリオ配列型ピクセルを有する、所謂アリス構造のPDPにも適用可能であり、同様に、直線性を確保しながら擬似インタレース動作を容易に行うことが出来る。
【0095】
ここで、図18は、実施の形態2で説明した「隣接放電セル毎に放電ギャップを交互に反対側にずらして発光中心をずらす」と言う技術的思想をアリス構造のPDPに適用した場合における、アリス構造PDPの一部を拡大して模式的に示した平面図である。即ち、図18の構造は、例えば特開平9−160525号公報に開示された構造及び駆動方法に、実施の形態2の特徴である発光中心制御を適用した一例である。但し、図18の例では、説明の便宜上、図1の表示とは逆に、Y電極が共通電極に設定されている。加えて、透明電極22は、対向する透明電極21と同様に、その第2端周辺部21(a)と同じ電極面積を有する透明電極部22(a)(第2端周辺部分とも称する)と、透明電極部22(a)と電極Y1の金属電極13とを互いに接続するための接続用電極部22(b)とから成る(実施の形態2における変形例1の適用に相当)。尚、第2端周辺部分21(a)、22(a)及び/又は接続用電極部21(b)、22(b)は、透明電極に代えて、金属電極で代用されても良い。
【0096】
この様な構造及び擬似インタレース動作となる様な画像データの取り込みを、例えば特開平9−160525号公報に開示される駆動方法を基にして実現することで、特開平9−160525号公報に記載される高解像度を上回る高解像度化を図ることが出来る。既述した通り、特開平9−160525号公報に開示された技術は、本明細書記載の全ての構造と組み合わせることが出来る。
【0097】
尚、アリス構造PDPにおける複数の電極対の第2方向vへの配列の態様を、実施の形態1〜5において記載した複数の電極対の第2方向vへの配列の変形として認識するならば、そのときの変形の仕方は次の通りとなる。即ち、ある表示ラインに属する第1方向hに沿って一列に並んだ全ての放電セルDC1と当該表示ラインに隣接する表示ラインに属する全ての放電セルDC2とに関して、その一方の表示ラインに属する第2電極とその他方の表示ラインに属する第1電極とは一体化されて両表示ラインの共通電極Y1(図18)を成しており、共通電極Y1と当該共通電極Y1と対向する第1及び第2電極X1、X2(図18)とから成る一組の電極群が、所定の間隔で第2方向vに沿って配列している。この場合、誘電体は、共通電極Y1又は当該共通電極Y1と対向する第1及び第2電極X1、X2の内の少なくとも一方を被覆していれば良い。
【0098】
(付記)
本発明で「複数の電極対が第2方向に配列している」と言うときには、その配列の態様には、実施の形態1〜5で述べた配列態様と、実施の形態6のアリス型における配列態様とが、含まれている。
【0099】
尚、本発明のすべての実施の形態において、行電極X,行電極Yは金属電極と透明電極とを組み合わせて形成しているが、必ずしもこの限りでない。透明電極に相当するところを金属電極で代用しても本発明の効果が失われないということは言うまでもない。
【0102】
請求項に係る発明によれば、放電セルの中心位置で放電を行わせることが出来るので、放電セル全体の蛍光体を利用することが可能となり、発光効率を高めることが出来ると言う効果を奏する。
【0103】
請求項に係る発明によれば、各放電セル内における第1電極の第2部分と第2電極の第4部分との有効電極面積比をより一層大きく変えることが出来るので、擬似インタレース動作をより容易に行うことが出来ると言う効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係るAC型PDP装置の模式的なブロック図である。
【図2】 実施の形態1に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図3】 実施の形態1に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図4】 本発明に係るAC型PDP装置における、プラズマディスプレイパネルの駆動方法を説明するためのタイミングチャートである。
【図5】 サブフィールド階調法を説明するための模式図である。
【図6】 1フレーム分の画像データの構成を説明するための模式図である。
【図7】 インタレース信号における奇フィールド分の画像データの構成を説明するための模式図である。
【図8】 インタレース信号における偶フィールド分の画像データの構成を説明するための模式図である。
【図9】 この発明に係るAC型PDP装置の表示部の構成を説明するための模式図である。
【図10】 この発明に係るAC型PDP装置の動作を説明するための模式図である。
【図11】 この発明に係るAC型PDP装置の動作を説明するための模式図である。
【図12】 実施の形態2に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図13】 実施の形態3に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図14】 実施の形態4に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図15】 実施の形態3、4に係るAC型PDP装置が備えるプラズマディスプレイパネルのうち別の電極形状を説明するための模式図である。
【図16】 実施の形態4の変形例に係るAC型プラズマディスプレイパネルの構造を説明するための模式図である。
【図17】 実施の形態5に係るAC型PDP装置が備えるプラズマディスプレイパネルを説明するための模式図である。
【図18】 実施の形態6に係るAC型PDP装置が備えるアリス型プラズマディスプレイパネルを説明するための模式図である。
【図19】 トリオ配列型ピクセルを説明するための模式図である。
【図20】 トリオ配列型ピクセルを有するプラズマディスプレイパネルを説明するための模式図である。
【図21】 デルタ配列型ピクセルを有するプラズマディスプレイパネルを説明するための模式図である。
【図22】 デルタ配列型ピクセルを有するプラズマディスプレイパネルを説明するための模式図である。
【図23】 デルタ配列型ピクセルの構成を説明するための模式図である。
【符号の説明】
1 金属電極、11 第1部分、12 第2部分、13 第3部分、14 第4部分、21,22 透明電極、3 放電ギャップ、4 蛍光体、5 リブ、Cセル、DC 放電セル、h 第1方向、v 第2方向。

Claims (4)

  1. 第1基板と、
    第1方向に延在し且つ前記第1方向と直交する第2方向に配列する様に前記第1基板上に形成されており、各電極対は対向し合う第1及び第2電極より成る複数の電極対と、
    前記第1及び第2電極の内の少なくとも一方を被覆する様に前記第1基板上に形成された誘電体と、
    基板間に空間を形成する様にその周辺部が前記第1基板と接合された第2基板と、
    前記第2方向に延在して前記複数の電極対と立体交差する様に前記第2基板上に形成された複数の第3電極と、
    少なくとも前記第2方向に延在して各第3電極を挟み込む様に前記第2基板上に形成されている複数の隔壁と、
    その各々が前記各第3電極を被覆する様に、少なくとも前記第2基板上に形成された複数の蛍光体とを備えており、
    前記第1電極は、
    前記第1方向に延在する金属電極より成る第1部分と、
    その第1端は前記第1部分に接合されており、前記第1端に対向する第2端は前記第2電極に向かって張り出している第2部分とを有しており、
    前記第2電極は、
    前記第1方向に延在する金属電極より成る第3部分と、
    その第1端は前記第3部分に接合されており、前記第1端に対向する第2端は前記第1電極に向かって張り出して前記第2部分の前記第2端と対向して放電ギャップを形成している第4部分とを有しており、
    各放電セルは、前記複数の隔壁の内で隣り合う隔壁同士と前記各電極対を成す前記第1及び第3部分とで規定されており、
    任意の放電セル内の、前記第2部分の有効電極面積と前記第4部分の有効電極面積とは互いに異なっており、
    前記各放電セル内における前記第2及び第4部分の有効形状は、隣接放電セル毎に、前記第2及び第4部分の有効形状を前記第1方向の周りに反転させることによって得られる形状に相当しており、
    前記各放電セル内の前記放電ギャップは当該放電セルの中心位置にあることを特徴とする、
    交流型プラズマディスプレイパネル。
  2. 請求項記載の交流型プラズマディスプレイパネルであって、
    各隔壁の内で前記各放電セルを規定する部分は、前記第2方向に対して傾斜した部分を有しており、
    隣り合う隔壁の各々の当該放電セルを規定する部分同士は前記第2方向に関して線対称の関係にあることを特徴とする、
    交流型プラズマディスプレイパネル。
  3. 請求項1又は2に記載の交流型プラズマディスプレイパネルであって、
    ある表示ラインに属する前記第1方向に沿って一列に並んだ全ての放電セルと当該表示ラインに隣接する表示ラインに属する全ての放電セルに関して、その一方の表示ラインに属する前記第2電極とその他方の表示ラインに属する前記第1電極とは一体化されて両表示ラインの共通電極を成しており、
    前記共通電極と当該共通電極と対向する前記第1及び第2電極とから成る一組の電極群が所定の間隔で前記第2方向に配列しており、
    前記誘電体は、前記共通電極又は当該共通電極と対向する前記第1及び第2電極の内の少なくとも一方を被覆していることを特徴とする、
    交流型プラズマディスプレイパネル。
  4. 請求項1乃至の何れかに記載の前記交流型プラズマディスプレイパネルと、
    前記交流型プラズマディスプレイパネルを駆動するための駆動制御部とを備えることを特徴とする、
    交流型プラズマディスプレイ装置。
JP2001330531A 2001-10-29 2001-10-29 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置 Expired - Fee Related JP3640915B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330531A JP3640915B2 (ja) 2001-10-29 2001-10-29 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330531A JP3640915B2 (ja) 2001-10-29 2001-10-29 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004352551A Division JP2005108856A (ja) 2004-12-06 2004-12-06 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置

Publications (2)

Publication Number Publication Date
JP2003132797A JP2003132797A (ja) 2003-05-09
JP3640915B2 true JP3640915B2 (ja) 2005-04-20

Family

ID=19146245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330531A Expired - Fee Related JP3640915B2 (ja) 2001-10-29 2001-10-29 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置

Country Status (1)

Country Link
JP (1) JP3640915B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005023414D1 (de) * 2004-02-20 2010-10-21 Lumination Llc Regeln für effiziente lichtquellen mit mittels leuchtstoff konvertierten leds
JP4857562B2 (ja) * 2005-01-17 2012-01-18 パナソニック株式会社 フラットディスプレイパネル
US7898623B2 (en) 2005-07-04 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device and method of driving display device
JP5613360B2 (ja) * 2005-07-04 2014-10-22 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器

Also Published As

Publication number Publication date
JP2003132797A (ja) 2003-05-09

Similar Documents

Publication Publication Date Title
KR100472997B1 (ko) 교류형 플라즈마 디스플레이 패널
JP2002221935A (ja) 表示装置
JP2011134727A (ja) 画像表示用ディスプレイ装置
JP2001183999A (ja) プラズマディスプレイパネル及びそれを有するプラズマディスプレイ装置
KR100803410B1 (ko) 플라즈마 디스플레이 장치
KR20030068386A (ko) 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마디스플레이 장치
JPH11272232A (ja) プラズマディスプレイパネル及びそれを利用した装置
US20100020049A1 (en) Plasma display panel
JP3640915B2 (ja) 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置
US8009124B2 (en) Plasma display and driving method thereof
JP5007036B2 (ja) プラズマディスプレイパネル
JP2000357463A (ja) 交流型プラズマディスプレイパネル,プラズマディスプレイ装置及び交流型プラズマディスプレイパネルの駆動方法
US20060108939A1 (en) Plasma display panel, plasma display device including the same and driving method therefor
JP3449252B2 (ja) プラズマディスプレイパネル、及びその製造方法、並びにそれを用いたディスプレイ装置
JP2005108856A (ja) 交流型プラズマディスプレイパネル及び交流型プラズマディスプレイ装置
WO2005024886A1 (ja) プラズマディスプレイパネル
US20070018913A1 (en) Plasma display panel, plasma display device and driving method therefor
JPH11329252A (ja) プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
KR20070059943A (ko) 플라즈마 디스플레이 장치
US7786956B2 (en) Plasma display device
KR100769618B1 (ko) 격벽내장형 전극을 갖는 플라즈마 디스플레이 패널
JPWO2007088601A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
KR100858825B1 (ko) 플라즈마 디스플레이 패널 및 그의 구동 방법
JP2010170758A (ja) プラズマディスプレイパネル
KR20100045779A (ko) 플라즈마 디스플레이 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees