JP3640251B2 - Bridge reinforcement structure - Google Patents

Bridge reinforcement structure Download PDF

Info

Publication number
JP3640251B2
JP3640251B2 JP2002209087A JP2002209087A JP3640251B2 JP 3640251 B2 JP3640251 B2 JP 3640251B2 JP 2002209087 A JP2002209087 A JP 2002209087A JP 2002209087 A JP2002209087 A JP 2002209087A JP 3640251 B2 JP3640251 B2 JP 3640251B2
Authority
JP
Japan
Prior art keywords
bridge
piers
pillow
push
pillow material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002209087A
Other languages
Japanese (ja)
Other versions
JP2004052300A (en
Inventor
光弘 徳野
文博 齋藤
和俊 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd
Original Assignee
Asahi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd filed Critical Asahi Engineering Co Ltd
Priority to JP2002209087A priority Critical patent/JP3640251B2/en
Publication of JP2004052300A publication Critical patent/JP2004052300A/en
Application granted granted Critical
Publication of JP3640251B2 publication Critical patent/JP3640251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は橋脚間に架設された河川橋梁、又は陸上橋梁の耐荷力を向上することを目的とした橋梁の補強構造に関する。
【0002】
【従来の技術】
従来、既設橋梁の耐荷力を増強せしめるための補強対策として、図1に示すように、床版1の下面全面又は橋桁の周面に鋼板2をエポキシ樹脂系接着材を用いて強固に接着する工法、或いは炭素繊維やアラミド繊維等の抗張力繊維3を上記接着材を用いて接着する工法が行われている。
【0003】
【発明が解決しようとする課題】
上記鋼板や抗張力繊維を貼り付ける工法は、床版や橋桁に活荷重(走行車輌による荷重)が加わった時に、その抗張力により補強効果を発揮させんとするものであるが、接着材の経年劣化による強度低下や剥離が著しく長期に亘り健全な補強効果を達成し難い問題を有している。
【0004】
加えて上記活荷重が加わっていない時の死荷重(橋梁自身の自重)に対しては、該死荷重による応力を軽減する効果が期待できない。又工事費用が非常に高価である。
【0005】
上記補強工法は橋梁の水面や路面からの高さ制限に適合する工法として優位であるが、上記問題点のためこれに代わる抜本的対策が希求されている。
【0006】
【課題を解決するための手段】
本発明は上記活荷重ばかりか、死荷重に対しても有効に機能し、且つ施工が簡単で低廉なる工費にて、上記抗張材接着工法の如き経年劣化を伴わず、長期に亘り補強機能を健全に維持できる橋梁の補強構造を提供するものである。
【0007】
更には橋梁の水面や路面からの高さ制限に対する占有高さを最小限に押さえて実施可能な橋梁の補強構造を提供するものである。
【0008】
この橋梁の補強構造は、橋脚間に橋梁の左右外側域において橋長方向へ延在せる左右橋脚間架設ビームを架設し、他方橋梁の下面に沿い橋幅方向へ延在し同橋梁を荷受けする枕材を横設し、該枕材の両端を橋梁の左右外側域に突出せしめ、該枕材の左右突出端と上記左右橋脚間架設ビーム間に該枕材を押し上げ且つ該枕材を介し橋梁を押し上げる押し上げ手段を設ける構成としたものである
【0009】
上記押し上げ手段としては、螺合によって押し上げ位置を保持するネジ式ジャッキを用いる。
【0010】
上記橋梁の補強構造においては、橋梁を形成する床版又は橋桁(主桁)に常時一定の押し上げ力を与え、走行車輌等の床版や橋桁に加わる活荷重による応力を軽減すると共に、これら活荷重が加わらない死荷重、即ち橋梁自身の自重による死荷重によって生ずる応力を軽減する。
【0011】
上記活荷重や死荷重は上記ジャッキに代表される押し上げ手段を介して橋脚間架設ビームで荷受けし、該ビームを横架せる橋脚で荷受けする。
【0012】
上記ネジ式ジャッキは強大な荷重に対する耐荷力に優れ、常時一定の押し上げ力を維持でき、橋梁の補強構造として適性である。
【0013】
更には橋梁の水面や路面からの高さ制限に対し、橋梁の左右外側域に枕材の両端が突出するように横設するのみであるから橋梁直下の占有高さを最小限に押さえて実施可能である。
【0014】
【発明の実施の形態】
以下本発明の実施形態を図2乃至図に基づいて説明する。
【0015】
乃至図に示すように、橋脚4間に橋梁6の左外側域において橋長方向へ延在せる左橋脚間架設ビーム8を架設すると共に、橋脚4間に橋梁6の右外側域において橋長方向へ延在せる右橋脚間架設ビーム8を架設し、他方橋梁6の下面に沿い橋幅方向へ延在し同橋梁6を荷受けする枕材7を横設し、該枕材7の両端を橋梁6の左右外側域に突出せしめ、該枕材7の左右突出端33と上記左右橋脚間架設ビーム8間に該枕材7を押し上げ且つ該枕材7を介し橋梁6を押し上げる押し上げ手段10を設け橋梁6の補強構造を構成する。
【0016】
上記左右橋脚間架設ビーム8はその両端を橋脚4の上面に直接又は間接的に支持する。この左側のビーム8は一本乃至二本以上にし、同様に右側のビーム8も一本乃至二本以上にする。ここに橋脚4とは河川橋における陸に接する橋台を含む意味に用いている。
【0017】
上記押し上げ手段10は上記橋脚間架設ビーム8に荷受けされた螺合によって押し上げ位置を保持するネジ式ジャッキ20が適性である。
【0018】
上記枕材7は床版17の下面を支承するか、又は床版17を支える橋桁(主桁)11の下面を支承するように横架する。
【0019】
に示すように、上記枕材7は上記橋梁6の延在長の途中、即ち橋脚4間に延在する床版17部分又は橋桁11部分に単数又は間隔を置いて複数本横設する。
【0020】
上記橋脚間架設ビーム8と枕材7間に設けた上記押し上げ手段10により橋梁外側域において橋梁6を押し上げる。従って枕材7の左右両端は橋梁6の外側域に張り出す。図2,図に示すように、Wは橋梁6の橋幅を示し、上記橋梁外側域とはこの橋幅Wの外側域を意味する。
【0021】
乃至図に基づき上記橋梁6に押し上げ力を付与する補強構造の具体例を説明する。
【0022】
に示すように、上記橋脚4の橋幅方向の両外側に、橋梁6の橋幅方向の左右外側域に張り出し、且つ床版17を支える座面と同一平面となる座面を有する脚座12′を張り出し(増設し)、各橋脚4の脚座12′の座面(上面)に上記橋脚間架設ビーム8の両端を支承し橋脚4間に架設する。該橋脚間架設ビーム8と脚座12′の座面間にはゴム支承等から成る衝撃吸収座13を介在する。
【0023】
例えば上記橋脚4がコンクリート製である場合には上記脚座12′をコンクリートにて一体構造とし、上記橋脚4が鋼製である場合には鋼製の上記脚座12′を溶接や鋲打ちにて一体構造にする。又はコンクリート製の橋脚4に上記鋼製の脚座12′をアンカーボルト等にて取り付け一体構造にする。
【0024】
上記枕材7はH形鋼を用いその上部フランジ15にて床版17下面を支え、床版17下面に上部フランジ15を単に重ね合わせて支持するか、又は上部フランジ15を床版17の下面にボルト付け又は鋲付けし、その両端の下部フランジ16を押し上げ力を受圧する手段として用いる。
【0025】
に示すように、上記橋脚間架設ビーム8は橋梁6の橋幅方向の左右外側域の夫々において並列して設ける。即ち上記橋脚間架設ビーム8は橋梁6の橋幅方向の左外側域に同橋幅方向において並列するように並設し、同様に橋脚間架設ビーム8を橋梁6の橋幅方向の右外側域に同橋幅方向において並列するように並設する。
【0026】
上記橋脚間架設ビーム8は上記脚座12′に架設して上記枕材7及びその両端の張り出し部(受圧部)の下位となるように配置し、該橋脚間架設ビーム8上にジャッキ20に代表される押し上げ手段10を設置する。
【0027】
即ち上記橋幅方向左側と右側の各一対の橋脚間架設ビーム8間に支持座18を両持ち取り付けし、この支持座18上に上記押し上げ手段10たるジャッキ20、例えば油圧又は空圧併用のネジ式ジャッキを載設する。
【0028】
上記枕材7はその両端を上記橋梁6の左右外側域に直線的に突出する(図に破線示する)か、又は図に実線示するように、枕材7の両端を橋梁6の左右外側域の制限の無い空間を利用して橋梁6の左右外側面に沿い立ち上げ、更にこの立ち上げ部31の上端から外側方へ突出端33を一体に連設し、即ち全体として橋梁6の左右外側域に逆L字形の受圧端を形成する。そしてこの受圧端の突出端33を押し上げ手段10たるジャッキ20にて押し上げる構成とする。
【0029】
よって押し上げ手段10たるジャッキ20は橋梁6を形成する床版17又は橋桁11の側方に配置する。これにより、即ち枕材7の両端を橋梁6の外側域に突出せしめることにより、この突出端の制限のない上方への形態付与が可能であり、この形態付与により橋梁6直下の空間を占有せずに押し上げ力を付与する構成を実現できる。
【0030】
他方上記枕材7の両端をジャッキ20の直上に配置し、換言すると枕材7の両端の真下にジャッキ20を配置し、ジャッキ20を伸長せしめることにより枕材7両端の突出端33の下部フランジ16を押し上げ、該枕材7の押し上げを介して橋梁6を構成する床版17に押し上げ力を付与する。又はジャッキ20を伸長せしめることにより枕材7両端の下部フランジ16を押し上げ、該枕材7の押し上げを介して橋梁6を構成する橋桁11の下部フランジ29に押し上げ力を付与する。
【0031】
即ち上記実施形態においては上記枕材7で床版17の下面を支持する例を示したが、同枕材7にて橋桁11の下面を支持し押し上げ力を与える構成とすることができる。
【0032】
上記押し上げ手段10としては油圧シリンダ構造、又は空圧シリンダ構造のジャッキ20を用いることができ、殊に図に示す螺合によって押し上げ位置を保持する油圧又は空圧併用のネジ式ジャッキ20が適性である。
【0033】
上記ネジ式ジャッキの一例としてはシリンダとシリンダロッドが互いに螺合され、シリンダロッドを回動することにより、螺進(伸長)又は螺退(収縮)するジャッキ20を用いることができ、該螺進によって床版17又は橋桁11に押し上げ力を与え、雌ネジと雄ネジの螺合によって活荷重と死荷重を支える。
【0034】
好ましい例として前記の通り、図に示す油圧又は空圧シリンダ併用の、即ち流体圧シリンダ併用のネジ式ジャッキ20を用いる。このジャッキ20は周面に雄ねじを刻設したシリンダロッド21の下端がシリンダ22内に気密的に滑合されてシリンダ22から上方へ突出し、該突出部の外周面にストッパーフランジ23を螺合し、上記シリンダ22内底部のシリンダロッド21の下面に形成された油圧又は空圧室24内へ油圧又は空圧を供給する流体圧供給口25を上記シリンダ22に設けた構造を有する。
【0035】
上記活荷重や死荷重は上記ネジ式ジャッキ20を介して追架設した橋脚間架設ビーム8で荷受けし、その両端を支える橋脚4で荷受けする。上記ネジ式ジャッキ20は上記の通り剛押し上げ構造体であり、強大な荷重に対する耐荷力に優れ、常時一定の押し上げ力を維持できると共に、押し上げ位置に応じた押し上げ力を容易に設定でき適性である。
【0036】
そして上記流体圧供給口25を通じて油圧又は空圧を供給することにより、上記シリンダロッド21を上昇せしめて一定の上昇量により床版17又は橋桁11に一定の押し上げ力を与える。
【0037】
次いで該一定の押し上げ力を与えたことを圧力計により確認し、該押し上げ力を与えた状態において上記ストッパーフランジ23をシリンダロッド21に沿い螺退(下降)して上記シリンダ22の上端面に座着せしめる。よってシリンダロッド21の下降を阻止し、一定の剛押し上げ力を保持する。
【0038】
上記ストッパーフランジ23によってシリンダロッド21の下降を阻止し、伸長状態を維持した後、上記流体圧供給口25を通じて油圧又は空圧室24内の流体を抜き取り開放にする。以後は上記ネジ式ジャッキ20の螺合により押し上げ力を維持する。
【0039】
又補強工事後の任意の時期に上記ストッパーフランジ23を緩めて、上記流体圧供給口25から再び流体圧を供給しストッパーフランジ23で締結する上記作業を行うことにより、シリンダロッド21の押し上げ力を調整し補正することができる。
【0040】
上記橋梁6に押し上げ力を付与する実施形態においては、図4,図7に示すように、前記流体圧併用のネジ式ジャッキ20を直立し、そのシリンダ22を前記橋脚間架設ビーム8に支持すると共に、上方へ突出するシリンダロッド21にて上記枕材7の下部フランジ16を支持する。
【0041】
この場合図7に示すように、枕材7の下部フランジ16をシリンダロッド21によって直接押し上げるか、又はシリンダロッド21と下部フランに16間に介在物を設け、間接的に押し上げ力を付与する。
【0042】
而して前記の通りシリンダロッド21の伸長により枕材7を押し上げ、橋梁6を構成する床版17又は橋桁11に押し上げ力を付与する。
【0043】
上記押し上げ手段10と枕材7の対を橋長方向に間隔を置いて複数対設けた場合には、支間長の長い橋桁11又は床版17をその延在長の複数点において、必要な押し上げ力を付与することができる。
【0044】
図8に示すように、上記橋脚間架設ビーム8にはトラス構造を付与することができる。即ち橋脚間架設ビーム8の両端に連結するトラス桁27を設け、即ちトラス桁27の弦材となるように上記橋脚間架設ビーム8を連結し、該トラス桁27と上記橋脚間架設ビーム8間を多数の斜材28にて連結し、トラス構造とする。
【0045】
又は橋脚間架設ビーム8の両端に連結するアーチ材を設け、即ちアーチ材の弦材となるように上記橋脚間架設ビーム8を連結する。このトラス桁27又はアーチ材は床版17即ち橋梁6の橋長方向の両側に沿って橋長方向に延在する。
【0046】
上記トラス構造又はアーチ構造により橋脚間架設ビーム8の耐荷力を向上し、よって橋桁11又は床版17の押し上げ力を増強できる。
【0047】
に実線示するように、上記トラス桁27又はアーチ材は橋脚間架設ビーム8の上側に構築するか、又は図に破線示するように、同ビーム8の下側に構築することができる。
【図面の簡単な説明】
【図1】 従来の橋梁の補強構造として床版の底面全面に抗張力材を接着した例を概示する側面図。
【図2】 Aは本発明における橋梁に押し上げ力を付与する橋梁の補強構造の実施形態を示し、枕材を設けた部位における橋梁の橋幅方向断面図、Bは該A図における橋桁と枕材の結合部を示す要部断面図。
【図3】 上記実施形態における橋脚間架設ビームを横架せる橋脚部位における橋梁の橋幅方向断面図。
【図上記枕材及び押し上げ手段を設けた部位における橋梁の橋幅方向断面図。
【図】 上記実施形態における橋脚間架設ビームを横架せる橋脚部位における橋梁の橋幅方向断面図。
【図】 Aは上記実施形態における橋梁の平面図、Bは同側面図。
【図】 上記実施形態におけるジャッキによる枕材の押し上げ構造を示す正面図。
【図】 上記実施形態において橋脚間架設ビームをトラス構造とした場合の橋梁の側面図。
【符号の説明】
4…橋脚、5…連結材、6…橋梁、7…枕材、8…橋脚間架設ビーム、10…押し上げ手段、11…橋桁、12,12′…脚座、13…衝撃吸収座、15…枕材の上部フランジ、16…枕材の下部フランジ、17…床版、18…支持座、20…ジャッキ、21…シリンダロッド、22…シリンダ、23…ストッパーフランジ、24…油圧又は空圧室、25…流体圧供給口、27…トラス桁、28…斜材、29…橋桁の下部フランジ、30…ボルトや鋲、31…枕材の立ち上げ部、33…枕材の突出端
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bridge reinforcement structure for the purpose of improving the load bearing capacity of a river bridge or a land bridge built between bridge piers.
[0002]
[Prior art]
Conventionally, as a reinforcing measure for enhancing the load bearing capacity of an existing bridge, as shown in FIG. 1, the steel plate 2 is firmly bonded to the entire lower surface of the floor slab 1 or the circumferential surface of the bridge girder using an epoxy resin adhesive. A construction method or a construction method in which tensile strength fibers 3 such as carbon fibers and aramid fibers are bonded using the above-mentioned adhesive material is performed.
[0003]
[Problems to be solved by the invention]
The above-mentioned method of attaching steel plates and tensile strength fibers is intended to exert a reinforcing effect due to the tensile strength when a live load (load by a traveling vehicle) is applied to the floor slab or bridge girder. There is a problem that strength reduction and peeling due to the remarkably difficult to achieve a sound reinforcing effect over a long period of time.
[0004]
In addition, the effect of reducing the stress due to the dead load cannot be expected with respect to the dead load when the live load is not applied (the weight of the bridge itself). Also, the construction cost is very expensive.
[0005]
Although the above-mentioned reinforcement method is superior as a method that conforms to the restrictions on the height of the bridge from the water surface and road surface, drastic measures to replace it are in demand due to the above problems.
[0006]
[Means for Solving the Problems]
The present invention functions effectively not only for the live load but also for the dead load, and at a construction cost that is simple and inexpensive to construct, and is not accompanied by aged deterioration such as the above-described tensile material bonding method. It is intended to provide a bridge reinforcement structure that can maintain soundness.
[0007]
Furthermore, the present invention provides a bridge reinforcement structure that can be carried out while minimizing the occupied height with respect to the height restriction from the water surface and road surface of the bridge.
[0008]
This bridge reinforcement structure is constructed by installing a beam between the left and right piers that extends in the bridge length direction in the left and right outer areas of the bridge between the piers, and extends in the bridge width direction along the lower surface of the bridge and receives the bridge. Pillow material is laid sideways, both ends of the pillow material project to the left and right outer areas of the bridge, the pillow material is pushed up between the left and right projecting ends of the pillow material and the bridge beam between the left and right piers, and the bridge is interposed via the pillow material It is configured to provide a push-up means for pushing up .
[0009]
As the push-up means, a screw-type jack that holds the push-up position by screwing is used.
[0010]
In the above-mentioned bridge reinforcement structure, a constant pushing force is always applied to the floor slab or bridge girder (main girder) that forms the bridge to reduce the stress caused by the active load applied to the floor slab and bridge girder of a traveling vehicle and the like. The stress generated by the dead load to which no load is applied, that is, the dead load due to the weight of the bridge itself is reduced.
[0011]
The live load or dead load is received by a bridge pier beam via a push-up means represented by the jack, and is received by a bridge pier that can lay the beam.
[0012]
The above-mentioned screw type jack is excellent in load bearing capacity against a heavy load, can always maintain a constant pushing force, and is suitable as a reinforcing structure for a bridge.
[0013]
Furthermore, in order to limit the height of the bridge from the water surface and the road surface, it is only necessary to place the pillow material horizontally so that both ends of the pillow protrude from the left and right outer areas of the bridge. Is possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The following embodiments of the present invention will be described with reference to FIGS. 2 to 8.
[0015]
As shown in FIGS. 2 to 7 , a beam 8 between the left piers that extends in the bridge length direction is installed between the piers 4 in the left outer region of the bridge 6, and in the right outer region of the bridge 6 between the piers 4. A beam 8 between the right piers that extends in the bridge length direction is installed, and a pillow material 7 that extends in the width direction of the bridge along the lower surface of the other bridge 6 and receives the bridge 6 is installed horizontally. Pushing means for projecting both ends to the left and right outer areas of the bridge 6, pushing up the pillow 7 between the left and right projecting ends 33 of the pillow 7 and the beam 8 between the left and right piers and pushing up the bridge 6 through the pillow 7 10 is provided to constitute a reinforcing structure of the bridge 6.
[0016]
The beam 8 between the left and right piers supports both ends thereof directly or indirectly on the upper surface of the pier 4. The left beam 8 is one or more, and the right beam 8 is also one or more. Here, the pier 4 is used to include an abutment in contact with the land in a river bridge.
[0017]
It said push-up means 10 is screw jack 20 for holding a position raised push the engagement which is load receiving on the pier between erection beam 8 is proper.
[0018]
The pillow 7 supports the lower surface of the floor slab 17 or lays horizontally so as to support the lower surface of the bridge girder (main girder) 11 that supports the floor slab 17.
[0019]
As shown in FIG. 6 , the pillow material 7 is provided in the middle of the extension length of the bridge 6, that is, in the floor slab 17 portion or the bridge girder 11 portion that extends between the bridge piers 4, and a plurality of the pillow materials 7 are provided horizontally. .
[0020]
The bridge 6 is pushed up in the outer region of the bridge by the pushing-up means 10 provided between the beam 8 between the bridge piers and the pillow material 7. Accordingly, the left and right ends of the pillow material 7 project to the outside area of the bridge 6. As shown in FIGS. 2 and 4 , W indicates the bridge width of the bridge 6, and the bridge outer area means an outer area of the bridge width W.
[0021]
Based on FIGS. 2-7 illustrating a specific example of the reinforcing structure to impart upward force to the bridge 6.
[0022]
As shown in FIG. 5 , legs having a seating surface that extends on both outer sides in the bridge width direction of the bridge pier 4 to the left and right outer regions in the bridge width direction of the bridge 6 and is flush with the seating surface that supports the floor slab 17. The seats 12 ′ are extended (added), and both ends of the beam 8 between the piers are supported on the seat surface (upper surface) of the pedestal 12 ′ of each pier 4 to be installed between the piers 4. An impact absorbing seat 13 made of a rubber bearing or the like is interposed between the bridge beam 8 and the seat surface of the leg seat 12 '.
[0023]
For example, when the pier 4 is made of concrete, the pedestal 12 ′ is made of a single piece of concrete, and when the pier 4 is made of steel, the pedestal 12 ′ made of steel is welded or hammered. To make an integral structure. Alternatively, the steel pedestal 12 'is attached to the concrete pier 4 with an anchor bolt or the like to form an integral structure.
[0024]
The pillow 7 is made of H-shaped steel, and the upper flange 15 supports the lower surface of the floor slab 17, and the upper flange 15 is simply overlapped and supported on the lower surface of the floor slab 17, or the upper flange 15 is supported on the lower surface of the floor slab 17. It is used as means for receiving pressure by pushing up or lowering the flanges 16 at both ends thereof.
[0025]
As shown in FIG. 5 , the beam 8 between the bridge piers is provided in parallel in each of the left and right outer regions of the bridge 6 in the bridge width direction. That is, the beam 8 between the piers is juxtaposed in the left outer region in the bridge width direction of the bridge 6 so as to be juxtaposed in the bridge width direction, and the beam 8 between the piers is similarly arranged in the right outer region in the bridge width direction of the bridge 6. Are arranged side by side in parallel in the width direction of the bridge.
[0026]
The beam 8 between the bridge piers is installed on the leg seat 12 'so as to be lower than the pillow 7 and the overhanging portions (pressure receiving portions) at both ends thereof. A representative push-up means 10 is installed.
[0027]
That is, a support seat 18 is mounted between the pair of bridge pier construction beams 8 on the left and right sides in the bridge width direction, and a jack 20 as the push-up means 10 on the support seat 18, for example, a screw combined with hydraulic or pneumatic pressure. Mount the jack.
[0028]
The pillow member 7 protrudes linearly both ends thereof to the left and right outer areas of the bridges 6 or (broken line Shimesuru in FIG. 4), or in solid Shimesuru so Figure 4, the ends of the pillow member 7 bridges 6 Using a space with no restriction on the left and right outer regions, the bridge 6 is raised along the left and right outer surfaces, and a protruding end 33 is continuously connected from the upper end of the rising portion 31 to the outside, that is, the bridge 6 as a whole. Inverted L-shaped pressure receiving ends are formed in the left and right outer regions. The projecting end 33 of the pressure receiving end is pushed up by the jack 20 as the pushing-up means 10.
[0029]
Therefore, the jack 20 which is the push-up means 10 is disposed on the side of the floor slab 17 or the bridge girder 11 forming the bridge 6. Thus, by projecting both ends of the pillow material 7 to the outside region of the bridge 6, it is possible to give an upper form without restriction of the projecting end, and by this form assignment, the space immediately below the bridge 6 can be occupied. The structure which gives pushing-up force without being able to implement | achieve can be implement | achieved.
[0030]
On the other hand, both ends of the pillow material 7 are disposed directly above the jack 20, in other words, the jack 20 is disposed directly below both ends of the pillow material 7, and the jack 20 is extended to extend the lower flange of the protruding end 33 at both ends of the pillow material 7. 16 is pushed up, and a pushing force is applied to the floor slab 17 constituting the bridge 6 through the pushing up of the pillow material 7. Alternatively, by extending the jack 20, the lower flanges 16 at both ends of the pillow material 7 are pushed up, and a pushing force is applied to the lower flange 29 of the bridge girder 11 constituting the bridge 6 through the pushing up of the pillow material 7.
[0031]
That is, in the above-described embodiment, the example in which the lower surface of the floor slab 17 is supported by the pillow material 7 is shown, but the lower surface of the bridge girder 11 can be supported by the pillow material 7 and a pushing force can be applied.
[0032]
As the push-up means 10, a jack 20 having a hydraulic cylinder structure or a pneumatic cylinder structure can be used. In particular, a screw type jack 20 using both hydraulic and pneumatic pressures that holds the push-up position by screwing shown in FIG. 7 is suitable. It is.
[0033]
As an example of the screw-type jack, a jack 20 that is screwed (expanded) or screwed (shrinked) by rotating a cylinder rod with a cylinder and a cylinder rod being screwed together can be used. Thus, a pushing force is applied to the floor slab 17 or the bridge girder 11, and a live load and a dead load are supported by screwing of the female screw and the male screw.
[0034]
As a preferred example, as described above, the screw type jack 20 used in combination with a hydraulic or pneumatic cylinder, that is, combined with a hydraulic cylinder shown in FIG. 7 , is used. The jack 20 has a lower end of a cylinder rod 21 with a male thread engraved on the peripheral surface thereof, which is airtightly fitted into the cylinder 22 and protrudes upward from the cylinder 22. A stopper flange 23 is screwed onto the outer peripheral surface of the protrusion. The cylinder 22 is provided with a fluid pressure supply port 25 for supplying hydraulic pressure or pneumatic pressure into the hydraulic pressure or pneumatic chamber 24 formed on the lower surface of the cylinder rod 21 at the bottom of the cylinder 22.
[0035]
The live load and dead load are received by the bridge pier construction beam 8 that is additionally installed via the screw type jack 20, and are received by the pier 4 that supports both ends of the beam. The screw-type jack 20 is a rigid push-up structure as described above, is excellent in load resistance against a large load, can always maintain a constant push-up force, and can easily set a push-up force according to the push-up position and is suitable. .
[0036]
Then, by supplying hydraulic pressure or pneumatic pressure through the fluid pressure supply port 25, the cylinder rod 21 is raised, and a constant push-up force is applied to the floor slab 17 or the bridge girder 11 by a certain amount of lift.
[0037]
Next, it is confirmed by the pressure gauge that the constant pushing force is applied, and the stopper flange 23 is screwed down (lowered) along the cylinder rod 21 in a state where the pushing force is applied, and is seated on the upper end surface of the cylinder 22. Dress it up. Therefore, the cylinder rod 21 is prevented from descending and a constant rigid push-up force is maintained.
[0038]
After the cylinder rod 21 is prevented from descending by the stopper flange 23 and maintained in the extended state, the fluid in the hydraulic or pneumatic chamber 24 is extracted and opened through the fluid pressure supply port 25. Thereafter, the push-up force is maintained by screwing the screw jack 20.
[0039]
Further, the stopper flange 23 is loosened at any time after the reinforcement work, and the above operation of supplying the fluid pressure again from the fluid pressure supply port 25 and fastening with the stopper flange 23 is performed, thereby increasing the pushing force of the cylinder rod 21. It can be adjusted and corrected.
[0040]
In the embodiment in which the pushing force is applied to the bridge 6, as shown in FIGS. 4 and 7, the threaded jack 20 combined with the fluid pressure is erected, and the cylinder 22 is supported by the bridge pier beam 8. At the same time, the lower flange 16 of the pillow 7 is supported by the cylinder rod 21 protruding upward.
[0041]
In this case, as shown in FIG. 7, the lower flange 16 of the pillow 7 is directly pushed up by the cylinder rod 21, or an inclusion is provided between the cylinder rod 21 and the lower franc 16 to indirectly apply the pushing force.
[0042]
Thus, as described above, the pillow member 7 is pushed up by the extension of the cylinder rod 21, and a pushing force is applied to the floor slab 17 or the bridge girder 11 constituting the bridge 6.
[0043]
When a plurality of pairs of the pushing-up means 10 and the pillow material 7 are provided at intervals in the bridge length direction, the bridge girder 11 or the floor slab 17 having a long span length is required to be pushed up at a plurality of points of the extension length. Power can be granted.
[0044]
As shown in FIG. 8, a truss structure can be added to the beam 8 between the piers. That is, truss girders 27 are provided at both ends of the beam between the bridge piers 8, that is, the beam between the bridge piers 8 is connected so as to be a chord material of the truss girder 27. Are connected by a number of diagonal members 28 to form a truss structure.
[0045]
Or the arch material connected to the both ends of the beam 8 between bridge piers is provided, ie, the beam 8 between bridges is connected so that it may become a chord material of an arch material. The truss girder 27 or the arch material extends in the bridge length direction along both sides of the floor slab 17, that is, the bridge 6 in the bridge length direction.
[0046]
The truss structure or the arch structure can improve the load bearing capacity of the beam 8 between the bridge piers, and thus can increase the pushing force of the bridge girder 11 or the floor slab 17.
[0047]
The solid line Shimesuru so 8, or the truss girder 27 or the arch member is constructed on the upper side of the pier between erection beams 8, or a broken line Shimesuru so in FIG. 8, it is built on the lower side of the beam 8 it can.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an example in which a tensile strength material is bonded to the entire bottom surface of a floor slab as a conventional bridge reinforcing structure.
Figure 2 A shows an embodiment of a reinforcement structure of a bridge which imparts increased force pushing the bridges in the present invention, the bridge width direction cross-sectional view of the bridge at the site in which a pillow member, B is a bridge girder in the A Figure The principal part sectional drawing which shows the coupling | bond part of a pillow material.
FIG. 3 is a cross-sectional view in the bridge width direction of a bridge at a bridge pier portion where a beam between bridge piers can be horizontally mounted in the embodiment.
[4] the bridge widthwise sectional view of the bridge at the site provided with the pillow member and the push-up means.
FIG. 5 is a cross-sectional view in the bridge width direction of the bridge at a pier site where the beam between the piers in the embodiment can be horizontally mounted.
[6] A plan view of the bridge of the above-described embodiment, B is the side view.
FIG. 7 is a front view showing a structure for pushing up a pillow material by a jack in the embodiment.
FIG. 8 is a side view of a bridge when the beam between the piers has a truss structure in the embodiment.
[Explanation of symbols]
4 ... Bridge pier, 5 ... Connecting material, 6 ... Bridge, 7 ... Pillow material, 8 ... Bridge pier beam, 10 ... Push-up means, 11 ... Bridge girder, 12, 12 '... Leg seat, 13 ... Shock absorbing seat, 15 ... Upper flange of pillow material, 16 ... Lower flange of pillow material, 17 ... Floor slab, 18 ... Support seat, 20 ... Jack, 21 ... Cylinder rod, 22 ... Cylinder, 23 ... Stopper flange, 24 ... Hydraulic or pneumatic chamber, 25 ... Fluid pressure supply port, 27 ... Truss girder, 28 ... Diagonal material, 29 ... Lower flange of bridge girder, 30 ... Bolt and hook, 31 ... Rising part of pillow material, 33 ... Projection end of pillow material

Claims (2)

橋脚間に橋梁の左右外側域において橋長方向へ延在せる左右橋脚間架設ビームを架設し、他方橋梁の下面に沿い橋幅方向へ延在し同橋梁を荷受けする枕材を横設し、該枕材の両端を橋梁の左右外側域に突出せしめ、該枕材の左右突出端と上記左右橋脚間架設ビーム間に該枕材を押し上げ且つ該枕材を介し橋梁を押し上げる押し上げ手段を設けたことを特徴とする橋梁の補強構造。A beam between the left and right piers that extends in the bridge length direction in the left and right outer areas of the bridge is installed between the piers, and a pillow material that extends in the bridge width direction along the lower surface of the other bridge and receives the bridges is laid sideways. Both ends of the pillow material are projected to the left and right outer areas of the bridge, and a push-up means for pushing up the pillow material between the left and right projecting ends of the pillow material and the bridge beam between the left and right piers and pushing up the bridge via the pillow material is provided. Bridge reinforcement structure characterized by this. 上記押し上げ手段が螺合によって押し上げ位置を保持するネジ式ジャッキであることを特徴とする請求項1記載の橋梁の補強構造。The bridge reinforcement structure according to claim 1, wherein the push-up means is a screw-type jack that holds the push-up position by screwing.
JP2002209087A 2002-07-18 2002-07-18 Bridge reinforcement structure Expired - Fee Related JP3640251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209087A JP3640251B2 (en) 2002-07-18 2002-07-18 Bridge reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209087A JP3640251B2 (en) 2002-07-18 2002-07-18 Bridge reinforcement structure

Publications (2)

Publication Number Publication Date
JP2004052300A JP2004052300A (en) 2004-02-19
JP3640251B2 true JP3640251B2 (en) 2005-04-20

Family

ID=31933034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209087A Expired - Fee Related JP3640251B2 (en) 2002-07-18 2002-07-18 Bridge reinforcement structure

Country Status (1)

Country Link
JP (1) JP3640251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004017033U1 (en) * 2004-11-04 2006-03-23 Greiner Gmbh System for bridging of travel routes for especially heavy-duty vehicles has lifting device supported on longitudinal beam and movable along it and connectable to vehicle

Also Published As

Publication number Publication date
JP2004052300A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US11149390B2 (en) Prefabricated, prestressed bridge module
CN101230563B (en) Method for replacing bridge bearing without traffic interruption and special device thereof
KR100742206B1 (en) Steel-concrete composite rahmen bridge and construction method thereof
WO2019237678A1 (en) Structure of rigid frame bridge having abutments and construction method therefor
KR20070014315A (en) Prefabricated prestressed concrete beam bridge and its construction method
KR20160097888A (en) End Continuing Structure for Truss Decks
KR101887202B1 (en) A frame structure of a composite cross section made by tightening a beam and a lower structure into which a camber prestress is introduced, and a construction method thereof
KR20090092105A (en) Method of construction for building psc(prestressed concrete) girder bridge and construction method thereof
JP3640251B2 (en) Bridge reinforcement structure
CN110952463B (en) Reverse jacking reinforcement method and jacking structure of concrete box girder bridge
JP3898509B2 (en) Function change repair method for existing elastic bearings
CN110792042A (en) Anti-overturning reinforcing method for rectangular single-column pier bridge
JP3946527B2 (en) Function change repair method for existing elastic bearings
KR100622008B1 (en) Composition structure of integral abutment bridge
KR200386508Y1 (en) Prestressed steel beam composed by coupling the lower girder imtroduced with compressive force and the upper girder introduced with tensile force
JP3640250B2 (en) Bridge reinforcement structure
JP3640249B2 (en) Bridge reinforcement structure
KR20120100052A (en) Bridge leg correcting method using oil compressure jack and broken parts compensation structure
JP3455204B2 (en) Bridge reinforcement structure
CN211735114U (en) A antidumping reinforced structure for rectangle single-column mound bridge
CN110700122A (en) A antidumping reinforced structure for rectangle single-column mound bridge
KR20030066031A (en) Steel box girder for bridge
CN218880574U (en) Leveling structure of bridge expansion device
KR200376197Y1 (en) Composition structure of integral abutment bridge
JP7266808B1 (en) Main girder continuous rigid connection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees