JP3640249B2 - Bridge reinforcement structure - Google Patents

Bridge reinforcement structure Download PDF

Info

Publication number
JP3640249B2
JP3640249B2 JP2002197753A JP2002197753A JP3640249B2 JP 3640249 B2 JP3640249 B2 JP 3640249B2 JP 2002197753 A JP2002197753 A JP 2002197753A JP 2002197753 A JP2002197753 A JP 2002197753A JP 3640249 B2 JP3640249 B2 JP 3640249B2
Authority
JP
Japan
Prior art keywords
bridge
load receiving
receiving material
piers
push
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197753A
Other languages
Japanese (ja)
Other versions
JP2004036317A (en
Inventor
光弘 徳野
文博 齋藤
和俊 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd
Original Assignee
Asahi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd filed Critical Asahi Engineering Co Ltd
Priority to JP2002197753A priority Critical patent/JP3640249B2/en
Publication of JP2004036317A publication Critical patent/JP2004036317A/en
Application granted granted Critical
Publication of JP3640249B2 publication Critical patent/JP3640249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は橋脚間に横架された河川橋梁、又は陸上橋梁の耐荷力を向上することを目的とした橋梁の補強構造に関する。
【0002】
【従来の技術】
従来、既設橋梁の耐荷力を増強せしめるための補強対策として、図1に示すように、床版1の下面全面又は橋桁の周面に鋼板2をエポキシ樹脂系接着材を用いて強固に接着する工法、或いは炭素繊維やアラミド繊維等の抗張力繊維3を上記接着材を用いて接着する工法が行われている。
【0003】
【発明が解決しようとする課題】
上記鋼板や抗張力繊維を貼り付ける工法は、床版1や橋桁に活荷重(走行車輌による荷重)が加わった時に、その抗張力により補強効果を発揮させんとするものであるが、接着材の経年劣化による強度低下や剥離が著しく長期に亘り健全な補強効果を達成し難い問題を有している。
【0004】
加えて上記活荷重が加わっていない時の死荷重(橋梁自身の自重)に対しては、該死荷重による応力を軽減する効果が期待できない。又工事費用が非常に高価である。
【0005】
【課題を解決するための手段】
本発明は上記活荷重ばかりか、死荷重に対しても有効に機能し、且つ施工が簡単で低廉なる工費にて、上記抗張材接着工法の如き経年劣化を伴わず、長期に亘り補強機能を健全に維持できる橋梁の補強構造を提供するものである。
【0006】
この橋梁の補強構造は、橋脚間に橋脚間架設ビームを横架し、他方該橋脚間に横架せる橋桁又は該橋桁によって支持された床版と一体に荷受け材を設け、上記橋脚間架設ビームと荷受け材間に該荷受け材を押し上げ且つ該荷受け材を介し橋梁を押し上げる押し上げ手段を設ける構成としたものである。
【0007】
上記押し上げ手段としては、螺合によって押し上げ位置を保持するネジ式ジャッキを用いる。
【0008】
上記橋梁の補強構造においては、床版又は橋桁に常時一定の押し上げ力を与え、走行車輌等の床版や橋桁に加わる活荷重による応力を軽減すると共に、これら活荷重が加わらない死荷重、即ち橋梁自身の自重による死荷重によって生ずる応力を軽減する。
【0009】
上記活荷重や死荷重は上記ジャッキに代表される押し上げ手段を介して橋脚間架設ビームで荷受けし、該ビームを横架せる橋脚で荷受けする。
【0010】
上記ネジ式ジャッキは強大な荷重に対する耐荷力に優れ、常時一定の押し上げ力を維持でき適性である。
【0011】
【発明の実施の形態】
以下本発明の実施形態を図2乃至図に基づいて説明する。
【0012】
図2乃至図5に示すように、橋脚4間に橋脚間架設ビーム8を横架して橋長方向へ延在せしめ、他方橋脚4間に横架せる橋梁6と一体に荷受け材7を設け、上記橋脚間架設ビーム8と荷受け材7間に該荷受け材7を押し上げ且つ該荷受け材7を介し橋梁6を押し上げる押し上げ手段10を設ける。
【0013】
例えば図に示すように、上記橋脚間架設ビーム8を床版17と床版17を支える橋桁11から成る橋梁6の外側域において橋長方向へ延在せしめる。
【0014】
他方図2,図3に示すように、上記橋梁6から上記外側域へ張り出す荷受け材7を設ける。該荷受け材7は上記橋梁6の延在長の途中、即ち橋脚4間に延在する部分に単数又は間隔を置いて複数設ける。
【0015】
上記橋脚間架設ビーム8と荷受け材7間に設けた上記押し上げ手段10により橋梁外側域において橋梁6を押し上げる。
【0016】
図2に示すように、橋幅方向に複数並列されている橋桁11間は連結材5にて連結する。この連結材5は橋梁建設時に補強材として組み付けたもの、又は橋梁建設後の補強工事時に組み付けたものの何れかである。
【0017】
上記橋桁11及び荷受け材7並びに連結材5は何れも鋼製であり、例えば橋桁11と連結材5は既知の通りH形鋼にて形成する。他方荷受け材7は一例として広幅の基端から漸次狭幅となる腹板14と、該腹板14の上端縁と下端縁から左右へ一体に張り出す上部フランジ板15と下部フランジ板16を有するH形鋼から成る荷受け材とする。
【0018】
乃至図に基づき上記橋梁6に押し上げ力を付与する補強構造の具体例を説明する。
【0019】
に示すように、上記橋脚4の橋幅方向の両端に橋梁6の橋幅方向の左右外側域に床版17を支える座面と同一平面となる座面を有する脚座12′を張り出し(増設し)、各橋脚4の脚座12′の座面(上面)に上記橋脚間架設ビーム8の両端を支承し橋脚4間に横架する。該橋脚間架設ビーム8と脚座12′の座面間にはゴム支承等から成る衝撃吸収座13を介在する。
【0020】
例えば上記橋脚4がコンクリート製である場合には上記脚座12′をコンクリートにて一体構造とし、上記橋脚4が鋼製である場合には鋼製の上記脚座12′を溶接や鋲打ちにて一体構造にする。又はコンクリート製の橋脚4に上記鋼製の脚座12′をアンカーボルト等にて取り付け一体構造にする。
【0021】
他方図に示すように、橋梁6を形成する床版17の外側面から橋梁6の橋幅方向の左右外側域に上記荷受け材7を張り出す。該荷受け材7は上記橋梁6の延在長の途中、即ち橋脚4間の延在部に単数又は間隔を置いて複数張り出す。
【0022】
に示すように、上記橋脚間架設ビーム8は橋梁6の橋幅方向の左右外側域の夫々において並列して設ける。即ち上記橋脚間架設ビーム8は橋梁6の橋幅方向の左外側域に同橋幅方向において並列するように並設し、同様に橋脚間架設ビーム8を橋梁6の橋幅方向の右外側域に同橋幅方向において並列するように並設する。
【0023】
上記橋脚間架設ビーム8は上記脚座12′に横架して上記荷受け材7の下位となるように配置し、該橋脚間架設ビーム8上にジャッキ20に代表される押し上げ手段10を設置する。
【0024】
即ち上記橋幅方向左側と右側の各一対の橋脚間架設ビーム8間に支持座18を両持ち取り付けし、この支持座18上に上記押し上げ手段10たるジャッキ20、例えば油圧又は空圧併用のネジ式ジャッキを載設する。
【0025】
他方上記荷受け材7をジャッキ20の直上に配置し、換言すると荷受け材7の真下にジャッキ20を配置し、ジャッキ20を伸長せしめることにより荷受け材7の下部フランジ16を押し上げ、該荷受け材7の押し上げを介して橋梁6を構成する床版11に押し上げ力を付与する。
【0026】
上記実施形態においては上記荷受け材7を床版17にボルトや鋲を介して取り付けた例を示したが、同荷受け材7を橋桁11の側面に取り付け、該荷受け材7の下位に配した橋脚間架設ビーム8上に支持せるジャッキ20にて上記橋桁11に上記押し上げ力を与える構成とすることができる。
【0027】
上記実施形態においては、橋幅方向両端の橋桁11の外側面から橋梁6の外側域に上記荷受け材7を張り出し、これに押し上げ力を付与する例を示したが、他例として上記橋桁11間を連結する連結材5を橋脚間架設ビーム8に支持したジャッキ20に代表される押し上げ手段10にて押し上げ力を付与する構成とすることができる。この場合連結材5が荷受け材7を構成する。
【0028】
上記図乃至図に示す押し上げ手段10としては油圧シリンダ構造、又は空圧シリンダ構造のジャッキ20を用いることができ、殊に図A,Bに示す螺合によって伸長又は収縮位置、即ち押し上げ位置を保持する油圧又は空圧併用のネジ式ジャッキ20が適性である。
【0029】
上記ネジ式ジャッキの一例としてはシリンダとシリンダロッドが互いに螺合され、シリンダロッドを回動することにより、螺進(伸長)又は螺退(収縮)するジャッキ20を用いることができ、該螺進によって床版17又は橋桁11に押し上げ力を与え、雌ネジと雄ネジの螺合によって活荷重と死荷重を支える。
【0030】
好ましい例として前記の通り、図に示す油圧又は空圧シリンダ併用の、即ち流体圧シリンダ併用のネジ式ジャッキ20を用いる。このジャッキ20は図に示すように、周面に雄ねじを刻設したシリンダロッド21の下端がシリンダ22内に気密的に滑合されてシリンダ22から上方へ突出し、該突出部の外周面にストッパーフランジ23を螺合し、上記シリンダ22内底部のシリンダロッド21の下面に形成された油圧又は空圧室24内へ油圧又は空圧を供給する流体圧供給口25を上記シリンダ22に設けた構造を有する。
【0031】
上記活荷重や死荷重は上記ネジ式ジャッキ20を介して追架設した橋脚間架設ビーム8で荷受けし、その両端を支える橋脚4で荷受けする。上記ネジ式ジャッキ20は上記の通り剛押し上げ構造体であり、強大な荷重に対する耐荷力に優れ、常時一定の押し上げ力を維持できると共に、押し上げ位置に応じた押し上げ力を容易に設定でき適性である。
【0032】
そして上記流体圧供給口25を通じて油圧又は空圧を供給することにより、上記シリンダロッド21を上昇せしめて一定の上昇量により床版17又は橋桁11に一定の押し上げ力を与える。
【0033】
次いで該一定の押し上げ力を与えたことを圧力計により確認し、該押し上げ力を与えた状態において上記ストッパーフランジ23をシリンダロッド21に沿い螺退(下降)して上記シリンダ22の上端面に座着せしめる。よってシリンダロッド21の下降を阻止し、一定の剛押し上げ力を保持する。
【0034】
上記ストッパーフランジ23によってシリンダロッド21の下降を阻止し、伸長状態を維持した後、上記流体圧供給口25を通じて油圧又は空圧室24内の流体を抜き取り開放にする。以後は上記ネジ式ジャッキ20の螺合により押し上げ力を維持する。
【0035】
又補強工事後の任意の時期に上記ストッパーフランジ23を緩めて、上記流体圧供給口25から再び流体圧を供給しストッパーフランジ23で締結する上記作業を行うことにより、シリンダロッド21の押し上げ力を調整し補正することができる。
【0036】
上記流体圧シリンダ構造のジャッキ20は緩衝性を有する柔押し上げ構造体を形成するが、ネジ式ジャッキは緩衝性を有しない剛押し上げ構造体である。
【0037】
乃至図に示す橋梁6に押し上げ力を付与する実施形態においては、図7Bに示すように、前記流体圧併用のネジ式ジャッキ20を直立し、そのシリンダ22を前記橋脚間架設ビーム8に支持すると共に、上方へ突出するシリンダロッド21にて上記荷受け材7の下部フランジ16を支持する。
【0038】
而して前記の通りシリンダロッド21の伸長により荷受け材7を押し上げ、橋梁6を構成する床版17又は橋桁11に押し上げ力を付与する。
【0039】
上記押し上げ手段10と荷受け材7の対を橋長方向に間隔を置いて複数対設けた場合には、支間長の長い橋桁11又は床版17をその延在長の複数点において、均一なる押し上げ力を付与することができる。
【0040】
に示すように、上記橋脚間架設ビーム8にはトラス構造を付与することができる。即ち橋脚間架設ビーム8の両端に連結するトラス桁27を設け、即ちトラス桁27の弦材となるように上記橋脚間架設ビーム8を連結し、該トラス桁27と上記橋脚間架設ビーム8間を多数の斜材28にて連結し、トラス構造とする。
【0041】
又は橋脚間架設ビーム8の両端に連結するアーチ材を設け、即ちアーチ材の弦材となるように上記橋脚間架設ビーム8を連結する。このトラス桁27又はアーチ材は床版17の橋長方向の両側に沿って橋長方向に延在する。
【0042】
上記トラス構造又はアーチ構造により橋脚間架設ビーム8の耐荷力を向上し、よって橋桁11又は床版17の押し上げ力を増強できる。
【0043】
に実線示するように、上記トラス桁27又はアーチ材は橋脚間架設ビーム8の上側に構築するか、又は図に破線示するように、同ビーム8の下側に構築することができる。
【0044】
本発明は既設の橋梁6の補強構造として実施できるばかりか、新設の橋梁6の補強構造として実施できる。
【図面の簡単な説明】
【図1】 従来の橋梁の補強構造として床版の底面全面に抗張力材を接着した例を概示する側面図。
【図2】 本発明における押し上げ力を付与する橋梁荷受け材を設けた部位における橋梁の橋幅方向断面図。
【図】 本発明における橋梁に押し上げ力を付与する橋梁の補強構造の実施形態を示し、荷受け材及び押し上げ手段を設けた部位における橋梁の橋幅方向断面図。
【図】 上記実施形態における橋脚間架設ビームを横架せる橋脚部位における橋梁の橋幅方向断面図。
【図】 上記実施形態における橋梁の側面図。
【図】 上記実施形態において橋脚間架設ビームをトラス構造とした場合の橋梁の側面図。
【図7】 Aはジャッキとして用いる油圧兼ネジ式ジャッキの収縮時断面図、は同伸長時断面図であり橋梁に押し上げ力を付与する実施形態を示す。
【符号の説明】
4…橋脚、5…連結材、6…橋梁、7…荷受け材、8…橋脚間架設ビーム、10…押し上げ手段、11…橋桁、12,12′…脚座、13…衝撃吸収座、14…腹板、15…上部フランジ板、16…下部フランジ板、17…床版、18…支持座、19…牽引部材、20…ジャッキ、21…シリンダロッド、22…シリンダ、23…ストッパーフランジ、24…油圧又は空圧室、25…流体圧供給口、26…連結板、27…トラス桁、28…斜材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bridge reinforcement structure for the purpose of improving the load bearing capacity of a river bridge or an overland bridge that is installed between bridge piers.
[0002]
[Prior art]
Conventionally, as a reinforcing measure for enhancing the load bearing capacity of an existing bridge, as shown in FIG. 1, the steel plate 2 is firmly bonded to the entire lower surface of the floor slab 1 or the circumferential surface of the bridge girder using an epoxy resin adhesive. A construction method or a construction method in which tensile strength fibers 3 such as carbon fibers and aramid fibers are bonded using the above-mentioned adhesive material is performed.
[0003]
[Problems to be solved by the invention]
The method of attaching the steel plate and the tensile fiber is to exert the reinforcing effect by the tensile force when the live load (load by the traveling vehicle) is applied to the floor slab 1 or the bridge girder. There is a problem that strength reduction and peeling due to deterioration are remarkably difficult to achieve a sound reinforcing effect over a long period of time.
[0004]
In addition, the effect of reducing the stress due to the dead load cannot be expected with respect to the dead load when the live load is not applied (the weight of the bridge itself). Also, the construction cost is very expensive.
[0005]
[Means for Solving the Problems]
The present invention functions effectively not only for the live load but also for the dead load, and at a construction cost that is simple and inexpensive to construct, and is not accompanied by aged deterioration such as the above-described tensile material bonding method. It is intended to provide a bridge reinforcement structure that can maintain soundness.
[0006]
The bridge reinforcing structure is constructed by horizontally placing a beam between bridge piers between bridge piers , and providing a load receiving material integrally with a bridge girder that can be bridged between the bridge piers or a floor slab supported by the bridge girder. And a lifting means for pushing up the load receiving material and pushing up the bridge via the load receiving material.
[0007]
As the push-up means, a screw-type jack that holds the push-up position by screwing is used.
[0008]
In the above-mentioned bridge reinforcement structure, a constant pushing force is always applied to the floor slab or bridge girder to reduce the stress caused by the live load applied to the floor slab and bridge girder of the traveling vehicle, etc. Reduce the stress caused by dead loads due to the weight of the bridge itself.
[0009]
The live load or dead load is received by a bridge pier beam via a push-up means represented by the jack, and is received by a bridge pier that can lay the beam.
[0010]
The screw jack is excellent in load bearing capacity against a large load, and can maintain a constant pushing force at all times.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The following embodiments of the present invention will be described with reference to FIGS. 2-7.
[0012]
As shown in FIGS. 2 to 5, a beam 8 between the piers is horizontally extended between the piers 4 to extend in the bridge length direction, and a load receiving material 7 is provided integrally with the bridge 6 that can be laid between the other piers 4. Further, a push-up means 10 is provided between the bridge pier construction beam 8 and the load receiving material 7 to push up the load receiving material 7 and push up the bridge 6 through the load receiving material 7.
[0013]
For example, as shown in FIG. 2 , the beam 8 between the piers is extended in the bridge length direction in the outer region of the bridge 6 composed of the floor slab 17 and the bridge girder 11 supporting the floor slab 17.
[0014]
On the other hand, as shown in FIG . 2 and FIG. 3 , a load receiving material 7 that projects from the bridge 6 to the outside region is provided. The load receiving material 7 is provided in the middle of the extension length of the bridge 6, that is, in a portion extending between the bridge piers 4, either singly or at intervals.
[0015]
The bridge 6 is pushed up in the outer area of the bridge by the push-up means 10 provided between the beam 8 between the bridge piers and the load receiving material 7.
[0016]
As shown in FIG. 2, a plurality of bridge beams 11 arranged in parallel in the bridge width direction are connected by a connecting material 5. This connecting material 5 is either assembled as a reinforcing material at the time of bridge construction, or assembled at the time of reinforcing work after the bridge construction.
[0017]
The bridge girder 11, the load receiving material 7 and the connecting material 5 are all made of steel. For example, the bridge girder 11 and the connecting material 5 are formed of H-shaped steel as is known. On the other hand, the load receiving member 7 includes, as an example, a belly plate 14 that gradually becomes narrower from a wide base end, and an upper flange plate 15 and a lower flange plate 16 that project integrally from the upper and lower edges of the belly plate 14 to the left and right. The load receiving material is made of H-section steel.
[0018]
Based on FIGS. 2-5 illustrating a specific example of the reinforcing structure to impart upward force to the bridge 6.
[0019]
As shown in FIG. 4 , leg seats 12 ′ having a seating surface that is flush with the seating surface that supports the floor slab 17 are provided on both left and right outer sides of the bridge 6 in the bridge width direction at both ends of the bridge pier 4 in the bridge width direction. (Additional) The both ends of the beam 8 between the piers are supported on the seat surface (upper surface) of the pedestal 12 ′ of each pier 4, and are horizontally mounted between the piers 4. An impact absorbing seat 13 made of a rubber bearing or the like is interposed between the bridge beam 8 and the seat surface of the leg seat 12 '.
[0020]
For example, when the pier 4 is made of concrete, the pedestal 12 ′ is made of a single piece of concrete, and when the pier 4 is made of steel, the pedestal 12 ′ made of steel is welded or hammered. To make an integral structure. Alternatively, the steel pedestal 12 'is attached to the concrete pier 4 with an anchor bolt or the like to form an integral structure.
[0021]
On the other hand, as shown in FIG. 3 , the load receiving material 7 is projected from the outer surface of the floor slab 17 forming the bridge 6 to the left and right outer regions in the bridge width direction of the bridge 6. The load receiving material 7 projects in the middle of the extension length of the bridge 6, that is, at an extension portion between the bridge piers 4, with one or a plurality of intervals.
[0022]
As shown in FIG. 4 , the beam 8 between the bridge piers is provided in parallel in each of the left and right outer regions of the bridge 6 in the bridge width direction. That is, the beam 8 between the piers is juxtaposed in the left outer region in the bridge width direction of the bridge 6 so as to be juxtaposed in the bridge width direction, and the beam 8 between the piers is similarly arranged in the right outer region in the bridge width direction of the bridge 6. Are arranged side by side in parallel in the width direction of the bridge.
[0023]
The bridge pier erection beam 8 is placed on the leg seat 12 ′ so as to be lower than the load receiving material 7, and the push-up means 10 represented by the jack 20 is installed on the pier erection beam 8. .
[0024]
That is, a support seat 18 is mounted between the pair of bridge pier construction beams 8 on the left and right sides in the bridge width direction, and a jack 20 as the push-up means 10 on the support seat 18, for example, a screw combined with hydraulic or pneumatic pressure. Mount the jack.
[0025]
On the other hand, the load receiving material 7 is disposed immediately above the jack 20, in other words, the jack 20 is disposed immediately below the load receiving material 7, and the jack 20 is extended to push up the lower flange 16 of the load receiving material 7, thereby A pushing force is applied to the floor slab 11 constituting the bridge 6 through the pushing up.
[0026]
In the embodiment described above, the load receiving material 7 is attached to the floor slab 17 via bolts or rivets. However, the load receiving material 7 is attached to the side surface of the bridge girder 11 and is arranged below the load receiving material 7. The jack 20 supported on the intermediate beam 8 can be configured to give the pushing force to the bridge girder 11.
[0027]
In the said embodiment, although the said load receiving material 7 was projected from the outer surface of the bridge girder 11 of the bridge width direction both ends to the outer side area of the bridge 6, and pushing up force was given to this, as an example, between the said bridge girder 11 is shown. The push-up force can be applied by push-up means 10 typified by a jack 20 in which the connecting member 5 for connecting the two is supported by the beam 8 between the piers. In this case, the connecting material 5 constitutes the load receiving material 7.
[0028]
Hydraulic cylinder structure as push means 10 shown in FIG. 3 to FIG. 5, or can be used jack 20 of pneumatic cylinder structures, in particular FIGS. 7 A, extended or retracted position by screwing as shown in B, that pushes up A screw-type jack 20 that uses a hydraulic pressure or pneumatic pressure to hold the position is suitable.
[0029]
As an example of the screw-type jack, a jack 20 that is screwed (expanded) or screwed (shrinked) by rotating a cylinder rod with a cylinder and a cylinder rod being screwed together can be used. Thus, a pushing force is applied to the floor slab 17 or the bridge girder 11, and a live load and a dead load are supported by screwing of the female screw and the male screw.
[0030]
As a preferred example, as described above, the screw type jack 20 used in combination with a hydraulic or pneumatic cylinder, that is, combined with a hydraulic cylinder shown in FIG. 7 , is used. As shown in FIG. 7 , the jack 20 has a lower end of a cylinder rod 21 in which a male thread is engraved on the peripheral surface thereof, which is airtightly fitted into the cylinder 22 and protrudes upward from the cylinder 22. The cylinder 22 is provided with a fluid pressure supply port 25 for screwing the stopper flange 23 and supplying hydraulic pressure or pneumatic pressure into the hydraulic pressure or pneumatic chamber 24 formed on the lower surface of the cylinder rod 21 at the bottom of the cylinder 22. It has a structure.
[0031]
The live load and dead load are received by the bridge pier construction beam 8 that is additionally installed via the screw type jack 20, and are received by the pier 4 that supports both ends of the beam. The screw-type jack 20 is a rigid push-up structure as described above, is excellent in load resistance against a large load, can always maintain a constant push-up force, and can easily set a push-up force according to the push-up position and is suitable. .
[0032]
Then, by supplying hydraulic pressure or pneumatic pressure through the fluid pressure supply port 25, the cylinder rod 21 is raised, and a constant push-up force is applied to the floor slab 17 or the bridge girder 11 by a certain amount of lift.
[0033]
Next, it is confirmed by the pressure gauge that the constant pushing force is applied, and the stopper flange 23 is screwed down (lowered) along the cylinder rod 21 in a state where the pushing force is applied, and is seated on the upper end surface of the cylinder 22. Dress it up. Therefore, the cylinder rod 21 is prevented from descending and a constant rigid push-up force is maintained.
[0034]
After the cylinder rod 21 is prevented from descending by the stopper flange 23 and maintained in the extended state, the fluid in the hydraulic or pneumatic chamber 24 is extracted and opened through the fluid pressure supply port 25. Thereafter, the push-up force is maintained by screwing the screw jack 20.
[0035]
Further, the stopper flange 23 is loosened at any time after the reinforcement work, and the above operation of supplying the fluid pressure again from the fluid pressure supply port 25 and fastening with the stopper flange 23 is performed, thereby increasing the pushing force of the cylinder rod 21. It can be adjusted and corrected.
[0036]
The jack 20 having the above-described fluid pressure cylinder structure forms a soft push-up structure having buffering properties, whereas the screw jack is a rigid push-up structure having no buffering properties.
[0037]
In the embodiment in which a pushing force is applied to the bridge 6 shown in FIGS. 2 to 5 , as shown in FIG. 7B , the screw type jack 20 combined with fluid pressure is erected, and the cylinder 22 is connected to the bridge-to-pier beam 8. And the lower flange 16 of the load receiving material 7 is supported by a cylinder rod 21 protruding upward.
[0038]
Thus, as described above, the load receiving material 7 is pushed up by the extension of the cylinder rod 21, and a pushing force is applied to the floor slab 17 or the bridge girder 11 constituting the bridge 6.
[0039]
When a plurality of pairs of the pushing-up means 10 and the load receiving material 7 are provided at intervals in the bridge length direction, the bridge girder 11 or the floor slab 17 having a long span length is uniformly pushed up at a plurality of points of the extension length. Power can be granted.
[0040]
As shown in FIG. 6 , a truss structure can be given to the beam 8 between the piers. That is, truss girders 27 are provided at both ends of the beam between the bridge piers 8, that is, the beam between the bridge piers 8 is connected so as to be a chord material of the truss girder 27. Are connected by a number of diagonal members 28 to form a truss structure.
[0041]
Or the arch material connected to the both ends of the beam 8 between bridge piers is provided, ie, the beam 8 between bridges is connected so that it may become a chord material of an arch material. The truss girder 27 or the arch material extends in the bridge length direction along both sides of the floor slab 17 in the bridge length direction.
[0042]
The truss structure or the arch structure can improve the load bearing capacity of the beam 8 between the bridge piers, and thus can increase the pushing force of the bridge girder 11 or the floor slab 17.
[0043]
The solid line Shimesuru so in FIG. 6, or the truss girder 27 or the arch member is constructed on the upper side of the pier between erection beams 8, or a broken line Shimesuru so in FIG. 6, to be constructed on the lower side of the same beam 8 it can.
[0044]
The present invention can be implemented not only as a reinforcing structure for an existing bridge 6 but also as a reinforcing structure for a newly installed bridge 6.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an example in which a tensile strength material is bonded to the entire bottom surface of a floor slab as a conventional bridge reinforcing structure.
FIG. 2 is a cross-sectional view in the bridge width direction of a bridge at a portion where a load receiving material is provided on the bridge to which a pushing force is applied in the present invention.
FIG. 3 is a cross-sectional view in the width direction of the bridge at a portion where a load receiving material and a push-up means are provided, showing an embodiment of a bridge reinforcing structure for applying a push-up force to the bridge in the present invention.
FIG. 4 is a cross-sectional view in the bridge width direction of a bridge at a bridge pier portion where a beam between bridge piers can be horizontally mounted in the embodiment.
FIG. 5 is a side view of a bridge in the embodiment.
FIG. 6 is a side view of a bridge when the beam between the piers has a truss structure in the embodiment.
FIG. 7A is a cross-sectional view of a hydraulic and screw jack used as a jack when contracted, and B is a cross-sectional view when extended, showing an embodiment in which a pushing force is applied to a bridge.
[Explanation of symbols]
4 ... Bridge pier, 5 ... Connecting material, 6 ... Bridge, 7 ... Load receiving material, 8 ... Bridge pier beam, 10 ... Push-up means, 11 ... Bridge girder, 12, 12 '... Leg seat, 13 ... Shock absorbing seat, 14 ... Abdominal plate, 15 ... upper flange plate, 16 ... lower flange plate, 17 ... floor slab, 18 ... support seat, 19 ... traction member, 20 ... jack, 21 ... cylinder rod, 22 ... cylinder, 23 ... stopper flange, 24 ... Hydraulic or pneumatic chamber, 25 ... Fluid pressure supply port, 26 ... Connecting plate, 27 ... Truss girder, 28 ... Diagonal material

Claims (3)

橋脚間に橋脚間架設ビームを横架して橋長方向へ延在せしめ、他方橋脚間に横架せる橋梁と一体に荷受け材を設け、上記橋脚間架設ビームと荷受け材間に該荷受け材を押し上げ且つ該荷受け材を介し橋梁を押し上げる押し上げ手段を設けたことを特徴とする橋梁の補強構造。A beam between the bridge piers is extended horizontally in the bridge length direction, and a load receiving material is provided integrally with the bridge that can be extended between the bridge piers. A structure for reinforcing a bridge, characterized in that a pushing-up means for pushing up and pushing up the bridge through the load receiving material is provided. 上記押し上げ手段が螺合によって押し上げ位置を保持するネジ式ジャッキであることを特徴とする請求項記載の橋梁の補強構造。Reinforcing structure of the bridge according to claim 1, characterized in that the screw jack to said push-up means for holding a position pushed up by screwing. 上記荷受け材を上記橋梁を形成する床版又は橋桁と一体に設けたことを特徴とする請求項1記載の橋梁の補強構造。The bridge reinforcing structure according to claim 1, wherein the load receiving material is provided integrally with a floor slab or a bridge girder that forms the bridge.
JP2002197753A 2002-07-05 2002-07-05 Bridge reinforcement structure Expired - Fee Related JP3640249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197753A JP3640249B2 (en) 2002-07-05 2002-07-05 Bridge reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197753A JP3640249B2 (en) 2002-07-05 2002-07-05 Bridge reinforcement structure

Publications (2)

Publication Number Publication Date
JP2004036317A JP2004036317A (en) 2004-02-05
JP3640249B2 true JP3640249B2 (en) 2005-04-20

Family

ID=31705435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197753A Expired - Fee Related JP3640249B2 (en) 2002-07-05 2002-07-05 Bridge reinforcement structure

Country Status (1)

Country Link
JP (1) JP3640249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737667B (en) * 2021-11-04 2022-01-21 上海建工五建集团有限公司 Bridge reinforcing system and dynamic reinforcing method

Also Published As

Publication number Publication date
JP2004036317A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
CN108532474B (en) Overturn-preventing reinforcing device and installation method for single-column pier bridge
US10895047B2 (en) Prefabricated, prestressed bridge module
KR101013914B1 (en) Reinforcement structure of truss bridge or arch bridge
CN108103928B (en) A kind of connection structure and construction method of multispan freely-supported bridge expanssion joint
KR20150126502A (en) Structure And Construction Method of Steel Arch Bridge
CN110144811B (en) Unbalanced torsion-resistant and overturn-resistant structure of single-column pier of curved beam bridge and construction method of unbalanced torsion-resistant and overturn-resistant structure
CN110878535A (en) Diagonal tension load-adjusting system for reinforcing rigid truss bridge and reinforcing method thereof
CN111945568B (en) Temporary limiting structure and method for arc-shaped tower body ultra-wide steel box girder cable-stayed bridge tower beam
JP3898509B2 (en) Function change repair method for existing elastic bearings
CN110952463B (en) Reverse jacking reinforcement method and jacking structure of concrete box girder bridge
JP3640249B2 (en) Bridge reinforcement structure
CN104562944A (en) Large span composite beam cable-stayed bridge side steel box temporary anchorage system
KR100648046B1 (en) Beam and Girder Reinforcing Apparatus using External Post-Tension and Reinforcing Method using the same
JP3946527B2 (en) Function change repair method for existing elastic bearings
CN110792042A (en) Anti-overturning reinforcing method for rectangular single-column pier bridge
JP3455204B2 (en) Bridge reinforcement structure
JP3640250B2 (en) Bridge reinforcement structure
JP3640251B2 (en) Bridge reinforcement structure
JP2963879B2 (en) Bridge girder
CN114753235A (en) Half flexible support system of half-through type arch bridge arched girder
KR102151576B1 (en) Steel composite bridge
KR101492077B1 (en) Construction method for cable bridge using transverse prestressed girder
CN209307885U (en) A kind of girder-embedded arch structure and the bridge using the structure
JPH01299963A (en) Method of re-clamping or repairing and reinforcing or load-reducing deformed existing structure
KR102151567B1 (en) Steel composite bridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees