JP3640079B2 - Manufacturing method of CMOS transistor - Google Patents

Manufacturing method of CMOS transistor Download PDF

Info

Publication number
JP3640079B2
JP3640079B2 JP35356796A JP35356796A JP3640079B2 JP 3640079 B2 JP3640079 B2 JP 3640079B2 JP 35356796 A JP35356796 A JP 35356796A JP 35356796 A JP35356796 A JP 35356796A JP 3640079 B2 JP3640079 B2 JP 3640079B2
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
substrate
transistor
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35356796A
Other languages
Japanese (ja)
Other versions
JPH10177970A (en
Inventor
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP35356796A priority Critical patent/JP3640079B2/en
Publication of JPH10177970A publication Critical patent/JPH10177970A/en
Application granted granted Critical
Publication of JP3640079B2 publication Critical patent/JP3640079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本願の発明は、半導体基板と金属膜とを反応させて半導体基板におけるNMOSトランジスタ及びPMOSトランジスタの拡散層上に化合物膜を形成するCMOSトランジスタの製造方法に関するものである。
【0002】
【従来の技術】
半導体装置の微細化に伴う短チャネル効果等を抑制するために、電界効果トランジスタのソース/ドレイン等になっている拡散層を浅くする必要があるが、拡散層を浅くすると、この拡散層のシート抵抗が増大して、高速、低消費電力の半導体装置を製造することが困難になる。そこで、半導体と金属との低抵抗の化合物膜であるTiSi2膜やCoSi2膜等を拡散層上に形成する構造が考えられている。
【0003】
図3は、この様な構造を有するCMOSトランジスタの製造方法の一従来例を示している。この一従来例では、図3(a)に示す様に、Si基板11の表面に素子分離酸化膜としてのSiO2膜12とゲート酸化膜としてのSiO2膜13とを形成し、Wポリサイド層14でゲート電極を形成する。
【0004】
その後、Wポリサイド層14及びSiO2膜12をマスクにして、NMOSトランジスタの形成領域にはAsを低濃度でイオン注入し、PMOSトランジスタの形成領域にはBF2を低濃度でイオン注入し、SiO2膜15でゲート電極の側壁スペーサを形成する。
【0005】
そして、Wポリサイド層14及びSiO2膜12、15をマスクにして、NMOSトランジスタの形成領域にはAsを高濃度でイオン注入し、PMOSトランジスタの形成領域にはBF2を高濃度でイオン注入して、LDD構造のN型の拡散層16及びP型の拡散層17を夫々形成する。
【0006】
次に、図3(b)に示す様に、拡散層16、17上の自然酸化膜(図示せず)を弗酸で完全に除去してから、Ti膜18を全面に形成する。そして、図3(c)に示す様に、熱処理でSi基板11とTi膜18とを反応させてTiSi2膜19を選択的に形成し、アンモニア過水等に浸して、SiO2膜12、15上及びWポリサイド層14上に未反応のまま残っているTi膜18を除去する。
【0007】
次に、図3(d)に示す様に、層間絶縁膜21を形成し、層間絶縁膜21に接続孔22を形成し、TiN/Ti膜23及びW膜24で接続孔22を埋める。そして、Ti膜25及びAl−Si膜26で配線を形成し、更に従来公知の工程を実行して、NMOSトランジスタ27及びPMOSトランジスタ28を有するCMOSトランジスタ29を完成させる。
【0008】
【発明が解決しようとする課題】
ところが、CMOSトランジスタ29の微細化に伴って拡散層16、17の線幅も細くなってきており、Asで形成して且つ線幅の細い拡散層16上では、図3(c)(d)に示した様にTiSi2膜19が凝集する。しかも、線幅が0.2μm程度以下であると、Bで形成した拡散層17上のTiSi2膜19が低抵抗のC49結晶になるのに対して、Asで形成した拡散層17上のTiSi2膜19は高抵抗のC54結晶になり易い。
【0009】
また、Bで形成した拡散層17上のTiSi2膜19の結晶粒径に比べて、Asで形成した拡散層16上のTiSi2膜19の結晶粒径は1/10程度以下である。これは、Ti−As系の反応と同時にTi−O−As系の反応も生じて、拡散層16上ではTiSi2膜19の結晶成長が不十分になるためであると考えられる。そして、結晶粒径が小さいTiSi2膜19では抵抗が高いのみならず耐熱性が低く、耐熱性が低いと、その後の熱処理の余裕が小さい。
【0010】
従って、図3に示した一従来例では、TiSi2膜19を形成しても拡散層16のシート抵抗が低減しないという細線効果が生じ易く、また、TiSi2膜19を形成した後の熱処理の余裕が小さいので、高速、低消費電力及び微細なCMOSトランジスタ29を高い歩留りで製造することが困難であった。
【0011】
しかも、既述の様にCMOSトランジスタ29を微細化するためには拡散層16を浅くする必要があるので、TiSi2膜19とSi基板11との短絡を防止するためにTiSi2膜19も薄くする必要がある。このため、TiSi2膜19が更に凝集し易くて、高速、低消費電力及び微細なCMOSトランジスタ29を製造することが更に困難であった。
【0012】
これに対して、TiSi2膜19の代わりにCoSi2膜を拡散層16上に形成すると、細線効果が生じにくい。しかし、CoSi2膜の耐熱性もTiSi2膜19と同等程度の750〜800℃程度であまり高くなく、その後の熱処理の余裕が小さくて、高速、低消費電力及び微細な半導体装置を高い歩留りで製造することが困難であった。
【0013】
また、細線効果を抑制する別の方法として、Asのイオン注入でSi基板11の表面部を非晶質化しておいた状態でTi膜18を形成し、その後の高速熱処理でTiSi2膜19を形成する方法があった。しかし、この方法でも、非晶質化のためにイオン注入したAsによってもTi−O−As系の反応が生じると考えられて、耐熱性の高いTiSi2膜19を形成することができなかった。
【0014】
一方、耐熱性の高いTiSi2膜19を形成する方法として、Si基板11上にTi膜18を形成した状態でSiをイオン注入してSi基板11とTi膜18との界面においてこれらを混合させ、その後の高速熱処理でTiSi2膜19を形成する方法があった。この方法では、850℃程度までTiSi2膜19の耐熱性が向上していた。
【0015】
しかし、この方法で耐熱性の高いTiSi2膜19を形成するためには、1015cm-2台以上のドーズ量でSiをイオン注入する必要があり、その結果、Si基板11とTi膜18との界面に多数の結晶欠陥が形成されて、この結晶欠陥をその後の熱処理で消滅させることができなかった。このため、拡散層16における接合リーク電流が多くて、特性の優れたCMOSトランジスタ29を製造することが困難であった。
【0016】
【課題を解決するための手段】
本願の発明によるCMOSトランジスタの製造方法は、半導体基板上に金属膜を形成し、前記半導体基板と前記金属膜とを反応させて前記半導体基板におけるNMOSトランジスタ及びPMOSトランジスタの拡散層上に化合物膜を形成するCMOSトランジスタの製造方法において、前記半導体基板にSbを選択的に導入して前記NMOSトランジスタの前記拡散層を形成する工程と、前記NMOSトランジスタ及び前記PMOSトランジスタの前記拡散層の形成後で且つ前記金属膜の形成前に前記半導体基板の全面にSbをイオン注入してこの半導体基板の表面部を非晶質化する工程とを具備することを特徴としている。
【0017】
本願の発明によるCMOSトランジスタの製造方法は、前記半導体基板としてSi基板を用い、前記金属膜として、Ti膜、Co膜、Ni膜、Pt膜、Au膜、Cu膜、Zr膜、Hf膜、Pd膜、W膜、Mo膜、Ta膜の何れかを用い、前記化合物膜として、TiSi2膜、CoSi2膜、NiSi膜、NiSi2膜、Ni2Si膜、PtSi膜、PtSi2膜、AuSi2膜、CuSi2膜、HfSi2膜、PdSi2膜、WSi2膜、MoSi2膜、TaSi2膜の何れかを形成することができる。
【0018】
本願の発明によるCMOSトランジスタの製造方法では、SbでNMOSトランジスタの拡散層を形成しているので、線幅の細い拡散層上に化合物膜を形成しても、この化合物膜をC54結晶にすることができて、低抵抗の化合物膜を形成することができる。また、NMOSトランジスタの拡散層を形成しているSbのために化合物膜の結晶成長が不十分になることがなく、この化合物膜の結晶粒径を大きくすることができて、低抵抗でしかもその後の熱処理の余裕が大きい高耐熱性の化合物膜を形成することができる。
【0019】
しかも、NMOSトランジスタ及びPMOSトランジスタの拡散層の形成後で且つ金属膜の形成前に半導体基板の全面にSbをイオン注入してこの半導体基板の表面部を非晶質化しているので、半導体基板と金属膜との反応が均一に進行して、化合物膜の結晶粒径を更に大きくすることができ、また、非晶質化のためにイオン注入したSbによっても化合物膜の結晶成長が不十分にならず、この化合物膜の結晶粒径を大きくすることができて、低抵抗でしかもその後の熱処理の余裕が大きい高耐熱性の化合物膜を形成することができる。
【0020】
【発明の実施の形態】
以下、本願の発明の第1及び第2実施形態を、図1、2を参照しながら説明する。図1が、化合物膜としてTiSi2膜を形成する第1実施形態を示している。この第1実施形態でも、図1(a)に示す様に、SiO2膜15でゲート電極の側壁スペーサを形成するまでは、図3に示した一従来例と実質的に同様の工程を実行する。
【0021】
しかし、この第1実施形態では、その後、O2ガスを4slmの割合で供給し800℃、10分の熱酸化を施して、Si基板11の露出部及びWポリサイド層14の上面に厚さ10nmのSiO2膜31を形成する。
【0022】
そして、NMOSトランジスタの形成領域を覆うレジスト(図示せず)とWポリサイド層14及びSiO2膜12、15とをマスクにして、40keVの加速エネルギー及び3×1015cm-2のドーズ量でBF2をイオン注入して、PMOSトランジスタの形成領域にP型の拡散層17を形成する。
【0023】
次に、図1(b)に示す様に、SiO2膜31を弗酸で除去した後、PMOSトランジスタの形成領域を覆うレジスト(図示せず)とWポリサイド層14及びSiO2膜12、15とをマスクにして、60keVの加速エネルギー及び3×1015cm-2のドーズ量でSbをイオン注入して、NMOSトランジスタの形成領域にN型の拡散層16を形成する。そして、N2雰囲気中で1000℃、10秒の熱処理を施して、拡散層16、17中の不純物を活性化させる。
【0024】
次に、図1(c)に示す様に、緩衝弗酸で自然酸化膜(図示せず)等を除去してから、40keVの加速エネルギー及び1×1014cm-2のドーズ量でSi基板11の全面にSbをイオン注入して、Si基板11の表面部に非晶質層32を形成する。
【0025】
なお、SbはAsよりも原子半径が大きいので、Asの場合よりも少ないドーズ量で非晶質層32を形成することができる。その後、再び緩衝弗酸で自然酸化膜(図示せず)等を除去してから、電力0.5kW、温度150℃、Ar100sccm、圧力0.47Paのスパッタ法で、厚さ30nmのTi膜18をSi基板11上の全面に形成する。
【0026】
次に、図1(d)に示す様に、N2ガスを5slmの割合で供給し650℃、30秒の熱処理を施して、Si基板11とTi膜18とを反応させてTiSi2膜19を選択的に形成する。そして、アンモニア過水に浸して、SiO2膜12、15上及びWポリサイド層14上に未反応のまま残っているTi膜18を除去した後、再び、N2ガスを5slmの割合で供給し800℃、30秒の熱処理を施して、TiSi2膜19を安定化させる。
【0027】
次に、SiH4/O2ガス=0.03/0.54slm、温度400℃、圧力10.2Paの減圧CVD法で厚さ100nmのSiO2膜を形成するか、または、SiH2Cl2/NH3/N2ガス=0.05/0.2/0.2slm、温度760℃、圧力70Paの減圧CVD法で厚さ50nmのSiN膜を形成する。
【0028】
そして、O3+TEOSガス=50sccm、温度720℃、圧力40Paの減圧CVD法で厚さ500nmのBPSG膜を形成する。以上のSiO2膜またはSiN膜とBPSG膜とで、図1(e)に示す様に、層間絶縁膜21を形成する。
【0029】
その後、層間絶縁膜21上でレジスト(図示せず)をパターニングし、このレジストをマスクにして、C48ガス=50sccm、高周波電力1.2kW、圧力2Paのドライエッチングを施して、層間絶縁膜21に接続孔22を形成する。
【0030】
その後、接続孔22のマスクずれに対応するために、レジスト(図示せず)及び層間絶縁膜21をマスクにして、NMOSトランジスタの形成領域の接続孔22から露出しているSi基板11に50keVの加速エネルギー及び3×1015cm-2のドーズ量でAsをイオン注入する。
【0031】
また、PMOSトランジスタの形成領域の接続孔22から露出しているSi基板11に50keVの加速エネルギー及び3×1015cm-2のドーズ量でBF2をイオン注入する。そして、N2雰囲気中で850℃、30秒の熱処理を施して、接続孔22からSi基板11にイオン注入した不純物を活性化させる。
【0032】
その後、電力8kW、温度150℃、Ar100sccm、圧力0.47Paのスパッタ法で厚さ10nmのTi膜を形成し、更に、電力5kW、Ar/N2=40/20sccm、圧力0.47Paの反応性スパッタ法で厚さ70nmのTiN膜を形成して、接続孔22内を含むSi基板11上の全面にTiN/Ti膜23を形成する。
【0033】
その後、Ar/N2/H2/WF6ガス=2200/300/500/75sccm、温度450℃、圧力10640PaのCVD法で、厚さ400nmのW膜24を形成する。そして、SF6ガス=50sccm、高周波電力150W、圧力1.33Paのエッチバックを施して、TiN/Ti膜23及びW膜24で接続孔22を埋める。
【0034】
その後、電力4kW、温度150℃、Ar100sccm、圧力0.47Paのスパッタ法で厚さ30nmのTi膜25を形成し、更に、電力22.5kW、温度150℃、Ar50sccm、圧力0.47Paのスパッタ法で厚さ0.5μmのAl−Si膜26を形成する。
【0035】
その後、Al−Si膜26上でレジスト(図示せず)をパターニングし、このレジストをマスクにして、BCl3/Cl2ガス=60/90sccm、マイクロ波電力1kW、高周波電力50W、圧力0.016Paのドライエッチングを施して、Ti膜25及びAl−Si膜26で配線を形成する。そして、更に従来公知の工程を実行して、NMOSトランジスタ27及びPMOSトランジスタ28を有するCMOSトランジスタ29を完成させる。
【0036】
図2が、化合物膜としてCoSi2膜を形成する第2実施形態の途中の工程であって上述の第1実施形態における図1(c)(d)に対応する工程を示している。この第2実施形態でも、Sbのイオン注入でSi基板11の表面部に非晶質層32を形成した後、緩衝弗酸で自然酸化膜等を除去するまでは、図1に示した第1実施形態と実質的に同様の工程を実行する。
【0037】
しかし、この第2実施形態では、その後、図2(a)に示す様に、電力1kW、Ar100sccm、圧力0.47Paのスパッタ法で、厚さ10nmのCo膜33をSi基板11上の全面に形成する。そして、引き続き、電力5kW、Ar/N2=40/20sccm、圧力0.47Paの反応性スパッタ法で、厚さ20nmのTiN膜34をCo膜33上の全面に形成する。
【0038】
なお、電力0.5kW、Ar/N2=40/20sccm、圧力0.47Paのスパッタ法で、厚さ10nmのTi膜をTiN膜34の代わりに形成してもよい。
【0039】
次に、図2(b)に示す様に、N2ガスを5slmの割合で供給し550℃、30秒の熱処理を施して、Si基板11とCo膜33とを反応させてCoSi2膜35を選択的に形成する。そして、硫酸過水に浸して、SiO2膜12、15上及びWポリサイド層14上に未反応のまま残っているCo膜33を除去した後、再び、N2ガスを5slmの割合で供給し700℃、30秒の熱処理を施して、CoSi2膜35を安定化させる。
【0040】
そして、層間絶縁膜21の形成以降について、再び、上述の第1実施形態と実質的に同様の工程を実行して、NMOSトランジスタ27とPMOSトランジスタ28とを有するCMOSトランジスタ29を完成させる。
【0041】
この第2実施形態ではCo膜33上にTiN膜34またはTi膜を形成しているが、これらのTiN膜34またはTi膜は必ずしも形成しなくてもよい。しかし、これらのTiN膜34またはTi膜は、Co膜33の表面の酸化を防止してこのCo膜33の実質的な厚さが減少するのを防止することができる。
【0042】
また、Si基板11の表面の自然酸化膜や吸着酸素等を、TiN膜34またはTi膜がCo膜33を介して吸着して、Si基板11とCo膜33とを均一に反応させることができて、Si基板11に形成される結晶欠陥を低減させることができる。
【0043】
なお、以上の第1及び第2実施形態ではTi膜18やCo膜33をスパッタ法で形成しているが、これらの膜をCVD法で形成してもよい。
【0044】
また、以上の第1及び第2実施形態では、Ti膜18またはCo膜33を用いてTiSi2膜19またはCoSi2膜35を形成しているが、Ni膜、Pt膜、Au膜、Cu膜、Zr膜、Hf膜、Pd膜、W膜、Mo膜、Ta膜等の何れかを用いて、NiSi膜、NiSi2膜、Ni2Si膜、PtSi膜、PtSi2膜、AuSi2膜、CuSi2膜、HfSi2膜、PdSi2膜、WSi2膜、MoSi2膜、TaSi2膜等の何れかを形成してもよい。
【0045】
【発明の効果】
本願の発明によるCMOSトランジスタの製造方法では、線幅の細い拡散層上に化合物膜を形成しても、低抵抗でしかもその後の熱処理の余裕が大きい高耐熱性の化合物膜を形成することができるので、高速、低消費電力及び微細なCMOSトランジスタを高い歩留りで製造することができる。
【図面の簡単な説明】
【図1】 本願の発明の第1実施形態を順次に示す側断面図である。
【図2】 本願の発明の第2実施形態の途中の工程であって図1(c)(d)に対応する工程を順次に示す側断面図である。
【図3】 本願の発明の一従来例を順次に示す側断面図である。
【符号の説明】
11 Si基板(半導体基板) 16 拡散層
18 Ti膜(金属膜) 19 TiSi2膜(化合物膜)
32 非晶質層 33 Co膜(金属膜)
35 CoSi2膜(化合物膜)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a CMOS transistor , in which a semiconductor substrate and a metal film are reacted to form a compound film on a diffusion layer of an NMOS transistor and a PMOS transistor on the semiconductor substrate.
[0002]
[Prior art]
In order to suppress the short channel effect associated with the miniaturization of a semiconductor device, it is necessary to shallow the diffusion layer serving as the source / drain of the field effect transistor. As the resistance increases, it becomes difficult to manufacture a semiconductor device with high speed and low power consumption. Therefore, a structure in which a TiSi 2 film or a CoSi 2 film, which is a low resistance compound film of a semiconductor and a metal, is formed on a diffusion layer is considered.
[0003]
FIG. 3 shows a conventional example of a method for manufacturing a CMOS transistor having such a structure. In this conventional example, as shown in FIG. 3A, a SiO 2 film 12 as an element isolation oxide film and a SiO 2 film 13 as a gate oxide film are formed on the surface of a Si substrate 11, and a W polycide layer is formed. A gate electrode is formed at 14.
[0004]
Then, using the W polycide layer 14 and the SiO 2 film 12 as a mask, As is ion-implanted at a low concentration in the formation region of the NMOS transistor, and BF 2 is ion-implanted at a low concentration in the formation region of the PMOS transistor. A sidewall spacer of the gate electrode is formed by the two films 15.
[0005]
Then, using the W polycide layer 14 and the SiO 2 films 12 and 15 as a mask, As is ion-implanted at a high concentration in the formation region of the NMOS transistor, and BF 2 is ion-implanted at a high concentration in the formation region of the PMOS transistor. Thus, an N-type diffusion layer 16 and a P-type diffusion layer 17 having an LDD structure are formed.
[0006]
Next, as shown in FIG. 3B, a natural oxide film (not shown) on the diffusion layers 16 and 17 is completely removed with hydrofluoric acid, and then a Ti film 18 is formed on the entire surface. Then, as shown in FIG. 3C, the Si substrate 11 and the Ti film 18 are reacted with each other by heat treatment to selectively form a TiSi 2 film 19, soaked in ammonia water or the like, and the SiO 2 film 12. The Ti film 18 remaining unreacted on 15 and the W polycide layer 14 is removed.
[0007]
Next, as shown in FIG. 3D, the interlayer insulating film 21 is formed, the connection hole 22 is formed in the interlayer insulating film 21, and the connection hole 22 is filled with the TiN / Ti film 23 and the W film 24. Then, a wiring is formed by the Ti film 25 and the Al—Si film 26, and a conventionally known process is executed to complete a CMOS transistor 29 having an NMOS transistor 27 and a PMOS transistor 28.
[0008]
[Problems to be solved by the invention]
However, with the miniaturization of the CMOS transistor 29, the line widths of the diffusion layers 16 and 17 are also reduced. On the diffusion layer 16 formed of As and having a narrow line width, FIGS. As shown in FIG. 2 , the TiSi 2 film 19 aggregates. Moreover, when the line width is about 0.2 μm or less, the TiSi 2 film 19 on the diffusion layer 17 formed of B becomes a low-resistance C49 crystal, whereas the TiSi on the diffusion layer 17 formed of As. The two films 19 are likely to be a high resistance C54 crystal.
[0009]
Further, the crystal grain size of the TiSi 2 film 19 on the diffusion layer 16 formed of As is about 1/10 or less than the crystal grain size of the TiSi 2 film 19 on the diffusion layer 17 formed of B. This is considered to be because a Ti—O—As reaction occurs simultaneously with a Ti—As reaction, and the crystal growth of the TiSi 2 film 19 becomes insufficient on the diffusion layer 16. The TiSi 2 film 19 having a small crystal grain size has not only high resistance but also low heat resistance, and if the heat resistance is low, the margin for subsequent heat treatment is small.
[0010]
Therefore, in the conventional example shown in FIG. 3, the thin line effect that the sheet resistance of the diffusion layer 16 is not reduced even if the TiSi 2 film 19 is formed is likely to occur, and the heat treatment after the TiSi 2 film 19 is formed. Since the margin is small, it is difficult to manufacture the high-speed, low power consumption and fine CMOS transistor 29 with a high yield.
[0011]
Moreover, since the diffusion layer 16 needs to be shallow in order to miniaturize the CMOS transistor 29 as described above, the TiSi 2 film 19 is also thin in order to prevent a short circuit between the TiSi 2 film 19 and the Si substrate 11. There is a need to. For this reason, the TiSi 2 film 19 is more easily aggregated, and it is further difficult to manufacture a high-speed, low power consumption and fine CMOS transistor 29.
[0012]
On the other hand, if a CoSi 2 film is formed on the diffusion layer 16 instead of the TiSi 2 film 19, the fine line effect is less likely to occur. However, the heat resistance of the CoSi 2 film is not so high at about 750 to 800 ° C., which is the same as that of the TiSi 2 film 19, and the subsequent heat treatment margin is small, so that high speed, low power consumption, and a fine semiconductor device with high yield can be obtained. It was difficult to manufacture.
[0013]
As another method for suppressing the thin line effect, the Ti film 18 is formed in a state where the surface portion of the Si substrate 11 is amorphized by As ion implantation, and then the TiSi 2 film 19 is formed by high-speed heat treatment. There was a way to form. However, even with this method, it is considered that a Ti—O—As reaction occurs even with As ion-implanted for amorphization, and the TiSi 2 film 19 having high heat resistance could not be formed. .
[0014]
On the other hand, as a method of forming the TiSi 2 film 19 having high heat resistance, Si is ion-implanted in a state where the Ti film 18 is formed on the Si substrate 11 and mixed at the interface between the Si substrate 11 and the Ti film 18. Then, there was a method of forming the TiSi 2 film 19 by subsequent rapid heat treatment. In this method, the heat resistance of the TiSi 2 film 19 was improved up to about 850 ° C.
[0015]
However, in order to form the TiSi 2 film 19 having high heat resistance by this method, it is necessary to ion-implant Si at a dose of 10 15 cm −2 or more. As a result, the Si substrate 11 and the Ti film 18 A large number of crystal defects were formed at the interface, and these crystal defects could not be eliminated by the subsequent heat treatment. For this reason, the junction leakage current in the diffusion layer 16 is large, and it is difficult to manufacture the CMOS transistor 29 having excellent characteristics.
[0016]
[Means for Solving the Problems]
According to a method of manufacturing a CMOS transistor according to the present invention, a metal film is formed on a semiconductor substrate, and the semiconductor substrate and the metal film are reacted to form a compound film on the diffusion layers of the NMOS transistor and the PMOS transistor in the semiconductor substrate . the method of manufacturing a CMOS transistor to be formed, and forming the diffusion layer of the NMOS transistor and selectively introducing Sb into the semiconductor substrate, and after formation of the diffusion layer of the NMOS transistor and the PMOS transistor A step of ion-implanting Sb into the entire surface of the semiconductor substrate to form an amorphous surface portion of the semiconductor substrate before forming the metal film.
[0017]
In the CMOS transistor manufacturing method according to the present invention, a Si substrate is used as the semiconductor substrate, and a Ti film, a Co film, a Ni film, a Pt film, an Au film, a Cu film, a Zr film, a Hf film, and a Pd are used as the metal film. Any one of a film, a W film, a Mo film, and a Ta film is used, and the compound film is a TiSi 2 film, a CoSi 2 film, a NiSi film, a NiSi 2 film, a Ni 2 Si film, a PtSi film, a PtSi 2 film, or AuSi 2. film, CuSi 2 film, HfSi 2 film, PdSi 2 film, WSi 2 film, MoSi 2 layer can be formed either of TaSi 2 film.
[0018]
In the CMOS transistor manufacturing method according to the present invention, the diffusion layer of the NMOS transistor is formed of Sb. Therefore, even if a compound film is formed on the diffusion layer having a narrow line width, this compound film is formed into a C54 crystal. Thus, a low-resistance compound film can be formed. In addition, the Sb forming the diffusion layer of the NMOS transistor does not cause insufficient crystal growth of the compound film, and the crystal grain size of the compound film can be increased, and the resistance is low. Thus, it is possible to form a highly heat-resistant compound film having a large heat treatment margin.
[0019]
In addition, Sb ions are implanted into the entire surface of the semiconductor substrate after the formation of the diffusion layers of the NMOS transistor and the PMOS transistor and before the formation of the metal film, so that the surface portion of the semiconductor substrate is made amorphous. The reaction with the metal film progresses uniformly, and the crystal grain size of the compound film can be further increased, and the crystal growth of the compound film is insufficient due to Sb ion-implanted for amorphization. In addition, the crystal grain size of the compound film can be increased, and a high heat-resistant compound film having a low resistance and a large margin for subsequent heat treatment can be formed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the first and second embodiments of the present patent application the invention will be described with reference to FIGS. FIG. 1 shows a first embodiment in which a TiSi 2 film is formed as a compound film. Also in the first embodiment, as shown in FIG. 1A, substantially the same steps as those in the conventional example shown in FIG. 3 are executed until the sidewall spacer of the gate electrode is formed with the SiO 2 film 15. To do.
[0021]
However, in this first embodiment, after that, O 2 gas is supplied at a rate of 4 slm, and thermal oxidation is performed at 800 ° C. for 10 minutes, so that the exposed portion of the Si substrate 11 and the upper surface of the W polycide layer 14 have a thickness of 10 nm. The SiO 2 film 31 is formed.
[0022]
Then, using a resist (not shown) covering the formation region of the NMOS transistor, the W polycide layer 14 and the SiO 2 films 12 and 15 as a mask, BF with an acceleration energy of 40 keV and a dose of 3 × 10 15 cm −2. 2 is ion-implanted to form a P-type diffusion layer 17 in the formation region of the PMOS transistor.
[0023]
Next, as shown in FIG. 1B, after removing the SiO 2 film 31 with hydrofluoric acid, a resist (not shown) covering the formation region of the PMOS transistor, the W polycide layer 14, and the SiO 2 films 12, 15 As a mask, Sb is ion-implanted with an acceleration energy of 60 keV and a dose of 3 × 10 15 cm −2 to form an N-type diffusion layer 16 in the formation region of the NMOS transistor. Then, heat treatment is performed at 1000 ° C. for 10 seconds in an N 2 atmosphere to activate the impurities in the diffusion layers 16 and 17.
[0024]
Next, as shown in FIG. 1C, a natural oxide film (not shown) or the like is removed with buffered hydrofluoric acid, and then the Si substrate is accelerated with an acceleration energy of 40 keV and a dose of 1 × 10 14 cm −2. Sb ions are implanted into the entire surface of the silicon substrate 11 to form an amorphous layer 32 on the surface of the Si substrate 11.
[0025]
Since Sb has an atomic radius larger than that of As, the amorphous layer 32 can be formed with a smaller dose than that of As. Then, after removing a natural oxide film (not shown) and the like again with buffered hydrofluoric acid, a 30 nm-thick Ti film 18 is formed by sputtering with a power of 0.5 kW, a temperature of 150 ° C., Ar of 100 sccm, and a pressure of 0.47 Pa. It is formed on the entire surface of the Si substrate 11.
[0026]
Next, as shown in FIG. 1D, N 2 gas is supplied at a rate of 5 slm and heat treatment is performed at 650 ° C. for 30 seconds to cause the Si substrate 11 and the Ti film 18 to react to form a TiSi 2 film 19. Are selectively formed. Then, after immersing in ammonia excess water to remove the unreacted Ti film 18 on the SiO 2 films 12 and 15 and the W polycide layer 14, N 2 gas is again supplied at a rate of 5 slm. A TiSi 2 film 19 is stabilized by heat treatment at 800 ° C. for 30 seconds.
[0027]
Next, a SiO 2 film having a thickness of 100 nm is formed by a low pressure CVD method with SiH 4 / O 2 gas = 0.03 / 0.54 slm, temperature 400 ° C., pressure 10.2 Pa, or SiH 2 Cl 2 / A SiN film having a thickness of 50 nm is formed by a low pressure CVD method with NH 3 / N 2 gas = 0.05 / 0.2 / 0.2 slm, temperature 760 ° C., and pressure 70 Pa.
[0028]
Then, a BPSG film having a thickness of 500 nm is formed by a low pressure CVD method with O 3 + TEOS gas = 50 sccm, temperature 720 ° C., and pressure 40 Pa. As shown in FIG. 1E, the interlayer insulating film 21 is formed by the above SiO 2 film or SiN film and the BPSG film.
[0029]
Thereafter, a resist (not shown) is patterned on the interlayer insulating film 21, and this resist is used as a mask to perform dry etching with C 4 F 8 gas = 50 sccm, high-frequency power 1.2 kW, and pressure 2 Pa. A connection hole 22 is formed in the film 21.
[0030]
Thereafter, in order to cope with the mask displacement of the connection hole 22, the resist (not shown) and the interlayer insulating film 21 are used as a mask to apply 50 keV to the Si substrate 11 exposed from the connection hole 22 in the NMOS transistor formation region. As is ion-implanted with an acceleration energy and a dose of 3 × 10 15 cm −2 .
[0031]
Further, BF 2 is ion-implanted into the Si substrate 11 exposed from the connection hole 22 in the PMOS transistor formation region with an acceleration energy of 50 keV and a dose amount of 3 × 10 15 cm −2 . Then, heat treatment is performed at 850 ° C. for 30 seconds in an N 2 atmosphere to activate impurities implanted into the Si substrate 11 from the connection hole 22.
[0032]
Thereafter, a Ti film having a thickness of 10 nm is formed by sputtering with a power of 8 kW, a temperature of 150 ° C., an Ar of 100 sccm, and a pressure of 0.47 Pa. Further, a reactivity of 5 kW, Ar / N 2 = 40/20 sccm, and a pressure of 0.47 Pa. A TiN film having a thickness of 70 nm is formed by sputtering, and a TiN / Ti film 23 is formed on the entire surface of the Si substrate 11 including the inside of the connection hole 22.
[0033]
Thereafter, a W film 24 having a thickness of 400 nm is formed by CVD using Ar / N 2 / H 2 / WF 6 gas = 2200/300/500/75 sccm, temperature 450 ° C., and pressure 10640 Pa. Then, etch back of SF 6 gas = 50 sccm, high frequency power 150 W, pressure 1.33 Pa is performed, and the connection hole 22 is filled with the TiN / Ti film 23 and the W film 24.
[0034]
Thereafter, a Ti film 25 having a thickness of 30 nm is formed by sputtering with a power of 4 kW, a temperature of 150 ° C., Ar of 100 sccm, and a pressure of 0.47 Pa. Further, a sputtering method of power of 22.5 kW, temperature of 150 ° C., Ar of 50 sccm, and pressure of 0.47 Pa is formed. Then, an Al—Si film 26 having a thickness of 0.5 μm is formed.
[0035]
Thereafter, a resist (not shown) is patterned on the Al—Si film 26, and using this resist as a mask, BCl 3 / Cl 2 gas = 60/90 sccm, microwave power 1 kW, high-frequency power 50 W, pressure 0.016 Pa. The dry etching is performed to form a wiring with the Ti film 25 and the Al—Si film 26. Further, a conventionally known process is executed to complete a CMOS transistor 29 having an NMOS transistor 27 and a PMOS transistor 28.
[0036]
FIG. 2 shows steps in the middle of the second embodiment for forming a CoSi 2 film as a compound film, corresponding to FIGS. 1C and 1D in the first embodiment. Also in the second embodiment, after the amorphous layer 32 is formed on the surface portion of the Si substrate 11 by Sb ion implantation, the first process shown in FIG. Steps substantially similar to those of the embodiment are performed.
[0037]
However, in this second embodiment, thereafter, as shown in FIG. 2A, a Co film 33 having a thickness of 10 nm is formed on the entire surface of the Si substrate 11 by sputtering with a power of 1 kW, Ar 100 sccm, and pressure 0.47 Pa. Form. Subsequently, a 20 nm thick TiN film 34 is formed on the entire surface of the Co film 33 by a reactive sputtering method with a power of 5 kW, Ar / N 2 = 40/20 sccm, and a pressure of 0.47 Pa.
[0038]
Note that a Ti film having a thickness of 10 nm may be formed in place of the TiN film 34 by sputtering with a power of 0.5 kW, Ar / N 2 = 40/20 sccm, and a pressure of 0.47 Pa.
[0039]
Next, as shown in FIG. 2B, N 2 gas is supplied at a rate of 5 slm and heat treatment is performed at 550 ° C. for 30 seconds to cause the Si substrate 11 and the Co film 33 to react with each other, thereby causing the CoSi 2 film 35 to react. Are selectively formed. Then, after immersing in sulfuric acid / hydrogen peroxide to remove the Co film 33 remaining unreacted on the SiO 2 films 12 and 15 and the W polycide layer 14, N 2 gas is supplied again at a rate of 5 slm. A CoSi 2 film 35 is stabilized by heat treatment at 700 ° C. for 30 seconds.
[0040]
Subsequent to the formation of the interlayer insulating film 21, a process substantially similar to that of the first embodiment described above is performed again to complete the CMOS transistor 29 having the NMOS transistor 27 and the PMOS transistor 28.
[0041]
In the second embodiment, the TiN film 34 or the Ti film is formed on the Co film 33. However, the TiN film 34 or the Ti film is not necessarily formed. However, these TiN film 34 or Ti film can prevent the surface of the Co film 33 from being oxidized and prevent the substantial thickness of the Co film 33 from decreasing.
[0042]
Further, the native oxide film, adsorbed oxygen, etc. on the surface of the Si substrate 11 can be adsorbed by the TiN film 34 or the Ti film through the Co film 33 so that the Si substrate 11 and the Co film 33 can react uniformly. Thus, crystal defects formed in the Si substrate 11 can be reduced.
[0043]
While in the first and second embodiments of the following to form a Ti film 18 and Co films 33 by the sputtering method, it may be formed of these films by the CVD method.
[0044]
In the first and second embodiments described above, the TiSi 2 film 19 or the CoSi 2 film 35 is formed using the Ti film 18 or the Co film 33. However, the Ni film, the Pt film, the Au film, and the Cu film are used. NiSi film, NiSi 2 film, Ni 2 Si film, PtSi film, PtSi 2 film, AuSi 2 film, CuSi using any one of Zr film, Zr film, Hf film, Pd film, W film, Mo film, Ta film, etc. 2 film, HfSi 2 film, PdSi 2 film, WSi 2 film, MoSi 2 film may be formed either of such TaSi 2 film.
[0045]
【The invention's effect】
In the method of manufacturing a CMOS transistor according to the invention of the present application, even if a compound film is formed on a diffusion layer having a narrow line width, it is possible to form a highly heat-resistant compound film having a low resistance and a large margin for subsequent heat treatment. Therefore, high speed, low power consumption, and a fine CMOS transistor can be manufactured with a high yield.
[Brief description of the drawings]
FIG. 1 is a side sectional view sequentially showing a first embodiment of the present invention.
FIGS. 2A and 2B are side sectional views sequentially showing steps in the middle of the second embodiment of the invention of the present application and corresponding to FIGS. 1C and 1D. FIGS.
FIG. 3 is a side cross-sectional view sequentially showing one conventional example of the present invention.
[Explanation of symbols]
11 Si substrate (semiconductor substrate) 16 Diffusion layer 18 Ti film (metal film) 19 TiSi 2 film (compound film)
32 Amorphous layer 33 Co film (metal film)
35 CoSi 2 film (compound film)

Claims (2)

半導体基板上に金属膜を形成し、前記半導体基板と前記金属膜とを反応させて前記半導体基板におけるNMOSトランジスタ及びPMOSトランジスタの拡散層上に化合物膜を形成するCMOSトランジスタの製造方法において、
相対的に低濃度のAsと相対的に高濃度のSb前記半導体基板に選択的に導入して前記NMOSトランジスタのLDD構造の前記拡散層を形成する工程と、
前記PMOSトランジスタのLDD構造の前記拡散層のうちで相対的に高濃度の拡散層を、SiO 2 膜を介するイオン注入で形成する工程と、
前記NMOSトランジスタ及び前記PMOSトランジスタの前記拡散層の形成後で且つ前記金属膜の形成前に前記半導体基板の全面にSbをイオン注入してこの半導体基板の表面部を非晶質化する工程と
を具備することを特徴とするCMOSトランジスタの製造方法。
In a method of manufacturing a CMOS transistor, a metal film is formed on a semiconductor substrate, and the semiconductor substrate and the metal film are reacted to form a compound film on a diffusion layer of an NMOS transistor and a PMOS transistor in the semiconductor substrate.
And forming the diffusion layer of the LDD structure of the NMOS transistor selectively introducing relatively low concentration As and relatively high concentration of Sb in the semiconductor substrate,
Forming a relatively high concentration diffusion layer among the diffusion layers of the LDD structure of the PMOS transistor by ion implantation through a SiO 2 film;
After the formation of the diffusion layers of the NMOS transistor and the PMOS transistor and before the formation of the metal film, Sb is ion-implanted over the entire surface of the semiconductor substrate to amorphize the surface portion of the semiconductor substrate. A method of manufacturing a CMOS transistor, comprising:
前記半導体基板としてSi基板を用い、
前記金属膜として、Ti膜、Co膜、Ni膜、Pt膜、Au膜、Cu膜、Zr膜、Hf膜、Pd膜、W膜、Mo膜、Ta膜の何れかを用い、
前記化合物膜として、TiSi2膜、CoSi2膜、NiSi膜、NiSi2膜、Ni2Si膜、PtSi膜、PtSi2膜、AuSi2膜、CuSi2膜、HfSi2膜、PdSi2膜、WSi2膜、MoSi2膜、TaSi2膜の何れかを形成することを特徴とする請求項1記載のCMOSトランジスタの製造方法。
Using a Si substrate as the semiconductor substrate,
As the metal film, any one of Ti film, Co film, Ni film, Pt film, Au film, Cu film, Zr film, Hf film, Pd film, W film, Mo film, Ta film is used.
As the compound film, TiSi 2 film, CoSi 2 film, NiSi film, NiSi 2 film, Ni 2 Si film, PtSi film, PtSi 2 film, AuSi 2 film, CuSi 2 film, HfSi 2 film, PdSi 2 film, WSi 2 film, MoSi 2 film, a manufacturing method of a CMOS transistor according to claim 1, wherein the forming one of TaSi 2 film.
JP35356796A 1996-12-17 1996-12-17 Manufacturing method of CMOS transistor Expired - Fee Related JP3640079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35356796A JP3640079B2 (en) 1996-12-17 1996-12-17 Manufacturing method of CMOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35356796A JP3640079B2 (en) 1996-12-17 1996-12-17 Manufacturing method of CMOS transistor

Publications (2)

Publication Number Publication Date
JPH10177970A JPH10177970A (en) 1998-06-30
JP3640079B2 true JP3640079B2 (en) 2005-04-20

Family

ID=18431715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35356796A Expired - Fee Related JP3640079B2 (en) 1996-12-17 1996-12-17 Manufacturing method of CMOS transistor

Country Status (1)

Country Link
JP (1) JP3640079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541280B2 (en) 2010-09-29 2013-09-24 The Institute Of Microelectronics, Chinese Academy Of Sciences Semiconductor structure and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541280B2 (en) 2010-09-29 2013-09-24 The Institute Of Microelectronics, Chinese Academy Of Sciences Semiconductor structure and method for manufacturing the same

Also Published As

Publication number Publication date
JPH10177970A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
JPH11111642A (en) Manufacture of semiconductor device
US5741725A (en) Fabrication process for semiconductor device having MOS type field effect transistor
JPH06112158A (en) Manufacture of semiconductor device
US6492264B2 (en) Semiconductor device having a silicide layer with silicon-rich region and method for making the same
JPH11284179A (en) Semiconductor device and manufacture thereof
JPH0917998A (en) Mos transistor manufacturing method
JP3336604B2 (en) Method for manufacturing semiconductor device
JP3640079B2 (en) Manufacturing method of CMOS transistor
JPH09298300A (en) Manufacture of semiconductor device
JP2000315662A (en) Manufacture of semiconductor device
JPH10313117A (en) Mis transistor and manufacture thereof
JP3185235B2 (en) Method for manufacturing semiconductor device
JP3920959B2 (en) Method for manufacturing complementary semiconductor device
JPH07201777A (en) Manufacture of semiconductor device
JPH08274185A (en) Manufacture of mos transistor
JP2008227274A (en) Manufacturing method of semiconductor device
JPH06177067A (en) Manufacture of semiconductor integrated circuit device
JP3893997B2 (en) Manufacturing method of semiconductor device
JPH08130196A (en) Manufacture of silicide layer
JPH07249761A (en) Semiconductor device and its fabrication
JPH1167690A (en) Manufacture of semiconductor device
JPH10172920A (en) Manufacture of semiconductor device
JPH1050636A (en) Manufacture of semiconductor device
JP2000269491A (en) Manufacture of semiconductor device, and the semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees