JP3639543B2 - Organic waste treatment method and apparatus - Google Patents

Organic waste treatment method and apparatus Download PDF

Info

Publication number
JP3639543B2
JP3639543B2 JP2001155017A JP2001155017A JP3639543B2 JP 3639543 B2 JP3639543 B2 JP 3639543B2 JP 2001155017 A JP2001155017 A JP 2001155017A JP 2001155017 A JP2001155017 A JP 2001155017A JP 3639543 B2 JP3639543 B2 JP 3639543B2
Authority
JP
Japan
Prior art keywords
waste
organic waste
methane
tank
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001155017A
Other languages
Japanese (ja)
Other versions
JP2002346597A (en
Inventor
透 安成
修一郎 畠山
浩史 黒田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2001155017A priority Critical patent/JP3639543B2/en
Publication of JP2002346597A publication Critical patent/JP2002346597A/en
Application granted granted Critical
Publication of JP3639543B2 publication Critical patent/JP3639543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

【0001】
【発明の属する技術分野】
本発明は、畜産廃棄物を主体とし、他に水産系廃棄物、生ごみ等の生活系廃棄物等を含む有機性廃棄物をメタン発酵等により効率よく処理する方法及び装置に関するものである。
【0002】
【従来の技術】
有機性廃棄物のメタン発酵処理で得られるメタンガスは、電気や熱を回収するのに優れた燃料であり、下水処理の分野でメタン発酵が試みられたが、発生するガスの性状が安定しないために電気が安定して得られず、発電機の維持管理に多くの費用がかかり、有効に利用されていない。また、家畜糞尿等の畜産廃棄物をメタン発酵処理するのに下水分野での実績を導入しようとしたが、原料性状の違い等からうまく適用できていない。
【0003】
畜産廃棄物をメタン発酵処理する技術として、例えば、特開昭52−44072号公報には、畜産廃棄物をメタン発酵させてメタンガスを回収し、メタン発酵処理後のスラリーを乾燥・発酵させて堆肥化し、回収したメタンガスの一部を燃焼させて、得られた燃焼ガスを乾燥用熱源等として利用する方法が開示されている。
【0004】
【発明が解決しようとする課題】
畜産廃棄物をメタン発酵処理する際、畜産農家より搬出される糞の混じった長藁は、メタン発酵の難しい長藁の分離が効率的に行えないため、適正な処理ができずに野積みされ、環境汚染問題となっている。また、受入段階で分離した長藁を乾燥させ、さらにコンポスト発酵させる場合、厳寒期等においては、乾燥や発酵の熱源として補助燃料を使用する必要があり効率が悪い。
また、畜産廃棄物を主体とした原料は加温すると、12〜24時間程度の酸発酵期に引き続いて嫌気性メタン発酵が行われるが、単一の槽内でこれらを並行させて発酵するのは難しい。この場合、酸発酵用の発酵槽を別に設けると、加温器、ポンプがそれぞれに必要となり、コストやメンテナンスの負担が増大することになる。
【0005】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、畜産廃棄物を主体とした有機性廃棄物から効率よくメタンガスを取り出し、施肥効果の高い液体肥料を製造するとともに、メタン発酵の難しい長藁は受け入れた後分離してコンポスト化するシステムにおいて、長藁が効率的に分離できる前処理を行うとともに、メタンガスから回収した廃熱をシステム内で有効に利用することにより、メタン発酵を促進させることができ、厳寒期においても補助燃料なしで長藁をコンポスト発酵させることができる有機性廃棄物の処理方法及び装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の有機性廃棄物の処理方法は、畜産廃棄物を主体とした有機性廃棄物をメタン発酵槽でメタン発酵させてメタンガスを回収し、得られたメタンガスで発電及び/又は熱利用を行うとともに、メタン発酵処理後のスラリー(消化液)から液体肥料を製造する有機性廃棄物の処理方法であって、畜産糞尿の前処理として、藁の混じった糞及び尿を1つの受入槽に受け入れた後、藁と糞尿の懸濁液を藁を掻き上げて分離する掻上げ機に送入し、掻上げ機で分離した藁は固液分離した後に乾燥させ、さらに発酵させて堆肥とし、藁が分離された液分の多い糞尿の一部はメタン発酵工程に送り、糞尿の残部は掻上げ機上流の受入槽側に返送して循環させるように構成されている(図1、図2、図3参照)。
【0007】
上記の方法においては、畜産廃棄物を主体とした有機性廃棄物を廃棄物受入槽に受け入れた後、メタン発酵槽に投入するに際し、廃棄物受入槽内に加熱管群を配置して、メタンガスによる発電及び/又は熱利用で発生した廃熱を用いて加温した温水を加熱管群に流して有機性廃棄物を受け入れた受入槽を加温し、受入槽で原料である有機性廃棄物の酸発酵(予備発酵、一次発酵)を済ました後、メタン発酵槽で嫌気性消化を行い、メタン発酵を促進させることができる(図1、図4参照)。
また、上記の方法においては、畜産糞尿から分離した藁を乾燥設備で乾燥させた後、発酵設備で堆肥化するに際し、メタンガスによる発電及び/又は熱利用で発生した廃熱を利用して乾燥設備及び発酵設備を加温し、補助燃料を必要とすることなく堆肥を製造することができる(図1参照)。
【0008】
また、上記の方法において、メタン発酵槽からメタンガスを取り出す配管に熱線式の流量計を設ける場合には、流量計の上流側の配管は自然冷却又は凍結しない程度に加温してガス中の凝縮水を取り除き、除湿したガスを流量計の直前の配管で加温して流量計を安定させることが可能である(図5参照)。
また、上記の方法においては、メタン発酵槽から取り出したメタンガスをメタン発酵槽からのスラリー中の脱硫微生物により生物脱硫するに際し、メタン発酵槽からオーバーフローにより間欠的に流れてくるスラリーを二分して、動力を要することなくスラリーの一部は脱硫装置に導入し、残りのスラリーは搬出して液体肥料とすることが可能である(図6参照)。
【0009】
本発明の有機性廃棄物の処理装置は、藁の混じった糞及び尿が投入される受入ピットと、受入ピットから流入してくる藁と糞尿の懸濁液を掻上げピンを突出させたスクリーンベルトにより流入方向斜め上方に巻き上げて藁を掻き上げる掻上げ機と、掻上げ機で掻き上げて分離した藁を固液分離する固液分離機と、掻上げ機を通過した液分の多い糞尿及び固液分離機で分離された糞尿を搬出するポンプとを備え、搬出された糞尿の一部を掻上げ機上流の受入ピット側に返送して循環させるようにした前処理装置と、前処理装置から搬出された糞尿を主体とする有機性廃棄物を受け入れる廃棄物受入槽と、廃棄物受入槽からの有機性廃棄物を投入してメタン発酵させるメタン発酵槽と、メタン発酵槽から回収されたメタンガスを生物脱硫する脱硫装置と、脱硫装置で脱硫されたメタンガスを燃料として利用する発電手段及び/又は熱利用手段と、メタン発酵槽から排出されたメタン発酵処理後のスラリー(消化液)を受け入れて液体肥料として搬出可能な消化液貯槽と、前処理装置で分離された藁を主体とする有機性廃棄物を乾燥させる乾燥設備と、乾燥設備で乾燥させた藁を主体とする有機性廃棄物を発酵させてコンポスト化する堆肥発酵設備とを包含してなることを特徴としている(図1、図2、図3参照)。
【0010】
上記の装置においては、糞尿を主体とした有機性廃棄物を受け入れる廃棄物受入槽内に、多数の加熱管が上下の主配管を介して縦列配置された加熱管群を設け、発電手段及び/又は熱利用手段で発生した廃熱を用いて加温した温水を加熱管群に流して有機性廃棄物を受け入れた受入槽を加温するようにし、受入槽で原料である有機性廃棄物の酸発酵(予備発酵、一次発酵)を済ました後、メタン発酵槽で嫌気性消化を行い、メタン発酵を促進させることが好ましい(図1、図4参照)。
また、上記の装置においては、藁を主体とした有機性廃棄物の乾燥設備及び/又は堆肥発酵設備に、発電手段及び/又は熱利用手段で発生した廃熱を用いて昇温した温風を導入することが好ましい(図1参照)。
【0011】
また、上記の装置においては、メタン発酵槽の一端部上部からメタンガスを取り出す配管に熱線式の流量計を設け、流量計の手前の配管を下方に分岐して分岐配管の下部にシールポットを設け、流量計の上流側の配管は自然冷却又は凍結しない程度に加温してガス中の凝縮水が除かれシールポットに回収されるようにし、除湿されたガスが流量計の直前の配管で加温されるようにすることができる(図5参照)。
また、上記の装置においては、メタン発酵槽の端部に設けられたスラリー抜き出し用の配管が、間欠的に流れてくるスラリーをオーバーフローさせる略逆U字管部と、略逆U字管部の下方に接続された略逆U字管部より径の小さい脱硫装置側配管及び搬出用分岐配管と、脱硫装置手前でさらに径を小さくした脱硫装置側配管とからなり、メタン発酵槽から間欠的に流れてくるスラリーを二分して、動力を要することなくスラリーの一部は生物脱硫用として脱硫装置に導入され、残りのスラリーは消化液貯槽に搬出され液体肥料とすることができる(図6参照)。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。図1は、本発明の実施の第1形態による有機性廃棄物の処理装置の概略構成を示している。畜産農家等から搬出される畜産廃棄物は、前処理装置10で液分の多い糞尿と長藁に固液分離され、液分の多い糞尿は、粉砕機12で粉砕された水産系廃棄物や生活系廃棄物とともに廃棄物受入槽14に投入され、メタン発酵の難しい長藁は堆肥化工程の一時貯留設備16に送られる。
【0013】
図2は前処理装置10の構成を示しており、受入ピット18には、タンカー等により搬送された尿及びコンテナ等により搬送された糞の混じった長藁が投入される。藁と糞尿の懸濁液は受入ピット18から掻上げ機20に導入され、掻上げ機20で藁が掻き上げられて固液分離機22で固液分離された後、分離された藁は堆肥化工程に送られ、掻上げ機20を通過した液分の多い糞尿及び固液分離機22で分離された糞尿はポンプ24により搬出される。搬出された糞尿の一部はメタン発酵工程に送られ、残りの糞尿は掻上げ機20上流の受入ピット18側に返送して循環させる。
【0014】
掻上げ機20は、斜め上から見ると図3に示すように、掻上げピン26を突出させたスクリーンベルト28が所定間隔で配置されており、モータ30で上部ローター32が取り付けられた主軸を回転させることにより、スクリーンベルト28が上向きに移動するようになっている。34は下部ローター、36はシール部材である。
受入ピット18から藁と糞尿の懸濁液が掻上げ機20に流入してくると、藁は掻上げピン26に引っ掛かって掻き上げられ、液分の多い糞尿はスクリーンベルト28の間を通過していく。
【0015】
廃棄物受入槽14に投入された畜産廃棄物を主体とする原料は、後述するメタンガスによる発電及び/又は熱利用で発生した余剰熱で加温した温水を用いて廃棄物受入槽14を加温することで、酸発酵(予備発酵、一次発酵)が行われ、受入槽14で酸発酵を済ました後、メタン発酵槽38で嫌気性消化を行うことが可能となり、メタン発酵を促進させることができる。本システムでは効率的にメタンを取り出せることから、得られる電気と熱が豊富であり、多少放熱の多い受入槽14であっても十分に加温することが可能となる。このことにより、酸発酵を受入槽14内で済ますことができ、さらに厳寒期の凍結原料をそのまま受け入れることも可能となる。
【0016】
図4は廃棄物受入槽14の加温構造を示しており、受入槽14内の壁面に温水トレース配管として、多数の加熱管40が上下の主配管42、44を介して縦列配置されている。46は温水入口、48は温水出口である。このような加熱管群50のユニットが受入槽14内の壁面に複数組設けられている。この構造により受入槽14を効率よく加温できることから、受入槽14で原料の酸発酵(予備発酵、一次発酵)を行うことが可能となる。
【0017】
受入槽14で酸発酵を済ませた原料は、メタン発酵槽38に供給されて嫌気性メタン発酵が行われる。メタン発酵槽38としては、螺旋羽根攪拌機等を用いた水平式の他、容量等によってはサイロ式を用いることも可能であるが、いずれにしてもガス発生効率が高くなる発酵槽とする必要がある。また、得られたメタンガスによる発電及び/又は熱利用で発生した余剰熱で加温した温水を用いてメタン発酵槽38を加温することで、原料の嫌気性メタン発酵が促進され、効率よくメタンを取り出すことができる。図1では図示を省略しているが、メタン発酵槽38の壁面には温水トレース配管が設けられている。
【0018】
メタン発酵槽38から取り出したメタンガス(メタンを主成分とするバイオガス)は、機器の腐食原因となる硫黄分を除去するために脱硫装置52に導入され、メタン発酵槽38からのスラリー中の脱硫微生物を利用して生物脱硫される。脱硫処理されたメタンガスは、ガスホルダー54に一旦貯えられた後、発電機56、温水ヒータ58の燃料として利用され、発電及び熱利用が行われる。なお、温水ヒータ58には、必要に応じて燃料タンク60から重油等の補助燃料が供給される。発電機56で得られた電力は系内の各施設で利用され、余剰電力は系外で利用したり、売電することも可能である。温水ヒータ58で得られた温水は、発電機56の廃熱で加温した温水とともに、廃棄物受入槽14の加温、メタン発酵槽38の加温、後述する乾燥設備62及び堆肥発酵設備64の加温用熱源、燃料タンク60内の燃料の加温などに利用される。利用後の温水は温水タンク68を経由して温水ヒータ58に循環される。
【0019】
メタン発酵槽38から排出されるメタン発酵処理後のスラリー(消化液)は、一部が脱硫装置52に導入されてメタンガスの生物脱硫に利用され、残りのスラリーは脱硫利用後のスラリーとともに、スラリー受槽70を経由して消化液貯槽72に送られる。なお、スラリー受槽70からのスラリーの一部が廃棄物受入槽14に投入される。消化液貯槽72のスラリーは施肥効果の高い液体肥料として搬出される。
【0020】
一時貯留設備16に貯えられたメタン発酵の難しい長藁等は、乾燥設備62で天日乾燥された後、堆肥発酵設備64で発酵されて堆肥となる。この場合、上述したように、回収したメタンガスを燃料として利用した温水ヒータ58からの温水及び発電機56の廃熱で加温した温水が熱交換器74、76に導入され、温水で昇温された温風が乾燥設備62及び堆肥発酵設備64に導入される。これにより、天日乾燥が困難な厳寒期においても、補助燃料を必要とすることなく、長藁等をコンポスト化することができる。堆肥発酵設備64からの堆肥は完成堆肥貯蔵設備78に貯えられた後、搬出される。
【0021】
図5は、本発明の実施の第2形態による有機性廃棄物の処理装置の要部を示している。メタン発酵槽38の発生ガス出口80に接続された発生ガス回収管82に熱線式の流量計84を設ける場合、流量計84の手前で配管を下方に分岐して分岐配管の下部にシールポット86を設け、流量計84の手前に至るまでの配管88は自然冷却するか、又は凍結しない程度に加温し、ガス中の凝縮水を取り除いてシールポット86に回収し、流量計84の直前の配管90でヒータ92等により加温を行う。流量計84で流量測定されたガスは上述の脱硫装置に送られる。熱線式の流量計は、温度変化には影響を受けないが、ミストがあると不安定になるので、この構成を採用することにより、流量計が安定することになる。特に、寒冷地、厳寒期に効果的である。
他の構成及び作用は、実施の第1形態の場合と同様である。
【0022】
図6は、本発明の実施の第3形態による有機性廃棄物の処理装置の要部を示している。メタン発酵槽38の端部に設けられたスラリー抜き出し用の配管は、間欠的に流れてくるスラリーをオーバーフローさせる略逆U字管部94と、略逆U字管部94の下方に接続された略逆U字管部94より径の小さい脱硫装置側配管96及び搬出用分岐配管98と、脱硫装置手前でさらに径を小さくした脱硫装置側配管100とからなる。102、104はバルブである。図6では配管の径の一例を示している。上述したように、メタンガスの生物脱硫にはスラリー中の脱硫微生物を利用するが、脱硫処理を十分に行うためには脱硫装置でのスラリーの滞留時間が長い方がよい。そこで、上記のような構造として、メタン発酵槽38から間欠的に流れてくるスラリーの一部を脱硫装置に導入し、残りのスラリーを消化液貯槽に搬出するようにする。この構成を採用することにより、ポンプ等による動力が不要となる。
他の構成及び作用は、実施の第1形態の場合と同様である。
【0023】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 畜産廃棄物をメタン発酵処理する際に、畜産農家より搬出される糞の混じった長藁を、受入段階で効率的に糞尿とメタン発酵が難しい長藁に分離できるので、メタン発酵が促進されるだけでなく、長藁のコンポスト化も可能となる。
(2) 本システムでは効率的にメタンを取り出せることから、得られる電気と熱が豊富であり、簡易な乾燥設備と発酵設備を置くことで、受入段階で分離した長藁を厳寒期においても補助燃料なしでコンポスト発酵させることができる。
(3) 熱源が豊富な本システムでは、多少放熱の多い受入槽であっても十分に加温することが可能であり、これにより、原料の酸発酵(予備発酵、一次発酵)を受入槽内で済ますことができ、さらに厳寒期の凍結原料をそのまま受け入れることも可能となる。また、受入槽に温水トレース配管を設置することにより効率よく加温できる。
(4) 有機性廃棄物から効率よくメタンガスを取り出せるだけでなく、施肥効果の高い液体肥料を製造することができる。
(5) メタン発酵槽の発生ガス出口配管に熱線式の流量計を設置する場合に、発生ガスに含まれるミストを除去できる構成とすることにより、寒冷地、厳寒期においても流量計を安定させることができる。
(6) メタン発酵槽のスラリー抜き出し配管を本発明の構成とすることにより、間欠的に流れてくるスラリーの一部を、動力を要することなく、脱硫装置に導入することができ、メタンガスの生物脱硫に必要な滞留時間も確保することができる。
(7) 本システムでは、設備費、運転費を低減することができ、メンテナンスも容易である。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による有機性廃棄物の処理装置を示す系統的概略構成説明図である。
【図2】本発明の実施の第1形態における前処理装置を示す概略構成説明図である。
【図3】図2に示す前処理装置における掻上げ機を示す平面構成説明図である。
【図4】本発明の実施の第1形態における廃棄物受入槽の加温構造を示す内側面構成説明図である。
【図5】本発明の実施の第2形態による有機性廃棄物の処理装置の要部を示す概略構成説明図である。
【図6】本発明の実施の第3形態による有機性廃棄物の処理装置の要部を示す概略構成説明図である。
【符号の説明】
10 前処理装置
12 粉砕機
14 廃棄物受入槽
16 一時貯留設備
18 受入ピット
20 掻上げ機
22 固液分離機
24 ポンプ
26 掻上げピン
28 スクリーンベルト
30 モータ
32 上部ローター
34 下部ローター
36 シール部材
38 メタン発酵槽
40 加熱管
42、44 主配管
46 温水入口
48 温水出口
50 加熱管群
52 脱硫装置
54 ガスホルダー
56 発電機
58 温水ヒータ
60 燃料タンク
62 乾燥設備
64 堆肥発酵設備
68 温水タンク
70 スラリー受槽
72 消化液貯槽
74、76 熱交換器
78 完成堆肥貯蔵設備
80 発生ガス出口
82 発生ガス回収管
84 流量計
86 シールポット
88、90 配管
92 ヒータ
94 略逆U字管部
96、100 脱硫装置側配管
98 搬出用分岐配管
102、104 バルブ
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method and apparatus for efficiently treating organic waste mainly composed of livestock waste and other organic waste such as marine waste and garbage such as kitchen waste by methane fermentation or the like.
[0002]
[Prior art]
Methane gas obtained from methane fermentation treatment of organic waste is an excellent fuel for recovering electricity and heat, and methane fermentation has been tried in the field of sewage treatment, but the properties of the generated gas are not stable. However, electricity cannot be obtained stably, and it takes a lot of money to maintain the generator and it is not used effectively. In addition, attempts have been made to introduce results in the sewage field for methane fermentation of livestock waste such as livestock manure, but it has not been successfully applied due to differences in raw material properties.
[0003]
As a technique for methane fermentation treatment of livestock waste, for example, Japanese Patent Application Laid-Open No. 52-44072 discloses that methane gas is recovered by methane fermentation of livestock waste, and slurry after methane fermentation treatment is dried and fermented to produce compost. A method is disclosed in which part of the recovered methane gas is combusted and the obtained combustion gas is used as a heat source for drying or the like.
[0004]
[Problems to be solved by the invention]
When livestock waste is treated with methane fermentation, the long pepper mixed with feces from livestock farmers cannot be separated efficiently and cannot be treated properly. It has become an environmental pollution problem. Moreover, when drying the long knot separated at the receiving stage and further performing compost fermentation, it is necessary to use an auxiliary fuel as a heat source for drying and fermentation in a severe cold season and the like, which is inefficient.
In addition, when the raw materials mainly composed of livestock waste are heated, anaerobic methane fermentation is carried out following the acid fermentation period of about 12 to 24 hours, but these are fermented in parallel in a single tank. Is difficult. In this case, if a fermenter for acid fermentation is provided separately, a heater and a pump are required for each, and the cost and maintenance burden increase.
[0005]
The present invention has been made in view of the above points, and the object of the present invention is to efficiently extract methane gas from organic waste mainly composed of livestock waste, to produce a liquid fertilizer with a high fertilizing effect, and to produce methane fermentation. In a system that accepts Nagatoro, which is difficult to separate, and separates and composts it, it performs pretreatment that allows Nagatoro to efficiently separate it, and effectively uses waste heat recovered from methane gas in the system, thereby allowing methane fermentation. It is an object of the present invention to provide a method and apparatus for treating organic waste, which can promote compost fermentation without using auxiliary fuel even in severe cold seasons.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the organic waste processing method of the present invention recovers methane gas by subjecting organic waste mainly composed of livestock waste to methane fermentation in a methane fermentation tank, and obtaining the methane gas. Is an organic waste processing method for producing liquid fertilizer from slurry (digested liquid) after methane fermentation treatment, and generating feces mixed with straw as a pretreatment of livestock manure And after receiving the urine in one receiving tank, the suspension of sputum and manure is sent to a scraping machine that picks up the sputum and separates it, and the sputum separated by the scraper is solid-liquid separated and dried. Furthermore, it is configured so that it is further fermented into compost, and a part of the liquid-rich manure that is separated from the straw is sent to the methane fermentation process, and the rest of the manure is sent back to the receiving tank upstream of the scraper and circulated. (See FIGS. 1, 2, and 3).
[0007]
In the above method, when organic waste mainly composed of livestock waste is received in the waste receiving tank and then charged into the methane fermentation tank, a heating tube group is arranged in the waste receiving tank, and methane gas Warm water that has been heated using waste heat generated by power generation and / or use of heat through the heating tube group to heat the receiving tank that received the organic waste, and the organic waste that is the raw material in the receiving tank After the acid fermentation (preliminary fermentation, primary fermentation) is completed, anaerobic digestion can be performed in a methane fermentation tank to promote methane fermentation (see FIGS. 1 and 4).
In addition, in the above method, after drying the straw separated from livestock manure with a drying facility, when the compost is made with a fermentation facility, the drying facility uses waste heat generated by power generation and / or heat utilization with methane gas. And the fermenting equipment is heated, and compost can be manufactured without requiring auxiliary fuel (see FIG. 1).
[0008]
In addition, in the above method, when a hot-wire flow meter is provided in the piping for extracting methane gas from the methane fermentation tank, the piping on the upstream side of the flow meter is heated to such an extent that it is not naturally cooled or frozen and condensed in the gas. The flow meter can be stabilized by removing water and heating the dehumidified gas through a pipe immediately before the flow meter (see FIG. 5).
In the above method, when biodesulfurizing the methane gas taken out from the methane fermentation tank by the desulfurization microorganisms in the slurry from the methane fermentation tank, the slurry flowing intermittently from the methane fermentation tank by overflow is divided into two parts, A part of the slurry can be introduced into the desulfurizer without requiring power, and the remaining slurry can be carried out to form liquid fertilizer (see FIG. 6).
[0009]
The organic waste processing apparatus of the present invention includes a receiving pit into which dredged urine and urine are mixed, and a screen in which a suspension of dredging and excreted urine flowing from the receiving pit is lifted and a pin protrudes. A scraper that rolls up the sludge by lifting it up in the inflow direction with a belt, a solid-liquid separator that separates the sputum that has been separated by scraping with the scraper, and manure with a large amount of liquid that has passed through the scraper And a pump for discharging manure separated by the solid-liquid separator, and a pretreatment device for returning a part of the discharged manure to the receiving pit side upstream of the scraper and circulating it A waste receiving tank that accepts organic waste mainly composed of manure discharged from the device, a methane fermenter that inputs organic waste from the waste receiving tank to ferment methane, and a methane fermentation tank Desulfurization to biodesulfurize methane gas And power generation means and / or heat utilization means using methane gas desulfurized by the desulfurization equipment, and slurry (digested liquid) after methane fermentation treatment discharged from the methane fermentation tank can be taken out as liquid fertilizer Digestive fluid storage tank, drying equipment for drying organic waste mainly composed of soot separated by pretreatment equipment, and organic waste mainly composed of soot dried by drying equipment to be composted It is characterized by including the compost fermentation equipment which performs (refer FIG.1, FIG.2, FIG.3).
[0010]
In the above apparatus, a heating tube group in which a number of heating tubes are arranged in tandem via upper and lower main pipings is provided in a waste receiving tank that receives organic waste mainly composed of manure, and power generation means and / or Alternatively, warm water that has been heated using waste heat generated by heat utilization means is allowed to flow through the heating tube group to heat the receiving tank that received the organic waste, and the organic waste that is the raw material in the receiving tank After acid fermentation (preliminary fermentation, primary fermentation), it is preferable to promote anaerobic digestion in a methane fermentation tank to promote methane fermentation (see FIGS. 1 and 4).
In the above-mentioned apparatus, the warm air heated by using the waste heat generated by the power generation means and / or the heat utilization means is supplied to the organic waste drying equipment and / or compost fermentation equipment mainly composed of straw. It is preferable to introduce (see FIG. 1).
[0011]
Moreover, in the above apparatus, a hot-wire flow meter is provided in a pipe for taking out methane gas from the upper end of one end of the methane fermentation tank, a pipe in front of the flow meter is branched downward, and a seal pot is provided in the lower part of the branch pipe. The piping on the upstream side of the flow meter is heated so that it does not cool naturally or freezes so that the condensed water in the gas is removed and collected in the seal pot, and the dehumidified gas is added to the piping immediately before the flow meter. It can be made warm (see FIG. 5).
Moreover, in said apparatus, the pipe | tube for slurry extraction provided in the edge part of a methane fermenter has the substantially reverse U-shaped pipe part which overflows the slurry which flows intermittently, and a substantially reverse U-shaped pipe part. Consists of desulfurization equipment side piping and carry-out branch piping having a smaller diameter than the substantially inverted U-shaped pipe connected below, and desulfurization equipment side piping with a smaller diameter before the desulfurization equipment, intermittently from the methane fermentation tank The flowing slurry is divided into two parts, and a part of the slurry is introduced into the desulfurization apparatus for biodesulfurization without requiring power, and the remaining slurry can be carried out to the digestive fluid storage tank to be used as liquid fertilizer (see FIG. 6). ).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows a schematic configuration of an organic waste processing apparatus according to a first embodiment of the present invention. Livestock waste transported from livestock farmers, etc. is solid-liquid separated into a large amount of liquid urine and long manure by the pretreatment device 10, and the liquid waste urine is aquatic wastes crushed by the crusher 12 Along with the daily waste, it is put into the waste receiving tank 14, and the long pepper that is difficult to methane fermentation is sent to the temporary storage facility 16 in the composting process.
[0013]
FIG. 2 shows the configuration of the pretreatment device 10. In the receiving pit 18, urine transported by a tanker or the like and urine mixed with feces transported by a container or the like are placed. The suspension of culm and manure is introduced into the scraper 20 from the receiving pit 18, and the culm is scraped up by the scraper 20 and solid-liquid separated by the solid-liquid separator 22. The excreta that has been sent to the conversion step and has passed through the scraper 20 and has been separated by the solid-liquid separator 22 is carried out by the pump 24. Part of the discharged manure is sent to the methane fermentation process, and the remaining manure is returned to the receiving pit 18 upstream of the scraper 20 for circulation.
[0014]
As shown in FIG. 3, the scraping machine 20 has a screen belt 28 with scraping pins 26 protruding at predetermined intervals, as shown in FIG. 3, and a spindle on which an upper rotor 32 is attached by a motor 30. By rotating, the screen belt 28 moves upward. Reference numeral 34 denotes a lower rotor, and 36 denotes a seal member.
When a suspension of sputum and manure flows from the receiving pit 18 into the scraper 20, the sputum is caught by the scraping pin 26 and swept up, and the excreta having a high liquid content passes between the screen belts 28. To go.
[0015]
The raw material mainly composed of livestock waste put into the waste receiving tank 14 warms the waste receiving tank 14 using hot water heated by surplus heat generated by power generation and / or heat use by methane gas, which will be described later. As a result, acid fermentation (preliminary fermentation, primary fermentation) is performed, and after acid fermentation is completed in the receiving tank 14, it becomes possible to perform anaerobic digestion in the methane fermentation tank 38, thereby promoting methane fermentation. it can. Since this system can efficiently extract methane, the electricity and heat that are obtained are abundant, and even the receiving tank 14 with a little heat dissipation can be sufficiently heated. As a result, acid fermentation can be completed in the receiving tank 14, and it is also possible to receive frozen raw materials in the severe cold season as they are.
[0016]
FIG. 4 shows a heating structure of the waste receiving tank 14, and a large number of heating pipes 40 are arranged in cascade on the wall surface inside the receiving tank 14 as upper and lower main pipes 42 and 44 as hot water trace pipes. . 46 is a hot water inlet and 48 is a hot water outlet. A plurality of such units of the heating tube group 50 are provided on the wall surface in the receiving tank 14. Since the receiving tank 14 can be efficiently heated by this structure, it is possible to perform acid fermentation (preliminary fermentation, primary fermentation) of the raw material in the receiving tank 14.
[0017]
The raw material that has been subjected to acid fermentation in the receiving tank 14 is supplied to the methane fermentation tank 38 for anaerobic methane fermentation. As the methane fermentation tank 38, a horizontal type using a spiral blade stirrer or the like, or a silo type can be used depending on the capacity or the like. is there. In addition, by heating the methane fermentation tank 38 using hot water heated by surplus heat generated by power generation and / or heat generation using the obtained methane gas, anaerobic methane fermentation of the raw material is promoted, and methane can be efficiently used. Can be taken out. Although not shown in FIG. 1, a hot water trace pipe is provided on the wall surface of the methane fermentation tank 38.
[0018]
Methane gas (biogas mainly composed of methane) taken out from the methane fermentation tank 38 is introduced into the desulfurization device 52 in order to remove sulfur components that cause corrosion of the equipment, and desulfurization in the slurry from the methane fermentation tank 38 is performed. Biodesulfurization is performed using microorganisms. The desulfurized methane gas is temporarily stored in the gas holder 54 and then used as fuel for the generator 56 and the hot water heater 58 to generate power and use heat. The hot water heater 58 is supplied with auxiliary fuel such as heavy oil from the fuel tank 60 as necessary. The electric power obtained by the generator 56 is used at each facility in the system, and the surplus power can be used outside the system or sold. The warm water obtained by the warm water heater 58 is warmed by the waste heat of the generator 56, warming the waste receiving tank 14, warming the methane fermentation tank 38, drying equipment 62 and compost fermentation equipment 64 described later. This is used for heating the heat in the fuel tank 60 and for heating the fuel in the fuel tank 60. The used hot water is circulated to the hot water heater 58 via the hot water tank 68.
[0019]
A part of the slurry (digested liquid) after the methane fermentation treatment discharged from the methane fermentation tank 38 is introduced into the desulfurizer 52 and used for biological desulfurization of methane gas, and the remaining slurry is a slurry together with the slurry after desulfurization use. It is sent to the digestive juice storage tank 72 via the receiving tank 70. A part of the slurry from the slurry receiving tank 70 is charged into the waste receiving tank 14. The slurry in the digestive fluid storage tank 72 is carried out as a liquid fertilizer having a high fertilizing effect.
[0020]
After being dried in the sun by the drying facility 62, the long pepper or the like stored in the temporary storage facility 16 is fermented by the compost fermentation facility 64 to become compost. In this case, as described above, warm water from the warm water heater 58 using the recovered methane gas as fuel and warm water heated by the waste heat of the generator 56 are introduced into the heat exchangers 74 and 76 and heated with warm water. The warm air is introduced into the drying facility 62 and the compost fermentation facility 64. As a result, even in the severe cold season when it is difficult to dry in the sun, it is possible to compost Nagatoro etc. without the need for auxiliary fuel. The compost from the compost fermentation facility 64 is stored in the finished compost storage facility 78 and then carried out.
[0021]
FIG. 5 shows a main part of an organic waste processing apparatus according to the second embodiment of the present invention. When a hot-wire flow meter 84 is provided in the generated gas recovery pipe 82 connected to the generated gas outlet 80 of the methane fermentation tank 38, the pipe is branched downward before the flow meter 84 and a seal pot 86 is provided below the branch pipe. the provided, or the pipe 88 up to the front of the flow meter 84 is naturally cooled or frozen warmed to the extent not, harvested seal pot 86 to remove the condensed water in the gas, the flow meter 84 of the previous Heating is performed by a heater 92 or the like in the pipe 90. The gas whose flow rate is measured by the flow meter 84 is sent to the above-described desulfurization apparatus. The hot-wire flow meter is not affected by temperature changes, but becomes unstable when mist is present. By adopting this configuration, the flow meter becomes stable. It is particularly effective in cold regions and severe cold seasons.
Other configurations and operations are the same as those in the first embodiment.
[0022]
FIG. 6 shows an essential part of an organic waste processing apparatus according to the third embodiment of the present invention. The pipe for removing the slurry provided at the end of the methane fermentation tank 38 is connected to a substantially inverted U-shaped pipe portion 94 that overflows the intermittently flowing slurry and a lower portion of the substantially inverted U-shaped pipe portion 94. It consists of a desulfurization apparatus side pipe 96 and a carry-out branch pipe 98 having a diameter smaller than that of the substantially inverted U-shaped pipe portion 94, and a desulfurization apparatus side pipe 100 having a smaller diameter before the desulfurization apparatus. Reference numerals 102 and 104 denote valves. FIG. 6 shows an example of the diameter of the pipe. As described above, desulfurization microorganisms in the slurry are used for biodesulfurization of methane gas, but in order to sufficiently perform the desulfurization treatment, it is preferable that the residence time of the slurry in the desulfurization apparatus is long. Therefore, in the structure as described above, a part of the slurry that flows intermittently from the methane fermentation tank 38 is introduced into the desulfurization apparatus, and the remaining slurry is carried out to the digestion liquid storage tank. By adopting this configuration, power by a pump or the like becomes unnecessary.
Other configurations and operations are the same as those in the first embodiment.
[0023]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) When livestock waste is treated with methane fermentation, feces mixed with feces from livestock farmers can be efficiently separated into feces and fertilizers that are difficult to ferment methane at the receiving stage. Not only will it be promoted, it will also be possible to make composts from Nagatoro.
(2) Since this system can efficiently extract methane, the electricity and heat obtained are abundant, and simple drying equipment and fermentation equipment are installed to assist the Nagatoro separated at the receiving stage even in the severe cold season. Can be composted without fuel.
(3) In this system with abundant heat sources, it is possible to sufficiently heat even a receiving tank with a little heat dissipation, so that the acid fermentation (preliminary fermentation, primary fermentation) of the raw material is received in the receiving tank. It is also possible to accept frozen raw materials in the cold season as they are. Moreover, it can heat efficiently by installing warm water trace piping in a receiving tank.
(4) Not only can methane gas be efficiently extracted from organic waste, but also liquid fertilizer with a high fertilizing effect can be produced.
(5) When a hot-wire flow meter is installed in the gas outlet piping of the methane fermentation tank, the flow meter is stabilized even in cold regions and severe cold seasons by adopting a configuration that can remove mist contained in the generated gas. be able to.
(6) By making the slurry extraction pipe of the methane fermentation tank into the configuration of the present invention, a part of the slurry flowing intermittently can be introduced into the desulfurization apparatus without requiring power, and the biological product of methane gas The residence time required for desulfurization can also be secured.
(7) With this system, equipment costs and operating costs can be reduced, and maintenance is easy.
[Brief description of the drawings]
FIG. 1 is a systematic schematic configuration explanatory view showing an organic waste processing apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration explanatory view showing a preprocessing apparatus according to the first embodiment of the present invention.
3 is an explanatory plan view showing a scraper in the pretreatment apparatus shown in FIG. 2; FIG.
FIG. 4 is an explanatory diagram of an inner surface configuration showing a heating structure of the waste receiving tank in the first embodiment of the present invention.
FIG. 5 is a schematic configuration explanatory view showing a main part of an organic waste processing apparatus according to a second embodiment of the present invention.
FIG. 6 is a schematic configuration explanatory view showing a main part of an organic waste processing apparatus according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pretreatment apparatus 12 Crusher 14 Waste receiving tank 16 Temporary storage equipment 18 Reception pit 20 Scraping machine 22 Solid-liquid separator 24 Pump 26 Scraping pin 28 Screen belt 30 Motor 32 Upper rotor 34 Lower rotor 36 Seal member 38 Methane Fermenter 40 Heating pipes 42 and 44 Main pipe 46 Hot water inlet 48 Hot water outlet 50 Heating pipe group 52 Desulfurization device 54 Gas holder 56 Generator 58 Hot water heater 60 Fuel tank 62 Drying equipment 64 Compost fermentation equipment 68 Hot water tank 70 Slurry receiving tank 72 Digestion Liquid storage tanks 74 and 76 Heat exchanger 78 Complete compost storage facility 80 Generated gas outlet 82 Generated gas recovery pipe 84 Flow meter 86 Seal pot 88 and 90 Pipe 92 Heater 94 Substantially U-shaped pipe part 96 and 100 Desulfurization apparatus side pipe 98 Branch piping 102, 104 Valve

Claims (8)

  1. 畜産廃棄物を主体とした有機性廃棄物をメタン発酵槽でメタン発酵させてメタンガスを回収し、得られたメタンガスで発電及び/又は熱利用を行うとともに、メタン発酵処理後のスラリーから液体肥料を製造する有機性廃棄物の処理方法であって、畜産糞尿の前処理として、藁の混じった糞及び尿を1つの受入ピットに受け入れた後、藁と糞尿の懸濁液を藁を掻き上げて分離する掻上げ機に送入し、掻上げ機で分離した藁は固液分離した後に乾燥させ、あるいは発酵させて堆肥とし、藁が分離された液分の多い糞尿の一部はメタン発酵工程に送り、糞尿の残部は掻上げ機上流の受入ピット側に返送して循環させることにより、藁を効率的に分離することを特徴とする有機性廃棄物の処理方法。Organic waste, mainly livestock waste, is methane fermented in a methane fermenter to recover methane gas. The resulting methane gas generates power and / or heat, and liquid fertilizer is removed from the slurry after methane fermentation treatment. A method for treating organic waste to be manufactured, and as a pretreatment of livestock manure, after accepting feces and urine mixed with straw in one receiving pit , the suspension of straw and manure is scraped up. The soot separated into the scraping machine and separated by the scraping machine is solid-liquid separated and then dried or fermented into compost. A waste organic waste is returned to the receiving pit side upstream of the scraper and circulated so that the waste is efficiently separated .
  2. 畜産廃棄物を主体とした有機性廃棄物を廃棄物受入槽に受け入れた後、メタン発酵槽に投入するに際し、廃棄物受入槽内に加熱管群を配置して、メタンガスによる発電及び/又は熱利用で発生した廃熱を用いて加温した温水を加熱管群に流して有機性廃棄物を受け入れた受入槽を加温し、受入槽で原料である有機性廃棄物の酸発酵を済ました後、メタン発酵槽で嫌気性消化を行い、メタン発酵を促進させる請求項1記載の有機性廃棄物の処理方法。  When organic waste mainly consisting of livestock waste is received in the waste receiving tank and then put into the methane fermentation tank, a heating tube group is arranged in the waste receiving tank to generate power and / or heat from methane gas. Heated warm water using waste heat generated from the use was passed through the heating tube group to heat the receiving tank that received the organic waste, and finished acid fermentation of the organic waste that was the raw material in the receiving tank. 2. The method for treating organic waste according to claim 1, wherein anaerobic digestion is performed in a methane fermentation tank to promote methane fermentation.
  3. 畜産糞尿から分離した藁を乾燥設備で乾燥させた後、発酵設備で堆肥化するに際し、メタンガスによる発電及び/又は熱利用で発生した廃熱を利用して乾燥設備及び発酵設備を加温し、補助燃料を必要とすることなく堆肥を製造する請求項1又は2記載の有機性廃棄物の処理方法。  After drying the koji separated from livestock manure in the drying facility, when composting in the fermentation facility, warm the drying facility and the fermentation facility using waste heat generated by power generation and / or heat utilization with methane gas, The method for treating organic waste according to claim 1 or 2, wherein compost is produced without requiring auxiliary fuel.
  4. メタン発酵槽からメタンガスを取り出す配管に熱線式の流量計を設け、流量計の上流側の配管を自然冷却してガス中の水分を凝縮させて取り除き、除湿したガスを流量計の直前の配管で加温して流量計を安定させる請求項1、2又は3記載の有機性廃棄物の処理方法 Only set the flow meter hot-wire to the pipe for taking out the methane gas from the methane fermentation tank, the upstream side piping of the flowmeter cooled naturally removed by condensing the moisture in the gas, piping dehumidified gas flowmeter immediately preceding The method for treating organic waste according to claim 1, 2 or 3, wherein the flowmeter is stabilized by heating .
  5. 藁の混じった糞及び尿が投入される受入ピットと、受入ピットから流入してくる藁と糞尿の懸濁液を掻上げピンを突出させたスクリーンベルトにより流入方向斜め上方に巻き上げて藁を掻き上げる掻上げ機と、掻上げ機で掻き上げて分離した藁を固液分離する固液分離機と、掻上げ機を通過した液分の多い糞尿及び固液分離機で分離された糞尿を搬出するポンプとを備え、搬出された糞尿の一部を掻上げ機上流の受入ピット側に返送して循環させることにより、藁を効率的に分離するようにした前処理装置と、
    前処理装置から搬出された糞尿を主体とする有機性廃棄物を受け入れる廃棄物受入槽と、
    廃棄物受入槽からの有機性廃棄物を投入してメタン発酵させるメタン発酵槽と、
    メタン発酵槽から回収されたメタンガスを生物脱硫する脱硫装置と、
    脱硫装置で脱硫されたメタンガスを燃料として利用する発電手段及び/又は熱利用手段と、
    メタン発酵槽から排出されたメタン発酵処理後のスラリーを受け入れて液体肥料として搬出可能な消化液貯槽と、
    前処理装置で分離された藁を主体とする有機性廃棄物を乾燥させる乾燥設備と、
    乾燥設備で乾燥させた藁を主体とする有機性廃棄物を発酵させてコンポスト化する堆肥発酵設備とを包含してなることを特徴とする有機性廃棄物の処理装置。
    The receiving pit into which feces and urine mixed with sputum is thrown in, and the suspension of sputum and feces and urine flowing from the receiving pit is rolled up obliquely upward in the inflow direction by the screen belt with the pin protruding, and the sputum is scraped A scraper that raises, a solid-liquid separator that separates the soot separated by the scraper, and a stool separated by the solid-liquid separator. A pretreatment device that efficiently separates soot by returning and circulating a part of the discharged manure to the receiving pit upstream of the scraper,
    A waste receiving tank for receiving organic waste mainly composed of manure discharged from the pretreatment device;
    A methane fermentation tank for fermenting methane by introducing organic waste from a waste receiving tank;
    A desulfurization device for biodesulfurization of methane gas recovered from the methane fermentation tank;
    Power generation means and / or heat utilization means using methane gas desulfurized by a desulfurization apparatus as fuel,
    A digestive fluid storage tank that accepts the slurry after the methane fermentation treatment discharged from the methane fermentation tank and can carry it out as liquid fertilizer;
    A drying facility for drying organic waste mainly composed of soot separated by the pretreatment device;
    An organic waste treatment apparatus comprising: a compost fermentation facility for fermenting and composting organic waste mainly composed of straw dried in a drying facility.
  6. 糞尿を主体とした有機性廃棄物を受け入れる廃棄物受入槽内に、多数の加熱管が上下の主配管を介して縦列配置された加熱管群を設け、発電手段及び/又は熱利用手段で発生した廃熱を用いて加温した温水を加熱管群に流して有機性廃棄物を受け入れた受入槽を加温するようにし、受入槽で原料である有機性廃棄物の酸発酵を済ました後、メタン発酵槽で嫌気性消化を行い、メタン発酵を促進させるようにした請求項記載の有機性廃棄物の処理装置。In the waste receiving tank that accepts organic waste mainly composed of manure, a heating tube group in which a number of heating tubes are arranged in tandem via upper and lower main piping is provided, and generated by power generation means and / or heat utilization means After warming the heated water using the waste heat that has passed through the heating tube group to heat the receiving tank that has received the organic waste, after the acid fermentation of the organic waste that is the raw material in the receiving tank The organic waste processing apparatus according to claim 5 , wherein anaerobic digestion is performed in a methane fermentation tank to promote methane fermentation.
  7. 藁を主体とした有機性廃棄物の乾燥設備及び/又は堆肥発酵設備に、発電手段及び/又は熱利用手段で発生した廃熱を用いて昇温した温風を導入するようにした請求項5又は6記載の有機性廃棄物の処理装置。The drying equipment and / or compost fermentation facility organic waste composed mainly of straw, claim 5 which is adapted to introduce a heating with warm air using waste heat generated by the power generation means and / or heat utilization means Or the processing apparatus of the organic waste of 6 .
  8. メタン発酵槽の一端部上部からメタンガスを取り出す配管に熱線式の流量計を設け、流量計の手前の配管を下方に分岐して分岐配管の下部にシールポットを設け、流量計の上流側の配管加温してガス中の凝縮水が除かれシールポットに回収されるようにし、シールポットと流量計との間の配管を加温するためのヒータを設けて、除湿されたガスが流量計の直前の配管で加温されるようにした請求項5、6又は7記載の有機性廃棄物の処理装置 A hot-wire flow meter is installed in the pipe that takes out methane gas from the upper part of one end of the methane fermentation tank, the pipe in front of the flow meter is branched downward, and a seal pot is installed in the lower part of the branch pipe. warmed as condensed water in the gas is collected in excluded seal pot, the piping between the seal pot and a flow meter provided with a heater for heating, dehumidified gas flow meter The organic waste processing apparatus according to claim 5, 6 or 7 , wherein the apparatus is heated by a pipe immediately before .
JP2001155017A 2001-05-24 2001-05-24 Organic waste treatment method and apparatus Expired - Fee Related JP3639543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155017A JP3639543B2 (en) 2001-05-24 2001-05-24 Organic waste treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155017A JP3639543B2 (en) 2001-05-24 2001-05-24 Organic waste treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2002346597A JP2002346597A (en) 2002-12-03
JP3639543B2 true JP3639543B2 (en) 2005-04-20

Family

ID=18999271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155017A Expired - Fee Related JP3639543B2 (en) 2001-05-24 2001-05-24 Organic waste treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3639543B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079663A (en) * 2010-09-29 2011-06-01 田守仁 Ecologized medium-temperature high-efficiency compound fertilizer production system
CN108485926A (en) * 2018-03-08 2018-09-04 太原理工大学 Biogas slurry preheating buffer storage based on waste heat recovery and its pre-heating mean

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150159A (en) * 2004-11-25 2006-06-15 Okawara Mfg Co Ltd Methane fermentation treatment system for organic waste such as livestock waste and its operation method
JP5028746B2 (en) * 2005-03-15 2012-09-19 栗田工業株式会社 Method and apparatus for producing liquid manure from starch production wastewater.
JP5263638B2 (en) * 2005-05-06 2013-08-14 国立大学法人佐賀大学 Liquid fertilizer manufacturing method and liquid fertilizer manufacturing system
JP4907123B2 (en) * 2005-08-05 2012-03-28 三菱重工環境・化学エンジニアリング株式会社 Organic waste processing method and processing system
KR100997077B1 (en) * 2007-11-06 2010-11-29 김윤하 Recycling apparatus and method using organic waste
WO2009099772A2 (en) * 2008-01-31 2009-08-13 M-I L.L.C. Total containment tank cleaning system
JP5230243B2 (en) * 2008-04-09 2013-07-10 三菱重工環境・化学エンジニアリング株式会社 Method and system for methane fermentation treatment of organic waste
CN101318853B (en) * 2008-06-28 2011-03-16 苗晓 Process and equipment for solar energy gasification of plant stalk and comprehensive utilization of waste slag
KR101113253B1 (en) * 2009-07-28 2012-02-20 디에이치엠(주) Bio-gas system for organic material waste
CN103145308A (en) * 2013-03-05 2013-06-12 安徽禹王养殖有限公司 Method for producing biogas in large biogas project
CN103319243A (en) * 2013-06-26 2013-09-25 周永珍 Oilseed rape straw compound fertilizer for slowly releasing drought stress
CN103418604A (en) * 2013-07-23 2013-12-04 石台县惠农养猪专业合作社 Method for comprehensive treatment and utilization of pig manure
KR101366374B1 (en) * 2013-11-13 2014-02-24 씨아이바이오텍(주) System and method for treating organic waste including livestock night soil into energy
JP5745120B1 (en) * 2014-02-19 2015-07-08 三井造船株式会社 Methane fermentation method and methane fermentation system
JP6588710B2 (en) * 2014-03-12 2019-10-09 森田 剛 Method for producing liquid manure and co-products from compostable surplus organic matter
CN104649530B (en) * 2015-03-16 2016-09-21 刘盛林 A kind of aquaculture processes the method that excrement is dirty
CN105417598A (en) * 2015-12-17 2016-03-23 江苏新奇环保有限公司 Fecal sewage treatment device
CN106890841B (en) * 2017-03-03 2019-02-15 山东许中华环保科技有限公司 Organic waste ecological circulation recycling processing method
CN108975498A (en) * 2018-07-02 2018-12-11 湖南屎壳郎环境科技有限公司 A kind of governing system and method for rural area black and odorous water and waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079663A (en) * 2010-09-29 2011-06-01 田守仁 Ecologized medium-temperature high-efficiency compound fertilizer production system
CN108485926A (en) * 2018-03-08 2018-09-04 太原理工大学 Biogas slurry preheating buffer storage based on waste heat recovery and its pre-heating mean

Also Published As

Publication number Publication date
JP2002346597A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
Drosg et al. Nutrient recovery by biogas digestate processing
Rico et al. Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: Residual methane yield of digestate
Angelidaki et al. Applications of the anaerobic digestion process
De Mes et al. Methane production by anaerobic digestion of wastewater and solid wastes
Arsova Anaerobic digestion of food waste: Current status, problems and an alternative product
US8110106B2 (en) Anaerobic digester design and operation
CN1471409B (en) Concept for slurry separation and biogas production
US6613562B2 (en) Method and apparatus for solids processing
US6103191A (en) Continuous flow pasteurization of sewage sludge
US6368849B1 (en) Method and plant for the treatment of liquid organic waste
CN101844144B (en) Method and apparatus for totally-closed garbage emission and transmission atomization and comprehensive utilization
US10781143B2 (en) Method and plant for treatment of organic waste
US8568591B2 (en) System and method for thermophilic anaerobic digester process
CN101337838B (en) Combined anaerobic fermentation process for organic solid wastes
EP0131319B1 (en) Process and installation for anaerobic digestion
CN104415966B (en) Restaurant garbage treating system and method
US20080003654A1 (en) Process for producing ethanol and for energy recovery
US8394271B2 (en) Anaerobic digester employing circular tank
KR101167872B1 (en) Treatment of particulate biodegradable organic waste by thermal hydrolysis using condensate recycle
CN101381675B (en) Horizontal organic waste dry-type anaerobic digestion processing equipment with agitator and processing method
US7854841B2 (en) Combined anaerobic process apparatus for treating organic wastes
CN104024181B (en) System and method for digestion of solid discarded object
CN102249477B (en) Processing method for oil-water separation of kitchen garbage
CN102836863A (en) Comprehensive treatment method for kitchen waste, town excrement and municipal sludge
CN101921049B (en) Method and device for producing methane by using dry anaerobic digestion for urban sludge and organic matter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees