JP3639469B2 - Thermal reactor for moisture generation - Google Patents

Thermal reactor for moisture generation Download PDF

Info

Publication number
JP3639469B2
JP3639469B2 JP22354899A JP22354899A JP3639469B2 JP 3639469 B2 JP3639469 B2 JP 3639469B2 JP 22354899 A JP22354899 A JP 22354899A JP 22354899 A JP22354899 A JP 22354899A JP 3639469 B2 JP3639469 B2 JP 3639469B2
Authority
JP
Japan
Prior art keywords
body member
outlet
moisture
inlet
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22354899A
Other languages
Japanese (ja)
Other versions
JP2001048501A (en
Inventor
忠弘 大見
幸司 川田
幸男 皆見
明弘 森本
修 中村
克典 米華
マノハルラル・シュレスタ
信一 池田
敏朗 成相
圭志 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22354899A priority Critical patent/JP3639469B2/en
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to CNB008016267A priority patent/CN100341775C/en
Priority to EP00946457A priority patent/EP1138631A1/en
Priority to KR10-2000-7014111A priority patent/KR100387731B1/en
Priority to IL16104500A priority patent/IL161045A0/en
Priority to IL14119400A priority patent/IL141194A0/en
Priority to CA002343278A priority patent/CA2343278A1/en
Priority to SG200202050A priority patent/SG94873A1/en
Priority to PCT/JP2000/004911 priority patent/WO2001010774A1/en
Priority to CA002479400A priority patent/CA2479400A1/en
Priority to CNB2004100033410A priority patent/CN1279582C/en
Priority to TW089115809A priority patent/TW553900B/en
Priority to IL141194A priority patent/IL141194A/en
Priority to US09/773,605 priority patent/US7258845B2/en
Publication of JP2001048501A publication Critical patent/JP2001048501A/en
Priority to US10/724,101 priority patent/US7368092B2/en
Priority to IL161045A priority patent/IL161045A/en
Publication of JP3639469B2 publication Critical patent/JP3639469B2/en
Application granted granted Critical
Priority to US11/460,087 priority patent/US7553459B2/en
Priority to US11/760,330 priority patent/US20070231225A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明は主として半導体製造設備で用いられる水分発生用反応炉に関し、更に詳細には、水分生成反応によって発生する反応熱を放熱用フィンにより強制放熱させて安全温度域内で水分生成量を増大できる放熱式水分発生用反応炉に関する。
【0002】
【従来の技術】
水分発生用反応炉は高純度水を必要とする分野において使用されている。例えば、半導体製造工程における水分酸化法によるシリコンの酸化膜付では、標準状態に於いて1000cc/分を越える超高純度水が必要とされる場合もある。
本件出願人は先に図6に示すような構造の水分発生用反応炉を開発し、各種の超高純度水の発生試験を行なっている。
【0003】
即ち、図6に示す水分発生用反応炉の反応炉本体1は、窪部2aを有する入口側炉本体部材2と窪部3aを有する出口側炉本体部材3とを溶接部4を介して一体化することにより組み立てられている。窪部2aと窪部3aにより囲繞形成される空間部6の内壁面では、所謂触媒反応による水分発生が進行する。
【0004】
入口側炉本体部材2の中央には原料ガス入口通路7が穿設され、その内側には入口側反射板8が、またその外側には原料ガス供給用継手9が配設されている。同時に、出口側炉本体部材3の中央には水分ガス出口通路10が穿設され、その内側には出口側反射拡散体11が、その外側には水分ガス導出用継手12が配設されている。尚、入口側反射板8及び出口側反射拡散体11は取付用ねじ5により固定されている。
【0005】
入口側炉本体部材2の内壁面にはTiN等の窒化物からなるバリヤー皮膜13aが形成されている。また、出口側炉本体部材3の内壁面には白金コーティング膜13が形成されている。この白金コーティング膜13はTiN等の窒化物からなるバリヤー皮膜13aの上に、蒸着工法やイオンプレーティング工法等による白金皮膜13bを固着して構成されている。白金コーティング膜13は原料ガスから水分ガスを生成する触媒作用を奏する。
【0006】
【発明が解決しようとする課題】
上記の水分発生用反応炉の作動を説明すると、原料ガスである水素ガスと酸素ガスを原料ガス供給用継手9から入口側反射板8を介して空間部6に導入する。原料ガスは入口側反射板8と出口側反射拡散体11により空間部6の全域へと分散され、白金コーティング膜13の触媒作用で水分生成反応が進行する。生成物である水分ガス、即ち水蒸気と未反応原料ガスは水分ガス導出用継手12を通して次段の装置へと送出される。
【0007】
しかし、この水分発生用反応炉では、水分生成反応が発熱反応であるために、発生した反応熱により反応炉全体および水蒸気が過剰に加熱されるという欠点がある。例えば、水蒸気を1000cc/分の発生量で発生させたときには自己発熱により水蒸気温度が400〜450℃に達する。水分発生量をさらに増すと、水蒸気温度が450℃を越えてしまい、水素ガスと酸素ガスの発火温度である560℃に近づき極めて危険な状態となる。
【0008】
この危険を回避するために、これまでこの種の水分発生用反応炉では水分発生量の上限を1000cc/分としなければならなかった。水分発生量を増すための方策として、反応炉を大きくすることも行なわれたが、サイズアップはコストアップを引き起こすだけでなく、反応炉の汎用性や使い易さを失なわせることにもなった。
【0009】
【課題を解決するための手段】
本発明は、上記欠点を解消するためになされたものであり、本発明に係る放熱式水分発生用反応炉は、水素と酸素の触媒反応により温度450℃以下の非燃焼状態下で水分ガスを発生させる水分発生用反応炉において、入口側炉本体部材2と出口側炉本体部材3を組み合わせて内部に空間部6を形成した反応炉本体1と、入口側炉本体部材2に穿設され空間部6に水素ガスと酸素ガスとから成る原料ガスを導入する原料ガス入口通路7と、この原料ガス入口通路7に接続された原料ガス供給用継手9と、入口側炉本体部材2の内壁面に形成したバリヤー皮膜13aと、入口側炉本体部材2の内壁面と間隙をおいて対向状に配設して入口側炉本体部材2へ固定した入口側反射板8と、前記出口側炉本体部材3の内壁面に形成した白金コーティング被膜13と、この出口側炉本体部材3の内壁面と間隙をおいて対向状に配設して出口側炉本体部材3へ固定した出口側反射拡散体11と、出口側炉本体部材3に穿設された空間部6から生成水を導出する水分ガス出口通路10と、この水分ガス出口通路10に接続された水分ガス導出用継手12と、前記入口側炉本体部材2の外壁面に原料ガス供給用継手9を挿通せしめて密着させたフィン基板17とこのフィン基板17に並行状に立設された複数の表面をアルマイト加工した放熱フィン18と、前記出口側炉本体部材3の外壁面に水分ガス導出用継手12を挿通せしめて密着させた平板状のヒーター15及びその外側面に設けたヒーター押え板16と、ヒーター押え板16の外側面に水分ガス導出用継手12を挿通せしめて密着され、前記ヒーター15及びヒーター押え板16を介在させて出口側炉本体部材3に固定したフィン基板17とこのフィン基板17に並行状に立設された複数の表面をアルマイト加工した放熱フィン18とより成る放熱体14と、から構成したことを特徴とする。
【0010】
また、請求項2の発明は、請求項1の発明において前記放熱用フィン18を、水分ガス導出用継手12を中心に略中心対称又は略軸対称に配置したものである。
【0013】
【発明の実施の形態】
水分発生用反応炉の過剰な自己加熱を防止するために鋭意研究した結果、本発明者等は水分発生用反応炉の外壁面に多数の放熱用フィンを立設することによって過剰な温度上昇を抑制することに成功した。
その結果、水分発生用反応炉のサイズアップを行うことなく、水分発生量を1000cc/分から2000cc/分に増大することが可能となった。
【0014】
また、放熱用フィンの表面をアルマイト加工することによって放熱用フィンの熱放射率を向上させることに成功し、水分発生量を2500cc/分にまで増大化できることを確認した。
【0015】
以下、図面に基づいて本発明の実施態様を説明する。
図1は本発明に係る水分発生用反応炉の反応炉本体の縦断面図であり、図6と同一部分には同一符号を付してその構造を簡単に説明する。
【0016】
この反応炉本体1は入口側炉本体部材2、窪部2a、出口側炉本体部材3、窪部3a、溶接部4、取付用ねじ、空間部6、原料ガス入口通路7、入口側反射板8、原料ガス供給用継手9、水分ガス出口通路10、出口側反射拡散体11、水分ガス導出用継手12、白金コーティング膜13、バリヤー皮膜13a、白金皮膜13b、放熱体14、ヒーター15およびヒーター押え板16から構成されている。
【0017】
図2は放熱体14の平面図、図3は図2のI−I線断面図である。放熱体14はフィン基板17の表面に多数の放熱用フィン18を縦列状に立設して構成されている。中央には継手用透孔19を穿設し、この継手用透孔19から一辺に向けて切欠部20を設けている。また、フィン基板17の四隅には炉本体部材2、3へのボルト取付孔21が穿設されている。
【00018】
フィン基板17および放熱用フィン18の形状は、継手用透孔19を中心にして略中心対称に形成されている。
図2では切欠部20を形成しているために完全な中心対称性から外れているが、この略中心対称性により放熱体14の放熱特性の中心対称性を発揮させるものである。
【0019】
この中心対称性によって、中心から等距離にある直径上の2点の温度はほぼ等しくなるように設計される。入口側炉本体部材2および出口側炉本体部材3の放熱特性を中心対称化すれば、空間部6内の温度分布も中心対称化でき、水分生成反応を中心対称的に均一化して反応炉本体1内の局所的な高温化を防止できる。即ち、水素ガスや酸素ガスの局所的な発火を防止して、水分発生用反応炉の安全性を高め、長寿命化を達成することができる。
【0020】
図4は放熱体14を入口側炉本体部材2に固定した側面図で、図1は図4のII−II線断面図に対応する。
【0021】
放熱体14を入口側炉本体部材2に固定するには、継手用透孔19に原料ガス供給用継手9を挿通させ、フィン基板17を入口側炉本体部材2の外壁面に密着させ、その後ボルト取付孔21を介して図示しないボルトで締結する。
【0022】
放熱体14を出口側炉本体部材3に固定するには、ヒーター15およびヒーター押え板16を介して継手用透孔19に水分ガス導出用継手12を挿通させる。その後、フィン基板17をヒーター押え板16に密着させ、ボルト取付孔21を介してボルトで締結する。
【0023】
本発明者等は放熱体14の熱放射率を高めるために、種々研究した結果、放熱用フィン18の表面をアルマイト加工することによって熱放射率を増大化できることを見い出すに到った。
【0024】
一般にアルマイト加工はアルミニウム又はアルミニウム合金の表面に酸化物の薄い膜を形成する加工法を称し、近年では着色アルマイト加工もできるようになっている。しかし、これらの一般のアルマイト加工は耐食性や耐摩耗性を強化するためであり、熱放射率の増大効果は本発明者等によって見い出されたものである。
【0025】
アルマイト加工面積が大きいほど放熱体14の放熱特性は改善されるから、放熱用フィン18の表面だけでなく、フィン基板17の表面もアルマイト加工することが望まれる。
【0026】
本発明者等はアルマイト付き放熱用フィンとアルマイトなし放熱用フィンの放熱効果をみるため、放熱用フィンなしを加えた3種類の水分発生用反応炉の動作試験を行った。
【0027】
図5は出口側炉本体部材3の端面図であり、中心から1cm間隔で出口側本体に穴をあけ、内壁面から1mmの位置に5本の温度測定用熱電対P1 〜P5 を配置し、下流側の空間部6の半径方向温度分布を測定した。また、周辺から3cmの位置には下流側温度を測定する温調用熱電対Pを配置して、ヒーター15の温調設定温度からどの程度ずれているかが分るようにした。また、この熱電対Pと対向する入口側炉本体部材2の位置でも上流側温度を測定した。
【0028】
水分発生条件はH2 /O2 =10/6に設定され、酸素リッチの条件下で水分が生成された。酸素リッチの方が水分生成率が高くなり、未反応原料ガスを低く押えることができるからである。測定結果は表1に示されている。熱電対P1 の測定温度は掲載されていない。
【0029】
【表1】

Figure 0003639469
【0030】
表1から分るように、下流側温度は温調設定された温度とほとんど一致しているから、ヒーター15による温調設定は有効に作用している。この温調設定は生成された水分を水蒸気として後続装置に送るために行なわれ、一例として300℃に設定されたものである。また、上流側温度が下流側温度より低いのは、上流側、即ち入口側の空間部6では水分生成反応がほとんどないことを示す。
【0031】
出口側の空間部6では白金触媒により水分生成反応が進行するから、空間部6の温度が上下に分布する。中心から4cmの位置にある熱電対P4 がP2 〜P5 の中で最も高温を示し、この位置で水分発生もしくは熱が集中しやすいことを意味する。水分発生量が大きい程、その位置での自己発熱が大きいからである。ここで水分発生量の単位はSLM、即ちリットル/分が用いられている。
【0032】
水分発生用反応炉の安全運転の上限温度を450℃とすると、熱電対P4 が450℃以下になる水分発生量を安全運転域の水分発生量と定めることができる。
従って、フィンなしでは1SLM、アルマイトなしフィン付では2SLM、硬質アルマイト付きフィン付では2.5SLMが水分発生量の上限となる。換言すると、フィンなしに対して、フィンを付けるだけで水分発生量を2倍にでき、アルマイト付きフィンでは水分発生量を2.5倍に増大化できることが分った。
【0033】
前記アルマイトは厚み20μmの硬質アルマイトの場合であるが、厚み20μmの着色アルマイト(黒色)の場合や厚み5〜50μmの硬質アルマイトの場合でも、熱電対P2 〜P5 の指示温度は数℃の範囲内で一致した。
【0034】
尚、表2は、水分発生量を2.5SLMとして、アルマイトの厚み及びアルマイトの種類を変えた場合の水分発生反応炉の温度測定結果を示すものである。
【0035】
【表2】
Figure 0003639469
【0036】
以上をまとめると、放熱用フィンを付けることにより放熱効果が得られ、温度分布の低温化を実現できる。逆に、水分発生量を約2倍に増大化できる。
また、放熱用フィンにアルマイト処理を施すことにより、熱放射率(輻射率)が向上し、アルマイトなしに対して約50℃の低温化を図ることができる。水分発生量では約2.5倍に増大化でき、アルマイトの種類や厚みに対する依存性は少ない。
【0037】
表1の結果は図面に示す中心対称に配置された放熱用フィンの場合であるが、略軸対称に配置された放熱用フィンでも同様の放熱効果が得られる。ここで軸対称とは例えば同心円状に放熱用フィンを配置した場合を指称する。軸対称配置では、前記した温度分布も軸対称性を有するようになり、水分生成の空間部6内での均一性を増すことができる。
【0038】
本発明は上記実施例や実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更などをその技術的範囲内に包含するものである。
【0039】
【発明の効果】
本願の発明によれば、放熱用フィンを通して水分生成熱を強制放射することによって、反応炉内の低温化を実現でき、また水分生成量の増大化を実現することができる。
また、ヒーターにより反応炉内を適温に保持することによって生成した水分を安定した水蒸気流として後続装置に導出することができる。
更に、放熱用フィンを略中心対称又は略軸対称に配置しているから、反応炉内の温度分布の中心対称化または軸対象化を図ることができ、局所的高温化を防止して反応炉内での水分生成を安定且つ円滑に行うことができる。
加えて、放熱用フィンの表面をアルマイト加工して熱放射率を向上したから、反応炉内の一層の低温化を実現でき、従って水分生成量の一層の増大化を実現することができる。
本発明は上述の通り優れた実用的効果を奏するものである。
【図面の簡単な説明】
【図1】図1は本発明に係る水分発生用反応炉の反応炉本体の縦断面図である。
【図2】図2は本発明に係る放熱体の平面図である。
【図3】図3は図2のI−I線断面図である。
【図4】図4は放熱体を入口側炉本体部材に固定した側面図である。
【図5】図5は出口側炉本体部材の端面図である。
【図6】図6は従来の水分発生用反応炉の縦断面図である。
【符号の説明】
1は反応炉本体、2は入口側炉本体部材、2aは窪部、3は出口側炉本体部材、3aは窪部、4は溶接部、5は取付用ねじ、6は空間部、7は原料ガス入口通路、8は入口側反射板、9は原料ガス供給用継手、10は水分ガス出口通路、11は出口側反射拡散体、12は水分ガス導出用継手、13は白金コーティング膜、13aはバリヤー皮膜、13bは白金皮膜、14は放熱体、15はヒーター、16はヒーター押え板、17はフィン基板、18は放熱用フィン、19は継手用透孔、20は切欠部、21はボルト取付孔、P1 〜P5 は温度分布測定用熱電対、Pは温調用熱電対である。[0001]
[Industrial application fields]
The present invention relates to a reactor for moisture generation mainly used in semiconductor manufacturing equipment, and more specifically, heat dissipation capable of increasing the amount of moisture generation within a safe temperature range by forcibly radiating reaction heat generated by a moisture generation reaction with a fin for heat dissipation. The present invention relates to a reactor for generating moisture.
[0002]
[Prior art]
Moisture generating reactors are used in fields that require high purity water. For example, when a silicon oxide film is formed by a moisture oxidation method in a semiconductor manufacturing process, ultra-high purity water exceeding 1000 cc / min may be required in a standard state.
The present applicant has previously developed a reactor for generating water having a structure as shown in FIG. 6, and has conducted various ultra high purity water generation tests.
[0003]
That is, the reactor main body 1 of the moisture generating reactor shown in FIG. 6 is formed by integrating the inlet-side furnace main body member 2 having the recess 2a and the outlet-side furnace main body member 3 having the recess 3a through the welded portion 4. It is assembled by converting. Moisture generation by so-called catalytic reaction proceeds on the inner wall surface of the space 6 formed by the recess 2a and the recess 3a.
[0004]
A raw material gas inlet passage 7 is formed in the center of the inlet-side furnace body member 2, an inlet-side reflecting plate 8 is provided inside thereof, and a raw material gas supply joint 9 is provided outside thereof. At the same time, a moisture gas outlet passage 10 is formed in the center of the outlet-side furnace main body member 3, an outlet-side reflection diffuser 11 is provided inside thereof, and a moisture gas outlet joint 12 is provided outside thereof. . The entrance-side reflecting plate 8 and the exit-side reflecting diffuser 11 are fixed by mounting screws 5.
[0005]
A barrier coating 13a made of a nitride such as TiN is formed on the inner wall surface of the inlet-side furnace body member 2. A platinum coating film 13 is formed on the inner wall surface of the outlet-side furnace body member 3. This platinum coating film 13 is configured by fixing a platinum film 13b by a vapor deposition method, an ion plating method or the like on a barrier film 13a made of a nitride such as TiN. The platinum coating film 13 has a catalytic action for generating moisture gas from the raw material gas.
[0006]
[Problems to be solved by the invention]
The operation of the above-described moisture generating reactor will be described. Hydrogen gas and oxygen gas, which are source gases, are introduced into the space 6 from the source gas supply joint 9 through the inlet-side reflector 8. The source gas is dispersed throughout the space 6 by the entrance-side reflecting plate 8 and the exit-side reflecting diffuser 11, and the moisture generation reaction proceeds by the catalytic action of the platinum coating film 13. The product moisture gas, i.e., water vapor and unreacted raw material gas, is sent to the next apparatus through the moisture gas deriving joint 12.
[0007]
However, in this moisture generating reaction furnace, since the moisture generation reaction is an exothermic reaction, there is a drawback that the entire reaction furnace and water vapor are excessively heated by the generated reaction heat. For example, when water vapor is generated at a generation rate of 1000 cc / min, the water vapor temperature reaches 400 to 450 ° C. due to self-heating. If the amount of water generation is further increased, the water vapor temperature exceeds 450 ° C., approaching 560 ° C., which is the ignition temperature of hydrogen gas and oxygen gas, and it becomes extremely dangerous.
[0008]
In order to avoid this danger, the upper limit of the amount of water generation had to be 1000 cc / min in this type of water generation reactor. As a measure to increase the amount of water generation, the reactor was also enlarged, but the increase in size not only caused an increase in cost but also lost the versatility and ease of use of the reactor. It was.
[0009]
[Means for Solving the Problems]
The present invention has been made to eliminate the above-mentioned drawbacks, and the heat-dissipating moisture generating reactor according to the present invention generates moisture gas in a non-burning state at a temperature of 450 ° C. or less by a catalytic reaction of hydrogen and oxygen. In the reactor for moisture generation to be generated, the reactor main body 1 in which the inlet-side furnace main body member 2 and the outlet-side furnace main body member 3 are combined to form the space 6 inside, and the inlet-side furnace main body member 2 is perforated. A raw material gas inlet passage 7 for introducing a raw material gas composed of hydrogen gas and oxygen gas into the section 6, a raw material gas supply joint 9 connected to the raw material gas inlet passage 7, and an inner wall surface of the inlet-side furnace body member 2 The barrier coating 13a formed on the inlet side, the inlet-side reflecting plate 8 disposed opposite to the inner wall surface of the inlet-side furnace main body member 2 and fixed to the inlet-side furnace main body member 2, and the outlet-side furnace main body. Platinum coating formed on the inner wall surface of member 3 A film 13, and the outlet side reflector diffuser 11 fixed to the outlet side reactor body member 3 and disposed in opposed shape at the inner wall surface and the gap of the outlet-side reactor body member 3, on the outlet side reactor body member 3 Moisture gas outlet passage 10 through which the generated water is led out from the drilled space 6, a moisture gas outlet joint 12 connected to the moisture gas outlet passage 10, and a raw material on the outer wall surface of the inlet-side furnace body member 2 A fin substrate 17 through which a gas supply joint 9 is inserted and adhered, a heat dissipating fin 18 in which a plurality of surfaces erected in parallel to the fin substrate 17 are anodized, and an outer wall surface of the outlet-side furnace body member 3 The moisture heater 14 is inserted into and attached to a flat plate-like heater 15, the heater holding plate 16 provided on the outer surface thereof, and the moisture gas outlet joint 12 is inserted into the outer surface of the heater holding plate 16. In close contact Heat dissipation comprising a fin substrate 17 fixed to the outlet-side furnace body member 3 with a heater 15 and a heater pressing plate 16 interposed therebetween, and heat dissipation fins 18 in which a plurality of surfaces erected in parallel to the fin substrate 17 are anodized. It is characterized by comprising the body 14 .
[0010]
According to a second aspect of the present invention, in the first aspect of the present invention, the heat dissipating fins 18 are arranged in a substantially central symmetry or a substantially axial symmetry with respect to the moisture gas deriving joint 12.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a result of diligent research to prevent excessive self-heating of the moisture generating reactor, the present inventors have increased excessive temperature by installing a large number of heat radiation fins on the outer wall surface of the moisture generating reactor. Succeeded in suppressing.
As a result, it became possible to increase the water generation amount from 1000 cc / min to 2000 cc / min without increasing the size of the water generation reactor.
[0014]
Moreover, it succeeded in improving the thermal emissivity of the fin for heat radiation by anodizing the surface of the fin for heat radiation, and confirmed that the amount of moisture generation could be increased to 2500 cc / min.
[0015]
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a reactor main body of a water generating reactor according to the present invention. The same parts as those in FIG.
[0016]
The reactor main body 1 includes an inlet-side furnace main body member 2, a recessed portion 2a, an outlet-side furnace main body member 3, a recessed portion 3a, a welded portion 4, a mounting screw, a space portion 6, a source gas inlet passage 7, an inlet-side reflector. 8, raw material gas supply joint 9, moisture gas outlet passage 10, outlet side reflection diffuser 11, moisture gas outlet joint 12, platinum coating film 13, barrier coating 13a, platinum coating 13b, radiator 14, heater 15 and heater The presser plate 16 is configured.
[0017]
2 is a plan view of the radiator 14 and FIG. 3 is a cross-sectional view taken along the line I-I of FIG. The heat dissipating body 14 is configured by standing a large number of heat dissipating fins 18 in a vertical row on the surface of the fin substrate 17. A joint through hole 19 is formed in the center, and a notch 20 is provided from the joint through hole 19 toward one side. Further, bolt mounting holes 21 to the furnace body members 2 and 3 are formed at the four corners of the fin substrate 17.
[00018]
The shapes of the fin substrate 17 and the heat radiation fin 18 are formed substantially symmetrically about the joint through hole 19.
In FIG. 2, since the notch 20 is formed, it is deviated from complete central symmetry. However, the central symmetry of the heat dissipation characteristics of the radiator 14 is exhibited by this substantially central symmetry.
[0019]
Due to this central symmetry, the temperatures at two points on the diameter equidistant from the center are designed to be approximately equal. If the heat radiation characteristics of the inlet-side furnace main body member 2 and the outlet-side furnace main body member 3 are symmetric, the temperature distribution in the space 6 can be symmetric, and the water generation reaction is made centrally symmetrical and uniform. The local high temperature in 1 can be prevented. That is, local ignition of hydrogen gas or oxygen gas can be prevented, the safety of the water generating reactor can be improved, and a long life can be achieved.
[0020]
4 is a side view of the radiator 14 fixed to the inlet-side furnace body member 2, and FIG. 1 corresponds to a cross-sectional view taken along the line II-II of FIG.
[0021]
In order to fix the radiator 14 to the inlet-side furnace body member 2, the raw material gas supply joint 9 is inserted into the joint through-hole 19, and the fin substrate 17 is brought into close contact with the outer wall surface of the inlet-side furnace body member 2. The bolt is fastened with a bolt (not shown) through the bolt mounting hole 21.
[0022]
In order to fix the radiator 14 to the outlet-side furnace body member 3, the moisture gas lead-out joint 12 is inserted through the joint through hole 19 via the heater 15 and the heater pressing plate 16. Thereafter, the fin substrate 17 is brought into close contact with the heater pressing plate 16 and fastened with bolts through the bolt mounting holes 21.
[0023]
As a result of various studies to increase the thermal emissivity of the radiator 14, the present inventors have found that the thermal emissivity can be increased by anodizing the surface of the heat radiating fin 18.
[0024]
In general, alumite processing is a processing method for forming a thin oxide film on the surface of aluminum or an aluminum alloy, and in recent years, colored alumite processing can also be performed. However, these general alumite processes are for enhancing the corrosion resistance and wear resistance, and the effect of increasing the thermal emissivity has been found by the present inventors.
[0025]
Since the heat dissipation characteristics of the radiator 14 are improved as the anodized area increases, it is desirable to anodize not only the surface of the fin 18 for heat dissipation but also the surface of the fin substrate 17.
[0026]
In order to observe the heat radiation effect of the heat radiation fin with anodized and the heat radiation fin without anodized, the present inventors conducted an operation test of three types of water generating reactors with no heat radiation fin added.
[0027]
FIG. 5 is an end view of the outlet-side furnace main body member 3, holes are formed in the outlet-side main body at intervals of 1 cm from the center, and five temperature measuring thermocouples P 1 to P 5 are arranged at a position of 1 mm from the inner wall surface. Then, the temperature distribution in the radial direction of the space 6 on the downstream side was measured. In addition, a thermocouple P for temperature adjustment for measuring the downstream temperature is arranged at a position 3 cm from the periphery so that it can be understood how much the temperature is deviated from the temperature adjustment set temperature of the heater 15. The upstream temperature was also measured at the position of the inlet-side furnace body member 2 facing the thermocouple P.
[0028]
The moisture generation condition was set to H 2 / O 2 = 10/6, and moisture was generated under oxygen-rich conditions. This is because the oxygen-rich one has a higher moisture generation rate and can keep the unreacted raw material gas low. The measurement results are shown in Table 1. The measured temperature of thermocouple P 1 is not listed.
[0029]
[Table 1]
Figure 0003639469
[0030]
As can be seen from Table 1, the temperature on the downstream side almost coincides with the temperature-controlled temperature setting, so that the temperature control setting by the heater 15 works effectively. This temperature control setting is performed in order to send the generated moisture to the subsequent apparatus as water vapor, and is set to 300 ° C. as an example. Further, the fact that the upstream temperature is lower than the downstream temperature indicates that there is almost no moisture generation reaction in the space 6 on the upstream side, that is, the inlet side.
[0031]
In the space portion 6 on the outlet side, the water generation reaction proceeds by the platinum catalyst, so the temperature of the space portion 6 is distributed vertically. The thermocouple P 4 located 4 cm from the center shows the highest temperature among P 2 to P 5 , meaning that moisture generation or heat tends to concentrate at this position. This is because the greater the amount of moisture generated, the greater the self-heating at that position. Here, the unit of moisture generation is SLM, that is, liters / minute.
[0032]
If the upper limit temperature of safe operation of the water generation reactor is 450 ° C., the amount of water generation at which the thermocouple P 4 is 450 ° C. or less can be determined as the amount of water generation in the safe operation region.
Therefore, 1 SLM without fins, 2 SLM with fins without alumite, and 2.5 SLM with fins with hard alumite are the upper limit of the amount of water generation. In other words, it has been found that the amount of water generation can be doubled simply by attaching a fin to the case without fins, and the amount of water generation can be increased 2.5 times with the fin with anodized.
[0033]
The alumite is a hard alumite having a thickness of 20 μm, but the indicated temperature of the thermocouples P 2 to P 5 is several degrees C. Matched within range.
[0034]
Table 2 shows the temperature measurement results of the water generation reactor when the amount of water generation is 2.5 SLM and the thickness of alumite and the type of alumite are changed.
[0035]
[Table 2]
Figure 0003639469
[0036]
In summary, the heat radiation effect can be obtained by attaching the heat radiation fin, and the temperature distribution can be lowered. Conversely, the amount of water generation can be increased by a factor of about two.
Further, by applying alumite treatment to the heat dissipating fins, the thermal emissivity (radiation rate) is improved, and a low temperature of about 50 ° C. can be achieved with respect to the absence of anodized. The amount of water generation can be increased by about 2.5 times, and the dependence on the type and thickness of the alumite is small.
[0037]
The results in Table 1 are for the heat dissipating fins arranged symmetrically with respect to the center as shown in the drawing, but the same heat dissipating effect can be obtained even with the heat dissipating fins arranged approximately axisymmetrically. Here, “axisymmetric” refers to, for example, the case where the fins for heat dissipation are arranged concentrically. In the axially symmetric arrangement, the temperature distribution described above also has axial symmetry, and the uniformity of moisture generation in the space 6 can be increased.
[0038]
The present invention is not limited to the above examples and embodiments, and includes various modifications, design changes, and the like within the technical scope without departing from the technical idea of the present invention.
[0039]
【The invention's effect】
According to the invention of the present application, by forcibly radiating the heat of moisture generation through the heat dissipating fins, the temperature in the reactor can be lowered and the amount of moisture generation can be increased.
Moreover, the water | moisture content produced | generated by hold | maintaining the inside of a reaction furnace at a suitable temperature with a heater can be guide | induced to a subsequent apparatus as a stable water vapor flow.
Furthermore, since the heat dissipating fins are arranged in a substantially central symmetry or substantially axial symmetry, the temperature distribution in the reaction furnace can be made centrally symmetric or axially targeted, and the local temperature rise is prevented to prevent the reaction furnace. Water generation inside can be performed stably and smoothly.
In addition, since the heat emissivity is improved by anodizing the surface of the heat dissipating fin, it is possible to further reduce the temperature in the reaction furnace, and thus to further increase the amount of moisture generation.
As described above, the present invention has excellent practical effects.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a reactor main body of a water generating reactor according to the present invention.
FIG. 2 is a plan view of a radiator according to the present invention.
FIG. 3 is a cross-sectional view taken along the line II of FIG.
FIG. 4 is a side view in which a radiator is fixed to an inlet-side furnace body member.
FIG. 5 is an end view of the outlet side furnace main body member.
FIG. 6 is a longitudinal sectional view of a conventional water generating reactor.
[Explanation of symbols]
1 is a reaction furnace body, 2 is an inlet side furnace body member, 2a is a recess, 3 is an exit side furnace body member, 3a is a recess, 4 is a welded part, 5 is a mounting screw, 6 is a space part, 7 is Source gas inlet passage, 8 is an inlet side reflector, 9 is a source gas supply joint, 10 is a moisture gas outlet passage, 11 is an outlet side reflection diffuser, 12 is a moisture gas outlet joint, 13 is a platinum coating film, 13a Is a barrier film, 13b is a platinum film, 14 is a radiator, 15 is a heater, 16 is a heater retainer plate, 17 is a fin substrate, 18 is a fin for heat dissipation, 19 is a through hole for a joint, 20 is a notch, and 21 is a bolt. The mounting holes, P 1 to P 5 are thermocouples for temperature distribution measurement, and P is a thermocouple for temperature adjustment.

Claims (2)

水素と酸素の触媒反応により温度450℃以下の非燃焼状態下で水分ガスを発生させる水分発生用反応炉において、入口側炉本体部材と出口側炉本体部材を組み合わせて内部に空間部を形成した反応炉本体と、入口側炉本体部材に穿設され空間部に水素ガスと酸素ガスとから成る原料ガスを導入する原料ガス入口通路と、この原料ガス入口通路に接続された原料ガス供給用継手と、入口側炉本体部材の内壁面に形成したバリヤー皮膜と、入口側炉本体部材の内壁面と間隙をおいて対向状に配設して入口側炉本体部材へ固定した入口側反射板と、前記出口側炉本体部材の内壁面に形成した白金コーティング被膜と、この出口側炉本体部材の内壁面と間隙をおいて対向状に配設して出口側炉本体部材へ固定した出口側反射拡散体と、出口側炉本体部材に穿設された空間部から生成水を導出する水分ガス出口通路と、この水分ガス出口通路に接続された水分ガス導出用継手と、前記入口側炉本体部材の外壁面に原料ガス供給用継手を挿通せしめて密着させたフィン基板とこのフィン基板に並行状に立設された複数の表面をアルマイト加工した放熱フィンと、前記出口側炉本体部材の外壁面に水分ガス導出用継手を挿通せしめて密着させた平板状のヒーター及びその外側面に設けたヒーター押え板と、ヒーター押え板の外側面に水分ガス導出用継手を挿通せしめて密着され、前記ヒーター及びヒーター押え板を介在させて出口側炉本体部材に固定したフィン基板とこのフィン基板に並行状に立設された複数の表面をアルマイト加工した放熱フィンとより成る放熱体と、から構成したことを特徴とする放熱式水分発生用反応炉。 In a reactor for moisture generation that generates moisture gas in a non-burning state at a temperature of 450 ° C. or less by a catalytic reaction of hydrogen and oxygen , a space portion is formed inside by combining the inlet-side furnace body member and the outlet-side furnace body member A reaction furnace main body, a raw material gas inlet passage that is perforated in the inlet-side furnace main body member and introduces a raw material gas composed of hydrogen gas and oxygen gas into the space, and a raw material gas supply joint connected to the raw material gas inlet passage A barrier coating formed on the inner wall surface of the inlet-side furnace main body member, and an inlet-side reflector fixed to the inlet-side furnace main body member so as to face the inner wall surface of the inlet-side furnace main body member with a gap. The platinum coating film formed on the inner wall surface of the outlet-side furnace body member, and the outlet-side reflection fixed to the outlet-side furnace body member so as to be opposed to the inner wall surface of the outlet-side furnace body member and diffuser outlet side reactor body And moisture gas outlet passage to derive the product water from the space portion formed in the timber, and moisture gas outlet fitting connected to the water vapor outlet passage for the raw material gas supplied to the outer wall surface of the inlet-side reactor body member A fin substrate inserted through the joint and closely attached, a heat dissipating fin anodized on a plurality of surfaces erected in parallel to the fin substrate, and a moisture gas outlet joint inserted into the outer wall surface of the outlet side furnace body member A flat plate heater that is in close contact with each other and a heater pressing plate provided on the outer surface thereof, and a moisture gas outlet joint is inserted into the outer surface of the heater pressing plate to be in close contact, with the heater and the heater pressing plate interposed therebetween. JP by being configured a plurality of surface erected in parallel fins substrate fixed to the outlet side reactor body member and to the fin substrate from and more made heat radiator and the heat radiation fins anodized, Radiator type moisture generating reactor to. 前記放熱用フィンを水分ガス導出用継手を中心に略中心対称又は略軸対称に配置した請求項1に記載の放熱式水分発生用反応炉。  The heat dissipation type water generating reactor according to claim 1, wherein the heat dissipating fins are arranged substantially centrosymmetrically or substantially axisymmetrically about a moisture gas outlet joint.
JP22354899A 1999-08-06 1999-08-06 Thermal reactor for moisture generation Expired - Lifetime JP3639469B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP22354899A JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation
CA002479400A CA2479400A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
EP00946457A EP1138631A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
IL16104500A IL161045A0 (en) 1999-08-06 2000-07-21 Reactor for generating moisture
IL14119400A IL141194A0 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
CA002343278A CA2343278A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
SG200202050A SG94873A1 (en) 1999-08-06 2000-07-21 Reactor for generating high purity moisture
PCT/JP2000/004911 WO2001010774A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
KR10-2000-7014111A KR100387731B1 (en) 1999-08-06 2000-07-21 Apparatus for generating and feeding moisture and reactor for generating moisture
CNB2004100033410A CN1279582C (en) 1999-08-06 2000-07-21 Water content generation supply device and reaction stove for water content generation
CNB008016267A CN100341775C (en) 1999-08-06 2000-07-21 Moisture generating-supplying device and moisture generating reactor
TW089115809A TW553900B (en) 1999-08-06 2000-08-05 Moisture generating/supplying device and moisture generating reactor
IL141194A IL141194A (en) 1999-08-06 2001-01-31 Apparatus and reactor for generating and feeding high purity moisture
US09/773,605 US7258845B2 (en) 1999-08-06 2001-02-02 Apparatus and reactor for generating and feeding high purity moisture
US10/724,101 US7368092B2 (en) 1999-08-06 2003-12-01 Apparatus and reactor for generating and feeding high purity moisture
IL161045A IL161045A (en) 1999-08-06 2004-03-24 Reactor for generating moisture
US11/460,087 US7553459B2 (en) 1999-08-06 2006-07-26 Apparatus and reactor for generating and feeding high purity moisture
US11/760,330 US20070231225A1 (en) 1999-08-06 2007-06-08 Apparatus and reactor for generating and feeding high purity moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22354899A JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation

Publications (2)

Publication Number Publication Date
JP2001048501A JP2001048501A (en) 2001-02-20
JP3639469B2 true JP3639469B2 (en) 2005-04-20

Family

ID=16799891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22354899A Expired - Lifetime JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation

Country Status (1)

Country Link
JP (1) JP3639469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469046B2 (en) 2007-04-17 2013-06-25 Fujikin Incorporated Method for parallel operation of reactors that generate moisture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399326B2 (en) * 2004-07-20 2010-01-13 株式会社フジキン Water generation reactor and water generation and supply device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469046B2 (en) 2007-04-17 2013-06-25 Fujikin Incorporated Method for parallel operation of reactors that generate moisture

Also Published As

Publication number Publication date
JP2001048501A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US7553459B2 (en) Apparatus and reactor for generating and feeding high purity moisture
US20090052498A1 (en) Thermocouple
US20080017628A1 (en) Multizone heater for furnace
TW200845222A (en) Temperature measurement and control of wafer support in thermal processing chamber
JP2012502502A (en) Rapid thermal processing lamp head with improved cooling
TWI662146B (en) Upper dome for epi chamber
KR20100114037A (en) Thermal reactor with improved gas flow distribution
WO2015009784A1 (en) Structure for improved gas activation for cross-flow type thermal cvd chamber
KR100786663B1 (en) Reactor for generating moisture and moisture generating and feeding apparatus using the same
CN110023689A (en) Steam generator and reactor
JP3639469B2 (en) Thermal reactor for moisture generation
US7820991B2 (en) Radiation source and device
KR100402665B1 (en) Reactor for generating moisture
JPS5925142B2 (en) heat treatment equipment
JP3639440B2 (en) Water generation reactor
US11004704B2 (en) Finned rotor cover
JP2019021499A (en) Electric heater and heating apparatus including the same, and method of controlling electric heater
KR101642510B1 (en) Hot Wire for Heating Device
CA2479400A1 (en) Apparatus and reactor for generating and feeding high purity moisture
JPS6365083A (en) Vapor growing apparatus
JPH03287772A (en) Single wafer processing atmospheric cvd device
JPH06163437A (en) Semiconductor device manufacturing thermal diffusion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Ref document number: 3639469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term