JP2001048501A - Heat radiating type reactional furnace for producing water - Google Patents

Heat radiating type reactional furnace for producing water

Info

Publication number
JP2001048501A
JP2001048501A JP11223548A JP22354899A JP2001048501A JP 2001048501 A JP2001048501 A JP 2001048501A JP 11223548 A JP11223548 A JP 11223548A JP 22354899 A JP22354899 A JP 22354899A JP 2001048501 A JP2001048501 A JP 2001048501A
Authority
JP
Japan
Prior art keywords
furnace body
body member
water
raw material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11223548A
Other languages
Japanese (ja)
Other versions
JP3639469B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Koji Kawada
幸司 川田
Yukio Minami
幸男 皆見
Akihiro Morimoto
明弘 森本
Osamu Nakamura
修 中村
Katsunori Komehana
克典 米華
Shuresuta Manoharuraru
マノハルラル・シュレスタ
Shinichi Ikeda
信一 池田
Toshiro Narai
敏朗 成相
Yoshiyuki Hirao
圭志 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22354899A priority Critical patent/JP3639469B2/en
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to CNB008016267A priority patent/CN100341775C/en
Priority to CA002479400A priority patent/CA2479400A1/en
Priority to EP00946457A priority patent/EP1138631A1/en
Priority to CA002343278A priority patent/CA2343278A1/en
Priority to PCT/JP2000/004911 priority patent/WO2001010774A1/en
Priority to IL16104500A priority patent/IL161045A0/en
Priority to SG200202050A priority patent/SG94873A1/en
Priority to CNB2004100033410A priority patent/CN1279582C/en
Priority to IL14119400A priority patent/IL141194A0/en
Priority to KR10-2000-7014111A priority patent/KR100387731B1/en
Priority to TW089115809A priority patent/TW553900B/en
Priority to IL141194A priority patent/IL141194A/en
Priority to US09/773,605 priority patent/US7258845B2/en
Publication of JP2001048501A publication Critical patent/JP2001048501A/en
Priority to US10/724,101 priority patent/US7368092B2/en
Priority to IL161045A priority patent/IL161045A/en
Publication of JP3639469B2 publication Critical patent/JP3639469B2/en
Application granted granted Critical
Priority to US11/460,087 priority patent/US7553459B2/en
Priority to US11/760,330 priority patent/US20070231225A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a reduction in temperature of a reactional furnace for producing water and increase the ratio of water production without increasing the size of the reactional furnace. SOLUTION: This heat radiating type reactional furnace for producing water comprises a reactional furnace body 1 prepared by combining a furnace body member 2 on the inlet side with a furnace body member 3 on the outlet side and forming a spatial part 6 in the interior thereof, an inlet passage 7 for a raw material gas bored in the furnace body member 2 on the inlet side and capable of introducing the raw material gas into the spatial part 6, a joint 9 connected to the inlet passage 1 for the raw material gas and used for feeding the raw material gas, an outlet passage 10 for the gas of water capable of leading out the produced water from the spatial part 6 bored in the furnace body member 3 on the outlet side, a joint 12 connected to the outlet passage 10 for the gas of water and used for leading out the gas of water, a fin substrate 17 brought into close contact with the outer wall surfaces of the furnace body members 2 and 3 and many fins 18 stood on the fin substrate 17. The generated heat is forcedly radiated with the heat radiating fins 18 to reduce the temperature of the reactional furnace. The heat radiating fins 18 are subjected to an alumite processing to increase the thermal emissivity and remarkably increase the heat radiation efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主として半導体製造設備
で用いられる水分発生用反応炉に関し、更に詳細には、
水分生成反応によって発生する反応熱を放熱用フィンに
より強制放熱させて安全温度域内で水分生成量を増大で
きる放熱式水分発生用反応炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor for generating water used mainly in semiconductor manufacturing equipment.
The present invention relates to a heat-dissipating water-reaction reactor capable of increasing the amount of water generated within a safe temperature range by forcibly radiating reaction heat generated by a water-forming reaction by heat-dissipating fins.

【0002】[0002]

【従来の技術】水分発生用反応炉は高純度水を必要とす
る分野において使用されている。例えば、半導体製造工
程における水分酸化法によるシリコンの酸化膜付では、
標準状態に於いて1000cc/分を越える超高純度水
が必要とされる場合もある。本件出願人は先に図6に示
すような構造の水分発生用反応炉を開発し、各種の超高
純度水の発生試験を行なっている。
2. Description of the Related Art Moisture generating reactors are used in fields requiring high-purity water. For example, with a silicon oxide film by a moisture oxidation method in a semiconductor manufacturing process,
In some cases, ultrapure water exceeding 1000 cc / min under standard conditions is required. The applicant has previously developed a reactor for generating water having a structure as shown in FIG. 6 and has been conducting various kinds of ultrapure water generation tests.

【0003】即ち、図6に示す水分発生用反応炉の反応
炉本体1は、窪部2aを有する入口側炉本体部材2と窪
部3aを有する出口側炉本体部材3とを溶接部4を介し
て一体化することにより組み立てられている。窪部2a
と窪部3aにより囲繞形成される空間部6の内壁面で
は、所謂触媒反応による水分発生が進行する。
[0003] That is, the reactor body 1 of the moisture generating reactor shown in FIG. 6 has a welding portion 4 formed by joining an inlet-side furnace body member 2 having a recess 2a and an outlet-side furnace body member 3 having a recess 3a. It is assembled by being integrated via Recess 2a
On the inner wall surface of the space portion 6 formed by being surrounded by the recesses 3a, generation of water by a so-called catalytic reaction proceeds.

【0004】入口側炉本体部材2の中央には原料ガス入
口通路7が穿設され、その内側には入口側反射板8が、
またその外側には原料ガス供給用継手9が配設されてい
る。同時に、出口側炉本体部材3の中央には水分ガス出
口通路10が穿設され、その内側には出口側反射拡散体
11が、その外側には水分ガス導出用継手12が配設さ
れている。尚、入口側反射板8及び出口側反射拡散体1
1は取付用ねじ5により固定されている。
[0004] A raw material gas inlet passage 7 is formed in the center of the inlet side furnace body member 2, and an inlet side reflector 8 is provided inside thereof.
Further, a source gas supply joint 9 is provided outside thereof. At the same time, a moisture gas outlet passage 10 is formed in the center of the outlet side furnace main body member 3, an outlet side reflection diffuser 11 is provided inside thereof, and a moisture gas deriving joint 12 is provided outside thereof. . In addition, the entrance side reflection plate 8 and the exit side reflection diffuser 1
1 is fixed by mounting screws 5.

【0005】入口側炉本体部材2の内壁面にはTiN等
の窒化物からなるバリヤー皮膜13aが形成されてい
る。また、出口側炉本体部材3の内壁面には白金コーテ
ィング膜13が形成されている。この白金コーティング
膜13はTiN等の窒化物からなるバリヤー皮膜13a
の上に、蒸着工法やイオンプレーティング工法等による
白金皮膜13bを固着して構成されている。白金コーテ
ィング膜13は原料ガスから水分ガスを生成する触媒作
用を奏する。
A barrier film 13a made of a nitride such as TiN is formed on the inner wall surface of the inlet-side furnace body member 2. Further, a platinum coating film 13 is formed on the inner wall surface of the outlet side furnace main body member 3. This platinum coating film 13 is a barrier film 13a made of a nitride such as TiN.
And a platinum film 13b formed by a vapor deposition method, an ion plating method, or the like is fixed thereon. The platinum coating film 13 has a catalytic action of generating a moisture gas from a source gas.

【0006】[0006]

【発明が解決しようとする課題】上記の水分発生用反応
炉の作動を説明すると、原料ガスである水素ガスと酸素
ガスを原料ガス供給用継手9から入口側反射板8を介し
て空間部6に導入する。原料ガスは入口側反射板8と出
口側反射拡散体11により空間部6の全域へと分散さ
れ、白金コーティング膜13の触媒作用で水分生成反応
が進行する。生成物である水分ガス、即ち水蒸気と未反
応原料ガスは水分ガス導出用継手12を通して次段の装
置へと送出される。
The operation of the above-mentioned reactor for generating moisture will be described. The hydrogen gas and the oxygen gas, which are the source gases, are supplied from the source gas supply joint 9 via the inlet side reflector 8 to the space 6. To be introduced. The raw material gas is dispersed throughout the space 6 by the inlet-side reflecting plate 8 and the outlet-side reflecting diffuser 11, and the moisture generation reaction proceeds by the catalytic action of the platinum coating film 13. The product moisture gas, that is, water vapor and unreacted raw material gas, is sent out to the next stage device through the moisture gas deriving joint 12.

【0007】しかし、この水分発生用反応炉では、水分
生成反応が発熱反応であるために、発生した反応熱によ
り反応炉全体および水蒸気が過剰に加熱されるという欠
点がある。例えば、水蒸気を1000cc/分の発生量
で発生させたときには自己発熱により水蒸気温度が40
0〜450℃に達する。水分発生量をさらに増すと、水
蒸気温度が450℃を越えてしまい、水素ガスと酸素ガ
スの発火温度である560℃に近づき極めて危険な状態
となる。
However, this water generating reaction furnace has a drawback that the entire reaction furnace and steam are excessively heated by the generated reaction heat because the water generation reaction is an exothermic reaction. For example, when steam is generated at a generation rate of 1000 cc / min, the steam temperature becomes 40
Reaches 0-450 ° C. If the amount of generated moisture is further increased, the water vapor temperature exceeds 450 ° C. and approaches the ignition temperature of hydrogen gas and oxygen gas of 560 ° C., which is a very dangerous state.

【0008】この危険を回避するために、これまでこの
種の水分発生用反応炉では水分発生量の上限を1000
cc/分としなければならなかった。水分発生量を増す
ための方策として、反応炉を大きくすることも行なわれ
たが、サイズアップはコストアップを引き起こすだけで
なく、反応炉の汎用性や使い易さを失なわせることにも
なった。
In order to avoid this danger, an upper limit of the amount of generated water has been set to 1000 in a water generating reactor of this type.
cc / min. As a measure to increase the amount of water generated, the size of the reactor was increased, but increasing the size not only increased the cost but also reduced the versatility and ease of use of the reactor. Was.

【0009】[0009]

【課題を解決するための手段】本発明は上記欠点を解消
するためになされたものであり、本発明に係る放熱式水
分発生用反応炉は、入口側炉本体部材と出口側炉本体部
材を組み合わせて内部に空間部を形成した反応炉本体
と、入口側炉本体部材に穿設され空間部に原料ガスを導
入する原料ガス入口通路と、この原料ガス入口通路に接
続された原料ガス供給用継手と、出口側炉本体部材に穿
設され空間部から生成水を導出する水分ガス出口通路
と、この水分ガス出口通路に接続された水分ガス導出用
継手と、前記炉本体部材の外壁面に密着させたフィン基
板と、このフィン基板に立設された多数の放熱用フィン
とから構成される点に特徴を有する。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned drawbacks, and a heat radiation type water generating reactor according to the present invention has an inlet side furnace body member and an outlet side furnace body member. A reactor body having a space formed therein, a raw material gas inlet passage perforated in the inlet side furnace body member for introducing a raw material gas into the space, and a raw material gas supply passage connected to the raw material gas inlet passage. A joint, a moisture gas outlet passage perforated in the outlet side furnace main body member to guide generated water from a space portion, a moisture gas deriving joint connected to the moisture gas outlet passage, and an outer wall surface of the furnace main body member. It is characterized by comprising a fin substrate adhered thereto and a number of heat dissipating fins erected on the fin substrate.

【0010】また、前記出口側炉本体部材とフィン基板
の間にヒーターとヒーター押え板を介装させ、フィン基
板をヒーター押え板に密着配置させた放熱式水分発生用
反応炉を提案する。
[0010] Further, there is proposed a heat radiation type water generating reactor in which a heater and a heater press plate are interposed between the outlet side furnace main body member and the fin substrate, and the fin substrate is disposed in close contact with the heater press plate.

【0011】前記放熱用フィンを原料ガス供給用継手又
は水分ガス導出用継手を中心に略中心対称又は略軸対称
に配置した放熱式水分発生用反応炉を提案する。
[0011] A heat-dissipating moisture-generating reactor in which the heat-dissipating fins are arranged substantially centrally symmetrically or substantially axially symmetrically around a joint for supplying a raw material gas or a joint for deriving a moisture gas is proposed.

【0012】更に、前記放熱用フィンの表面をアルマイ
ト加工して熱放射率を向上させた放熱式水分発生用反応
炉を提案する。
Further, the present invention proposes a heat dissipating moisture generating reactor in which the surface of the heat dissipating fin is anodized to improve the heat emissivity.

【0013】[0013]

【発明の実施の形態】水分発生用反応炉の過剰な自己加
熱を防止するために鋭意研究した結果、本発明者等は水
分発生用反応炉の外壁面に多数の放熱用フィンを立設す
ることによって過剰な温度上昇を抑制することに成功し
た。その結果、水分発生用反応炉のサイズアップを行う
ことなく、水分発生量を1000cc/分から2000
cc/分に増大することが可能となった。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies to prevent excessive self-heating of a moisture generating reactor, the present inventors have set up a large number of radiating fins on the outer wall surface of the moisture generating reactor. As a result, it succeeded in suppressing an excessive rise in temperature. As a result, the amount of generated water can be increased from 1000 cc / min to 2000 without increasing the size of the reactor for generating water.
It was possible to increase to cc / min.

【0014】また、放熱用フィンの表面をアルマイト加
工することによって放熱用フィンの熱放射率を向上させ
ることに成功し、水分発生量を2500cc/分にまで
増大化できることを確認した。
Further, it was confirmed that the heat emissivity of the heat radiation fin was successfully improved by anodizing the surface of the heat radiation fin, and that the amount of generated water could be increased to 2500 cc / min.

【0015】以下、図面に基づいて本発明の実施態様を
説明する。図1は本発明に係る水分発生用反応炉の反応
炉本体の縦断面図であり、図6と同一部分には同一符号
を付してその構造を簡単に説明する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a reactor main body of a moisture generating reactor according to the present invention. The same parts as those in FIG.

【0016】この反応炉本体1は入口側炉本体部材2、
窪部2a、出口側炉本体部材3、窪部3a、溶接部4、
取付用ねじ、空間部6、原料ガス入口通路7、入口側反
射板8、原料ガス供給用継手9、水分ガス出口通路1
0、出口側反射拡散体11、水分ガス導出用継手12、
白金コーティング膜13、バリヤー皮膜13a、白金皮
膜13b、放熱体14、ヒーター15およびヒーター押
え板16から構成されている。
The reactor body 1 includes an inlet-side furnace body member 2,
Recess 2a, outlet side furnace body member 3, recess 3a, weld 4,
Mounting screw, space 6, raw material gas inlet passage 7, inlet side reflector 8, raw material gas supply joint 9, moisture gas outlet passage 1
0, outlet-side reflective diffuser 11, moisture gas deriving joint 12,
It comprises a platinum coating film 13, a barrier film 13a, a platinum film 13b, a radiator 14, a heater 15, and a heater holding plate 16.

【0017】図2は放熱体14の平面図、図3は図2の
I−I線断面図である。放熱体14はフィン基板17の表
面に多数の放熱用フィン18を縦列状に立設して構成さ
れている。中央には継手用透孔19を穿設し、この継手
用透孔19から一辺に向けて切欠部20を設けている。
また、フィン基板17の四隅には炉本体部材2、3への
ボルト取付孔21が穿設されている。
FIG. 2 is a plan view of the radiator 14, and FIG.
FIG. 2 is a sectional view taken along line II. The heat dissipating body 14 is formed by arranging a large number of heat dissipating fins 18 on the surface of a fin substrate 17 in a vertical line. A through hole 19 for a joint is formed in the center, and a cutout 20 is provided from the through hole 19 for a joint to one side.
Further, bolt mounting holes 21 for the furnace body members 2 and 3 are formed at four corners of the fin substrate 17.

【00018】フィン基板17および放熱用フィン18
の形状は、継手用透孔19を中心にして略中心対称に形
成されている。図2では切欠部20を形成しているため
に完全な中心対称性から外れているが、この略中心対称
性により放熱体14の放熱特性の中心対称性を発揮させ
るものである。
Fin substrate 17 and heat dissipating fin 18
Are formed substantially symmetrically about the joint through hole 19. In FIG. 2, the notch 20 is formed to deviate from the complete central symmetry. However, the central symmetry allows the heat radiation body 14 to exhibit the central symmetry of the heat radiation characteristics.

【0019】この中心対称性によって、中心から等距離
にある直径上の2点の温度はほぼ等しくなるように設計
される。入口側炉本体部材2および出口側炉本体部材3
の放熱特性を中心対称化すれば、空間部6内の温度分布
も中心対称化でき、水分生成反応を中心対称的に均一化
して反応炉本体1内の局所的な高温化を防止できる。即
ち、水素ガスや酸素ガスの局所的な発火を防止して、水
分発生用反応炉の安全性を高め、長寿命化を達成するこ
とができる。
Due to this central symmetry, it is designed that the temperatures at two points on the diameter which are equidistant from the center are almost equal. Inlet furnace body member 2 and outlet furnace body member 3
By centralizing the heat radiation characteristics, the temperature distribution in the space 6 can also be centrally symmetric, and the water generation reaction can be made centrally symmetrical and uniform, and the local high temperature inside the reactor main body 1 can be prevented. That is, local ignition of hydrogen gas and oxygen gas can be prevented, the safety of the reactor for generating moisture can be enhanced, and the life can be extended.

【0020】図4は放熱体14を入口側炉本体部材2に
固定した側面図で、図1は図4のII−II線断面図に対応
する。
FIG. 4 is a side view in which the radiator 14 is fixed to the inlet side furnace body member 2, and FIG. 1 corresponds to a sectional view taken along line II-II of FIG.

【0021】放熱体14を入口側炉本体部材2に固定す
るには、継手用透孔19に原料ガス供給用継手9を挿通
させ、フィン基板17を入口側炉本体部材2の外壁面に
密着させ、その後ボルト取付孔21を介して図示しない
ボルトで締結する。
In order to fix the radiator 14 to the inlet side furnace main body member 2, the raw gas supply joint 9 is inserted through the joint through hole 19, and the fin substrate 17 is adhered to the outer wall surface of the inlet side furnace main body member 2. Then, it is fastened with a bolt (not shown) through the bolt mounting hole 21.

【0022】放熱体14を出口側炉本体部材3に固定す
るには、ヒーター15およびヒーター押え板16を介し
て継手用透孔19に水分ガス導出用継手12を挿通させ
る。その後、フィン基板17をヒーター押え板16に密
着させ、ボルト取付孔21を介してボルトで締結する。
In order to fix the heat radiator 14 to the outlet side furnace body member 3, the moisture gas deriving joint 12 is inserted into the joint through hole 19 through the heater 15 and the heater pressing plate 16. After that, the fin substrate 17 is brought into close contact with the heater holding plate 16 and fastened with bolts through the bolt mounting holes 21.

【0023】本発明者等は放熱体14の熱放射率を高め
るために、種々研究した結果、放熱用フィン18の表面
をアルマイト加工することによって熱放射率を増大化で
きることを見い出すに到った。
The present inventors have conducted various studies in order to increase the thermal emissivity of the radiator 14, and as a result, have found that the thermal emissivity can be increased by anodizing the surface of the heat dissipating fins 18. .

【0024】一般にアルマイト加工はアルミニウム又は
アルミニウム合金の表面に酸化物の薄い膜を形成する加
工法を称し、近年では着色アルマイト加工もできるよう
になっている。しかし、これらの一般のアルマイト加工
は耐食性や耐摩耗性を強化するためであり、熱放射率の
増大効果は本発明者等によって見い出されたものであ
る。
Generally, alumite processing is a processing method for forming a thin oxide film on the surface of aluminum or an aluminum alloy, and in recent years, colored alumite processing has also become possible. However, these general alumite processes are for enhancing corrosion resistance and wear resistance, and the effect of increasing the thermal emissivity has been found by the present inventors.

【0025】アルマイト加工面積が大きいほど放熱体1
4の放熱特性は改善されるから、放熱用フィン18の表
面だけでなく、フィン基板17の表面もアルマイト加工
することが望まれる。
The larger the alumite processing area is, the more the radiator 1
Since the heat radiation characteristics of the heat radiation fin 4 are improved, it is desired that not only the surface of the heat radiation fin 18 but also the surface of the fin substrate 17 be anodized.

【0026】本発明者等はアルマイト付き放熱用フィン
とアルマイトなし放熱用フィンの放熱効果をみるため、
放熱用フィンなしを加えた3種類の水分発生用反応炉の
動作試験を行った。
The present inventors examined the heat radiation effect of the heat radiation fins with alumite and the heat radiation fins without alumite.
An operation test of three types of water generating reaction furnaces without a heat radiating fin was performed.

【0027】図5は出口側炉本体部材3の端面図であ
り、中心から1cm間隔で出口側本体に穴をあけ、内壁
面から1mmの位置に5本の温度測定用熱電対P1 〜P
5 を配置し、下流側の空間部6の半径方向温度分布を測
定した。また、周辺から3cmの位置には下流側温度を
測定する温調用熱電対Pを配置して、ヒーター15の温
調設定温度からどの程度ずれているかが分るようにし
た。また、この熱電対Pと対向する入口側炉本体部材2
の位置でも上流側温度を測定した。
FIG. 5 is an end view of the outlet-side furnace body member 3. Holes are formed in the outlet-side body at intervals of 1 cm from the center, and five thermocouples for temperature measurement P 1 to P are located at a position 1 mm from the inner wall surface.
5 was arranged, and the temperature distribution in the radial direction of the space 6 on the downstream side was measured. In addition, a thermocouple P for measuring the temperature on the downstream side is arranged at a position 3 cm from the periphery, so that the degree of deviation from the set temperature of the heater 15 can be determined. Further, the inlet-side furnace main body member 2 facing the thermocouple P
The upstream temperature was also measured at the position.

【0028】水分発生条件はH2 /O2 =10/6に設
定され、酸素リッチの条件下で水分が生成された。酸素
リッチの方が水分生成率が高くなり、未反応原料ガスを
低く押えることができるからである。測定結果は表1に
示されている。熱電対P1 の測定温度は掲載されていな
い。
The water generation condition was set to H 2 / O 2 = 10/6, and water was generated under oxygen-rich conditions. This is because the oxygen-rich one has a higher moisture generation rate and can keep the unreacted raw material gas low. The measurement results are shown in Table 1. Measured temperature of the thermocouple P 1 has not been published.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から分るように、下流側温度は温調設
定された温度とほとんど一致しているから、ヒーター1
5による温調設定は有効に作用している。この温調設定
は生成された水分を水蒸気として後続装置に送るために
行なわれ、一例として300℃に設定されたものであ
る。また、上流側温度が下流側温度より低いのは、上流
側、即ち入口側の空間部6では水分生成反応がほとんど
ないことを示す。
As can be seen from Table 1, the downstream temperature almost coincides with the temperature set for the temperature control.
The temperature control setting of 5 works effectively. This temperature control setting is performed in order to send the generated moisture as steam to a subsequent device, and is set to 300 ° C. as an example. In addition, the fact that the upstream temperature is lower than the downstream temperature indicates that there is almost no moisture generation reaction in the space 6 on the upstream side, that is, on the inlet side.

【0031】出口側の空間部6では白金触媒により水分
生成反応が進行するから、空間部6の温度が上下に分布
する。中心から4cmの位置にある熱電対P4 がP2
5の中で最も高温を示し、この位置で水分発生もしく
は熱が集中しやすいことを意味する。水分発生量が大き
い程、その位置での自己発熱が大きいからである。ここ
で水分発生量の単位はSLM、即ちリットル/分が用い
られている。
In the space 6 on the outlet side, the moisture generation reaction proceeds by the platinum catalyst, so that the temperature of the space 6 is distributed vertically. Thermocouple P 4 in the center position of 4cm is P 2 ~
Shows the highest temperature in the P 5, water generation or heat at this position means that easily concentrated. This is because the greater the amount of generated water, the greater the amount of self-heating at that position. Here, the unit of the amount of generated water is SLM, that is, liter / minute.

【0032】水分発生用反応炉の安全運転の上限温度を
450℃とすると、熱電対P4 が450℃以下になる水
分発生量を安全運転域の水分発生量と定めることができ
る。従って、フィンなしでは1SLM、アルマイトなし
フィン付では2SLM、硬質アルマイト付きフィン付で
は2.5SLMが水分発生量の上限となる。換言する
と、フィンなしに対して、フィンを付けるだけで水分発
生量を2倍にでき、アルマイト付きフィンでは水分発生
量を2.5倍に増大化できることが分った。
Assuming that the upper limit temperature of the safe operation of the water generating reactor is 450 ° C., the amount of water generated when the thermocouple P 4 becomes 450 ° C. or less can be defined as the amount of water generated in the safe operation region. Therefore, 1 SLM without fins, 2 SLM with fins without alumite, and 2.5 SLM with fins with hard alumite are the upper limit of water generation. In other words, it was found that the amount of generated water can be doubled by simply attaching the fins to the case without the fins, and the amount of generated water can be increased by 2.5 times with the fins with alumite.

【0033】前記アルマイトは厚み20μmの硬質アル
マイトの場合であるが、厚み20μmの着色アルマイト
(黒色)の場合や厚み5〜50μmの硬質アルマイトの
場合でも、熱電対P2 〜P5 の指示温度は数℃の範囲内
で一致した。
Although the alumite is a hard alumite having a thickness of 20 μm, even in the case of a colored alumite (black) having a thickness of 20 μm or a hard alumite having a thickness of 5 to 50 μm, the indicated temperature of the thermocouples P 2 to P 5 is The agreement was within a range of several degrees Celsius.

【0034】尚、表2は、水分発生量を2.5SLMと
して、アルマイトの厚み及びアルマイトの種類を変えた
場合の水分発生反応炉の温度測定結果を示すものであ
る。
Table 2 shows the results of measuring the temperature of the moisture generation reaction furnace when the thickness of the alumite and the type of the alumite were changed with the amount of generated water being 2.5 SLM.

【0035】[0035]

【表2】 [Table 2]

【0036】以上をまとめると、放熱用フィンを付ける
ことにより放熱効果が得られ、温度分布の低温化を実現
できる。逆に、水分発生量を約2倍に増大化できる。ま
た、放熱用フィンにアルマイト処理を施すことにより、
熱放射率(輻射率)が向上し、アルマイトなしに対して
約50℃の低温化を図ることができる。水分発生量では
約2.5倍に増大化でき、アルマイトの種類や厚みに対
する依存性は少ない。
In summary, the heat radiation effect can be obtained by attaching the heat radiation fins, and the temperature distribution can be reduced. Conversely, the amount of generated water can be approximately doubled. Also, by applying alumite treatment to the heat dissipation fins,
The thermal emissivity (emissivity) is improved, and the temperature can be reduced to about 50 ° C. as compared to the case without alumite. The amount of generated water can be increased by about 2.5 times, and there is little dependence on the type and thickness of alumite.

【0037】表1の結果は図面に示す中心対称に配置さ
れた放熱用フィンの場合であるが、略軸対称に配置され
た放熱用フィンでも同様の放熱効果が得られる。ここで
軸対称とは例えば同心円状に放熱用フィンを配置した場
合を指称する。軸対称配置では、前記した温度分布も軸
対称性を有するようになり、水分生成の空間部6内での
均一性を増すことができる。
The results in Table 1 are for the heat-radiating fins arranged centrally symmetrically as shown in the drawing, but similar heat-radiating effects can be obtained with the heat-radiating fins arranged substantially axially symmetrically. Here, the term “axially symmetric” refers to, for example, a case where the heat radiation fins are arranged concentrically. In the axially symmetric arrangement, the above-mentioned temperature distribution also has axial symmetry, and the uniformity of the moisture generation in the space 6 can be increased.

【0038】本発明は上記実施例や実施形態に限定され
るものではなく、本発明の技術的思想を逸脱しない範囲
における種々の変形例、設計変更などをその技術的範囲
内に包含するものである。
The present invention is not limited to the above examples and embodiments, but includes various modifications and design changes within the technical scope of the present invention without departing from the technical concept of the present invention. is there.

【0039】[0039]

【発明の効果】請求項1の発明によれば、放熱用フィン
を通して水分生成熱を強制放射することによって、反応
炉内の低温化を実現でき、また水分生成量の増大化を実
現することができる。
According to the first aspect of the present invention, by forcibly radiating the heat of water generation through the radiating fins, it is possible to lower the temperature in the reaction furnace and to increase the amount of water generated. it can.

【0040】請求項2の発明によれば、ヒーターにより
反応炉内を適温に保持することによって生成した水分を
安定した水蒸気流として後続装置に導出することができ
る。
According to the second aspect of the present invention, the moisture generated by maintaining the inside of the reaction furnace at an appropriate temperature by the heater can be led out to the subsequent device as a stable steam flow.

【0041】請求項3によれば、放熱用フィンを略中心
対称または略軸対称に配置しているから、反応炉内の温
度分布の中心対称化または軸対称化を図ることができ、
局所的高温化を防止して反応炉内での水分生成を安定且
つ円滑に行うことができる。
According to the third aspect, since the heat dissipating fins are arranged substantially centrally symmetrically or substantially axially symmetrically, the temperature distribution in the reaction furnace can be made centrally symmetrical or axially symmetrical.
It is possible to prevent local high temperature and stably and smoothly generate water in the reactor.

【0042】請求項4によれば、放熱用フィンの表面を
アルマイト加工して熱放射率を向上したから、反応炉内
の一層の低温化を実現でき、従って水分生成量の一層の
増大化を実現することができる。本発明は上述の通り優
れた実用的効果を奏するものである。
According to the fourth aspect, the surface of the radiating fins is anodized to improve the thermal emissivity, so that the temperature inside the reaction furnace can be further reduced, and the amount of generated water can be further increased. Can be realized. The present invention has excellent practical effects as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る水分発生用反応炉の反応炉
本体の縦断面図である。
FIG. 1 is a longitudinal sectional view of a reactor main body of a reactor for generating moisture according to the present invention.

【図2】図2は本発明に係る放熱体の平面図である。FIG. 2 is a plan view of a radiator according to the present invention.

【図3】図3は図2のI−I線断面図である。FIG. 3 is a sectional view taken along line II of FIG. 2;

【図4】図4は放熱体を入口側炉本体部材に固定した側
面図である。
FIG. 4 is a side view in which a radiator is fixed to an inlet-side furnace main body member.

【図5】図5は出口側炉本体部材の端面図である。FIG. 5 is an end view of an outlet-side furnace main body member.

【図6】図6は従来の水分発生用反応炉の縦断面図であ
る。
FIG. 6 is a longitudinal sectional view of a conventional moisture generating reactor.

【符号の説明】[Explanation of symbols]

1は反応炉本体、2は入口側炉本体部材、2aは窪部、
3は出口側炉本体部材、3aは窪部、4は溶接部、5は
取付用ねじ、6は空間部、7は原料ガス入口通路、8は
入口側反射板、9は原料ガス供給用継手、10は水分ガ
ス出口通路、11は出口側反射拡散体、12は水分ガス
導出用継手、13は白金コーティング膜、13aはバリ
ヤー皮膜、13bは白金皮膜、14は放熱体、15はヒ
ーター、16はヒーター押え板、17はフィン基板、1
8は放熱用フィン、19は継手用透孔、20は切欠部、
21はボルト取付孔、P1 〜P5 は温度分布測定用熱電
対、Pは温調用熱電対である。
1 is a reactor body, 2 is an inlet side furnace body member, 2a is a concave portion,
3 is an outlet side furnace body member, 3a is a concave portion, 4 is a welded portion, 5 is a mounting screw, 6 is a space portion, 7 is a raw material gas inlet passage, 8 is an inlet side reflector, and 9 is a raw material gas supply joint. 10 is a moisture gas outlet passage, 11 is an outlet side reflection diffuser, 12 is a moisture gas deriving joint, 13 is a platinum coating film, 13a is a barrier film, 13b is a platinum film, 14 is a radiator, 15 is a heater, 16 Is a heater holding plate, 17 is a fin substrate, 1
8 is a fin for heat dissipation, 19 is a through hole for a joint, 20 is a notch,
21 bolt mounting holes, P 1 to P 5 is a thermocouple for measuring the temperature distribution, P is a thermocouple for temperature control.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川田 幸司 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 皆見 幸男 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 森本 明弘 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 中村 修 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 米華 克典 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 マノハルラル・シュレスタ 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 池田 信一 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 成相 敏朗 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 (72)発明者 平尾 圭志 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Kawada, Inventor 2-3-2, Noribori, Nishi-ku, Osaka, Japan Fujikin Co., Ltd. (72) Inventor Yukio Minami 2-3-2, Noribori, Nishi-ku, Osaka, Osaka Fujikin Co., Ltd. (72) Inventor Akihiro Morimoto 2-3-2, Noribori, Nishi-ku, Osaka, Osaka Prefecture (72) Inventor Osamu Nakamura 2-3-2, Tachibori, Nishi-ku, Osaka, Osaka Fujikin Co., Ltd. (72) Inventor Katsunori Yoneka 2-3-2, Noribori, Nishi-ku, Osaka-shi, Osaka Fujikin Incorporated (72) Inventor Manoharral Shresta 2-3-2, Noribori, Nishi-ku, Osaka-shi, Osaka Fujikinnai (72) Inventor Shinichi Ikeda 2-3-2 Nobori, Nishi-ku, Osaka-shi, Osaka Fujikin Co., Ltd. (72) Invention Narusho Toshiro Osaka-shi, Osaka, Nishi-ku, Itachibori 2-chome No. 3 No. 2, Inc. in the Fujikin (72) inventor Hirao Keikokorozashi Osaka-shi, Osaka, Nishi-ku, Itachibori 2-chome No. 3 No. 2, Inc. in the Fujikin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入口側炉本体部材2と出口側炉本体部材
3を組み合わせて内部に空間部6を形成した反応炉本体
1と、入口側炉本体部材2に穿設され空間部6に原料ガ
スを導入する原料ガス入口通路7と、この原料ガス入口
通路に接続された原料ガス供給用継手9と、出口側炉本
体部材3に穿設された空間部6から生成水を導出する水
分ガス出口通路10と、この水分ガス出口通路10に接
続された水分ガス導出用継手12と、前記炉本体部材
2、3の外壁面に密着させたフィン基板17と、このフ
ィン基板17に立設された多数の放熱用フィン18とか
ら構成されることを特徴とする放熱式水分発生用反応
炉。
1. A reactor body 1 in which a space portion 6 is formed by combining an inlet side furnace body member 2 and an outlet side furnace body member 3, and a raw material is provided in the space portion 6 perforated in the inlet side furnace body member 2. A raw material gas inlet passage 7 for introducing a gas, a raw material gas supply joint 9 connected to the raw material gas inlet passage, and a moisture gas for extracting generated water from a space 6 formed in the outlet side furnace body member 3. The outlet passage 10, a moisture gas deriving joint 12 connected to the moisture gas outlet passage 10, a fin substrate 17 closely attached to the outer wall surfaces of the furnace body members 2, 3, and a fin substrate 17 erected on the fin substrate 17. And a plurality of heat dissipating fins 18.
【請求項2】 前記出口側炉本体部材3とフィン基板1
7の間にヒーター15とヒーター押え板16を介装さ
せ、フィン基板17をヒーター押え板16に密着配置さ
せた請求項1記載の放熱式水分発生用反応炉。
2. The outlet furnace body member 3 and the fin substrate 1.
The heat radiation type water generating reactor according to claim 1, wherein the heater (15) and the heater press plate (16) are interposed between the heater press plates (7) and the fin substrate (17) is closely attached to the heater press plate (16).
【請求項3】 前記放熱用フィン18を原料ガス供給用
継手9又は水分ガス導出用継手12を中心に略中心対称
又は略軸対称に配置した請求項1又は2記載の放熱式水
分発生用反応炉。
3. The heat-dissipating water-generating reaction according to claim 1, wherein the heat-dissipating fins 18 are arranged substantially centrally symmetrically or substantially axially symmetrically around the raw material gas supply joint 9 or the moisture gas derivation joint 12. Furnace.
【請求項4】 前記放熱用フィン18の表面をアルマイ
ト加工して熱放射率を向上させた請求項1ないし3記載
の放熱式水分発生用反応炉。
4. The heat radiation type water generating reactor according to claim 1, wherein the surface of the heat radiation fins 18 is anodized to improve the heat emissivity.
JP22354899A 1999-08-06 1999-08-06 Thermal reactor for moisture generation Expired - Lifetime JP3639469B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP22354899A JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation
IL14119400A IL141194A0 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
CA002479400A CA2479400A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
CA002343278A CA2343278A1 (en) 1999-08-06 2000-07-21 Apparatus and reactor for generating and feeding high purity moisture
PCT/JP2000/004911 WO2001010774A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
IL16104500A IL161045A0 (en) 1999-08-06 2000-07-21 Reactor for generating moisture
SG200202050A SG94873A1 (en) 1999-08-06 2000-07-21 Reactor for generating high purity moisture
CNB2004100033410A CN1279582C (en) 1999-08-06 2000-07-21 Water content generation supply device and reaction stove for water content generation
EP00946457A EP1138631A1 (en) 1999-08-06 2000-07-21 Moisture generating/supplying device and moisture generating reactor
KR10-2000-7014111A KR100387731B1 (en) 1999-08-06 2000-07-21 Apparatus for generating and feeding moisture and reactor for generating moisture
CNB008016267A CN100341775C (en) 1999-08-06 2000-07-21 Moisture generating-supplying device and moisture generating reactor
TW089115809A TW553900B (en) 1999-08-06 2000-08-05 Moisture generating/supplying device and moisture generating reactor
IL141194A IL141194A (en) 1999-08-06 2001-01-31 Apparatus and reactor for generating and feeding high purity moisture
US09/773,605 US7258845B2 (en) 1999-08-06 2001-02-02 Apparatus and reactor for generating and feeding high purity moisture
US10/724,101 US7368092B2 (en) 1999-08-06 2003-12-01 Apparatus and reactor for generating and feeding high purity moisture
IL161045A IL161045A (en) 1999-08-06 2004-03-24 Reactor for generating moisture
US11/460,087 US7553459B2 (en) 1999-08-06 2006-07-26 Apparatus and reactor for generating and feeding high purity moisture
US11/760,330 US20070231225A1 (en) 1999-08-06 2007-06-08 Apparatus and reactor for generating and feeding high purity moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22354899A JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation

Publications (2)

Publication Number Publication Date
JP2001048501A true JP2001048501A (en) 2001-02-20
JP3639469B2 JP3639469B2 (en) 2005-04-20

Family

ID=16799891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22354899A Expired - Lifetime JP3639469B2 (en) 1999-08-06 1999-08-06 Thermal reactor for moisture generation

Country Status (1)

Country Link
JP (1) JP3639469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008949A1 (en) * 2004-07-20 2006-01-26 Fujikin Incorporated Reactor for generating moisture and moisture generating and feeding apparatus using the same
US8469046B2 (en) 2007-04-17 2013-06-25 Fujikin Incorporated Method for parallel operation of reactors that generate moisture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008949A1 (en) * 2004-07-20 2006-01-26 Fujikin Incorporated Reactor for generating moisture and moisture generating and feeding apparatus using the same
KR100786663B1 (en) * 2004-07-20 2007-12-21 가부시키가이샤 후지킨 Reactor for generating moisture and moisture generating and feeding apparatus using the same
US7815872B2 (en) 2004-07-20 2010-10-19 Fujikin Incorporated Reactor for generating moisture and moisture generating and feeding apparatus for which the reactor is employed
US8469046B2 (en) 2007-04-17 2013-06-25 Fujikin Incorporated Method for parallel operation of reactors that generate moisture

Also Published As

Publication number Publication date
JP3639469B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US7553459B2 (en) Apparatus and reactor for generating and feeding high purity moisture
TWI428713B (en) High chamber temperature process and chamber design for photo-resist stripping and post-metal etch passivation
TWI489556B (en) Rapid thermal processing lamphead with improved cooling
EP2325574A1 (en) Liquid heater and liquid heating method
US20080017628A1 (en) Multizone heater for furnace
CN106463399A (en) Light pipe structure window for low pressure thermal processes
JP2019537700A (en) Steam generator and reactor
KR100786663B1 (en) Reactor for generating moisture and moisture generating and feeding apparatus using the same
JP2001048501A (en) Heat radiating type reactional furnace for producing water
TWI251881B (en) Rapid thermal processing system
KR100402665B1 (en) Reactor for generating moisture
JP3639440B2 (en) Water generation reactor
JP2001017851A (en) Heater for producing supercritical fluid
JPS6365083A (en) Vapor growing apparatus
JPH11111619A (en) Cvd apparatus
CA2479400A1 (en) Apparatus and reactor for generating and feeding high purity moisture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Ref document number: 3639469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term