JP2001017851A - Heater for producing supercritical fluid - Google Patents

Heater for producing supercritical fluid

Info

Publication number
JP2001017851A
JP2001017851A JP11195133A JP19513399A JP2001017851A JP 2001017851 A JP2001017851 A JP 2001017851A JP 11195133 A JP11195133 A JP 11195133A JP 19513399 A JP19513399 A JP 19513399A JP 2001017851 A JP2001017851 A JP 2001017851A
Authority
JP
Japan
Prior art keywords
heating
supercritical fluid
liquid
metal block
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195133A
Other languages
Japanese (ja)
Other versions
JP3337438B2 (en
Inventor
Fujitsugu Amita
富士嗣 網田
Okitsugu Kajimoto
興亜 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP19513399A priority Critical patent/JP3337438B2/en
Publication of JP2001017851A publication Critical patent/JP2001017851A/en
Application granted granted Critical
Publication of JP3337438B2 publication Critical patent/JP3337438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a supercritical fluid with its temperature and density stabilized by small-sized constitution and to obtain a high temperature of a specified temperature or above simply by forming a heater from a structure in which a liquid heating pipe is wound spirally onto the peripheral surface of a metal block in the shape of a cylinder, etc., and a heating means arranged on the peripheral surface. SOLUTION: In a fluid heating pipe 1, a raw material liquid introduction port I is opened at one end, and a supercritical fluid extraction opening O is opened at the other end. a U-shaped groove 12 is formed spirally on each outside of cylindrical metal blocks 2, 3, which are a metal heat conductive medium, on the inner and outer sides, and the pipe I is embedded in the shape of a double spiral in the groove 12. A columnar metal block 4 is arranged on the inside of the inside block 3, and the pipe I is inserted in a through hole formed on the central axis of the block 4 in a straight line shape. A Ni-Cr wire 9 wrapped in an insulating body 8 is wound spirally onto the periphery of a metal cylindrical body 7, a metal radiation heat reflection plate 10 is wound on the periphery of these to do enclosure with an insulating material 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界流体(SC
F)処理や超臨界流体反応に使用するための超臨界流体
生成用加熱装置に関する。
The present invention relates to a supercritical fluid (SC)
F) A heating device for producing a supercritical fluid for use in processing or supercritical fluid reaction.

【0002】[0002]

【従来の技術】超臨界流体クロマトグラフ、超臨界流体
反応、超臨界流体環境汚染物質処理、超臨界流体洗浄等
の各種用途に工業的規模や研究規模で用いられる超臨界
流体を連続的に発生させるためには、ある一定の圧力で
液体を流動させながら加熱装置によって液体を高温に加
熱する必要がある。
2. Description of the Related Art Continuous generation of supercritical fluid used on industrial scale and research scale for various applications such as supercritical fluid chromatography, supercritical fluid reaction, supercritical fluid environmental pollutant treatment, and supercritical fluid cleaning. In order to make the liquid flow at a certain pressure, the liquid needs to be heated to a high temperature by a heating device.

【0003】液体の加熱の方法としては、通常は、熱源
を組み込んだ炉または恒温槽の形態で、気体(例えば、
空気や希ガス)または液体(例えば、溶融塩)を熱伝達
媒体として用いて熱を液体に伝達する方法が使用されて
いる。
[0003] As a method of heating a liquid, usually, a gas (for example, a furnace) or a constant temperature bath incorporating a heat source is used.
A method of transferring heat to a liquid using an air or a rare gas) or a liquid (for example, a molten salt) as a heat transfer medium has been used.

【0004】例えば、超臨界水によるグルコースのエピ
マー化および分解装置に関して、シースヒータを直接巻
き付けた予熱部で加圧水を予熱し、反応部において溶融
塩を用いた恒温槽により加熱する装置が公知である(In
d.Eng.Chem.Res.,Vol.36,No.5,1997,pp.1552-1558 )。
For example, as for an apparatus for epimerizing and decomposing glucose with supercritical water, an apparatus is known in which pressurized water is preheated in a preheating section directly wound with a sheath heater, and heated in a reaction section using a thermostatic bath using a molten salt ( In
d. Eng. Chem. Res., Vol. 36, No. 5, 1997, pp. 1552-1558).

【0005】超臨界流体の中でも、超臨界水は、工業生
産への利用、環境汚染物質処理への利用等、様々な利用
目的が企業や公共施設で考えられており、大掛かりな設
備を必要とせず、簡単に連続的な超臨界状態の流れを実
現させて、小規模実験や中規模生産に利用できる装置が
求められている。
[0005] Among supercritical fluids, supercritical water is considered to be used for various purposes such as industrial production and environmental pollutant treatment by companies and public facilities, and requires large-scale facilities. In addition, there is a demand for an apparatus that can easily realize a continuous supercritical flow and can be used for small-scale experiments and medium-scale production.

【0006】[0006]

【発明が解決しようとする課題】液体でも気体でもない
超臨界状態は、温度が僅かでも変化するとその密度は大
きく変化する。密度が変化すると、そこで生じている化
学反応の分岐比が変わったり、あるいは進まなくなった
りする。故に、反応条件を一定にするためには、温度を
安定化させることが非常に大切である。安定した密度の
超臨界流体が得られてはじめて目的とする化学反応や目
的とする物質の抽出が選択的に行なえる。
In the supercritical state, which is neither a liquid nor a gas, the density changes greatly when the temperature changes even slightly. When the density changes, the branching ratio of the chemical reaction occurring there changes or does not proceed. Therefore, in order to keep the reaction conditions constant, it is very important to stabilize the temperature. Only when a supercritical fluid having a stable density is obtained can a desired chemical reaction or a desired substance be extracted selectively.

【0007】しかし、従来の恒温槽を用いた加熱では、
発熱体は熱伝達媒体の中に漬けられており、発生した熱
は、発熱体が円筒形であろうと平面であろうと熱媒体中
に温度勾配を生じながら伝達されるので、温度勾配を小
さくするために撹拌の必要性がある。撹拌が行われてい
ても溶融塩や空気などの熱伝導率は金属に比べて非常に
小さいので、発熱体と熱伝達媒体、熱伝達媒体と流体加
熱管との間の熱交換効率は金属熱伝達媒体に比べるとか
なり劣る。また、熱容量を大きくするために熱伝達媒体
の体積を大きくして装置を大型化する傾向があり、取り
扱いが不便であるばかりでなく安全性や経済性にも問題
が生じている。
However, in the heating using a conventional thermostat,
The heating element is immersed in the heat transfer medium, and the generated heat is transmitted while generating a temperature gradient in the heating medium regardless of whether the heating element is cylindrical or flat, so that the temperature gradient is reduced. There is a need for stirring. Even with stirring, the thermal conductivity of molten salts and air is very small compared to metals, so the heat exchange efficiency between the heating element and heat transfer medium and between the heat transfer medium and It is considerably inferior to the transmission medium. Further, there is a tendency that the volume of the heat transfer medium is increased in order to increase the heat capacity to increase the size of the apparatus, which causes not only inconvenience in handling but also problems in safety and economy.

【0008】[0008]

【課題を解決するための手段】本発明者らは、小型の装
置で、安定した温度・密度の超臨界流体が得られると共
に、最も条件の厳しい超臨界水への利用が可能な500
℃以上の高温が比較的簡単に得られる装置を目標にして
研究開発した結果、本発明を完成するに至った
Means for Solving the Problems The present inventors have obtained a supercritical fluid having a stable temperature and density with a small-sized apparatus, and can use a supercritical water which can be used in the most critical supercritical water.
As a result of research and development aimed at an apparatus that can easily obtain a high temperature of ℃ or higher, the present invention was completed.

【0009】すなわち、本発明は、金属管からなる液体
加熱管の内部に原料液体を流し、該原料液体を液体加熱
管の外部より加熱して超臨界流体を生成するための加熱
装置において、該液体加熱管を、金属熱伝達媒体である
円筒状金属ブロックまたは円柱状金属ブロックの外周面
にその長さ方向の一端から他端へ連続的に形成したらせ
ん状の溝に沿って該一端から他端へ巻き付け、超臨界流
体取り出し口につながる該液体加熱管の末端部分は直線
状として、該円筒状金属ブロックまたは円柱状金属ブロ
ックの中心軸線に設けた孔の内部を通る構造としたらせ
ん状液体加熱管構造体とその外周面に設けた加熱手段と
からなることを特徴とする超臨界流体生成用加熱装置で
ある。
That is, the present invention relates to a heating device for flowing a raw material liquid into a liquid heating tube formed of a metal tube and heating the raw material liquid from outside the liquid heating tube to generate a supercritical fluid. A liquid heating tube is formed on the outer peripheral surface of a cylindrical metal block or a cylindrical metal block, which is a metal heat transfer medium, continuously from one end in the longitudinal direction to the other end thereof along a spiral groove from the other end. A helical liquid that is wound around an end and has a structure in which the end portion of the liquid heating tube connected to the supercritical fluid outlet is straight and passes through the inside of a hole provided in the central axis of the cylindrical metal block or the cylindrical metal block. A heating device for generating a supercritical fluid, comprising a heating pipe structure and a heating means provided on an outer peripheral surface thereof.

【0010】本発明の超臨界流体生成用加熱装置におい
て、外周面に均一加熱手段を設けた熱伝導性の良好な金
属円筒体の内周面に該らせん状液体加熱管構造体の外周
面が接触するように配置することが好ましい。また、ら
せん状液体加熱管構造体は、円筒状金属ブロックの内側
に別の円筒状金属ブロックまたは円柱状金属ブロックを
配置し、各々の外周面に液体加熱管を連続してらせん状
に多重構造に巻かれていることが好ましい。好ましく
は、円筒状金属ブロックまたは円柱状金属ブロックの両
端部に金属熱ガードを装填して、軸方向の両端部の温度
勾配による流体加熱管の不均一な加熱を防止する。加熱
手段は、該熱伝導性の良好な金属円筒体の外側に設け、
好ましくは金属円筒体の長さ方向の一端から他端へ連続
的にらせん状に巻かれた電熱線である。本発明の加熱装
置においては、超臨界流体取り出し口につながる末端部
分の直線状の液体加熱管に沿って配置した熱電対によ
り、該直線状の液体加熱管内部の超臨界流体の温度を計
測して加熱装置の温度を制御することができる。
In the heating apparatus for generating a supercritical fluid of the present invention, the outer peripheral surface of the helical liquid heating pipe structure is formed on the inner peripheral surface of a metal cylinder having good thermal conductivity provided with uniform heating means on the outer peripheral surface. Preferably, they are arranged so as to be in contact. In addition, the spiral liquid heating tube structure has another cylindrical metal block or columnar metal block placed inside the cylindrical metal block, and the liquid heating tubes are continuously spirally arranged on the outer peripheral surface of each block. It is preferably wound around. Preferably, metal heat guards are mounted at both ends of the cylindrical or cylindrical metal block to prevent uneven heating of the fluid heating tube due to a temperature gradient at both ends in the axial direction. Heating means is provided outside the metal cylinder having good thermal conductivity,
Preferably, it is a heating wire continuously spirally wound from one end to the other in the longitudinal direction of the metal cylinder. In the heating device of the present invention, the temperature of the supercritical fluid inside the linear liquid heating tube is measured by a thermocouple arranged along the linear liquid heating tube at the end portion connected to the supercritical fluid outlet. To control the temperature of the heating device.

【0011】本発明の超臨界流体生成用加熱装置におい
て、電熱線等の均一加熱手段により発生する熱は、熱伝
導性の良好な金属円筒体に伝達され、この金属円筒体に
接触している熱伝達媒体に伝達される。熱伝達媒体とし
ては、熱伝導率が大きい固体金属、例えば、500℃以
上でも酸化しにくく、熱伝導率が比較的大きい銅合金、
例えば真鍮、を金属ブロックとして用いて、内部に原料
液体を流す液体加熱管である金属管の外周面を該金属ブ
ロックに接触させる。
In the heating apparatus for generating a supercritical fluid of the present invention, heat generated by a uniform heating means such as a heating wire is transmitted to a metal cylinder having good heat conductivity and is in contact with the metal cylinder. It is transferred to the heat transfer medium. As the heat transfer medium, a solid metal having a large thermal conductivity, for example, a copper alloy which is hardly oxidized even at 500 ° C. or more and has a relatively large thermal conductivity,
For example, using brass as a metal block, the outer peripheral surface of a metal tube, which is a liquid heating tube through which a raw material liquid flows, is brought into contact with the metal block.

【0012】超臨界流体取り出し口につながる該液体加
熱管の末端部分は直線状となっており、該円筒状金属ブ
ロックまたは円柱状金属ブロックの中心軸線に設けた孔
の内部を通り、該金属ブロックの孔の内面と液体加熱管
の外面とが面接触しているので、該金属ブロックを伝達
した熱は360度方向から中心軸線の直線状の液体加熱
管に均一に伝達される。
[0012] The end portion of the liquid heating tube leading to the supercritical fluid outlet is straight, passes through the inside of a hole provided at the center axis of the cylindrical metal block or the cylindrical metal block, and passes through the metal block. Since the inner surface of the hole is in surface contact with the outer surface of the liquid heating tube, the heat transmitted through the metal block is uniformly transmitted from the 360-degree direction to the linear liquid heating tube having the central axis.

【0013】本発明の装置においては、加熱手段である
発熱体は軸対称に円筒状に配置されており、流体加熱管
は熱伝達媒体を介して360度の方向から熱を受け取る
ことになるので、加熱装置内部の温度分布についてみる
と、加熱装置の中心軸線に対して半径方向への温度勾配
は非常に小さく、定常状態においてはほぼ均一の温度と
みてよい。
In the apparatus according to the present invention, the heating element as the heating means is arranged cylindrically symmetrically with respect to the axis, and the fluid heating tube receives heat from the 360-degree direction via the heat transfer medium. Regarding the temperature distribution inside the heating device, the temperature gradient in the radial direction with respect to the central axis of the heating device is very small, and it can be considered that the temperature is almost uniform in a steady state.

【0014】上述のように軸対称の構造をもつ加熱装置
の内部の温度は安定しており、中心軸線を流れる流体の
中心軸線に沿った温度は信頼性が非常に高く、中心軸線
に沿って最終的に得られる超臨界流体の温度を中心軸線
の近傍で計測し、制御するようにすれば、目的とする正
確な密度をもつ超臨界流体が確実に得られる。
As described above, the temperature inside the heating device having the axisymmetric structure is stable, and the temperature of the fluid flowing along the central axis along the central axis is very reliable. By measuring and controlling the temperature of the finally obtained supercritical fluid in the vicinity of the central axis, a supercritical fluid having a desired and accurate density can be reliably obtained.

【0015】本発明の装置は、大掛かりな加熱装置を用
いて反応の準備と終了に時間のかかる従来の装置に比べ
て、コンパクトで使い易いという特長を有し、本発明の
装置を用いれば、いろいろな物質の超臨界流体を発生さ
せる高温高圧の反応を通常の常温反応のような手軽さで
効率よく簡単かつ安全に行うことができる。また、反応
物を含む水溶液をらせん状液体加熱管の内部を流動させ
ることによって、超臨界流体状態に導きつつ化学反応を
進行させることができる。
The apparatus of the present invention has a feature that it is compact and easy to use as compared with a conventional apparatus that requires a long time to prepare and finish a reaction using a large-scale heating apparatus. A high-temperature, high-pressure reaction that generates a supercritical fluid of various substances can be carried out efficiently, easily, and safely as easily as a normal room-temperature reaction. In addition, by flowing an aqueous solution containing a reactant through the inside of the spiral liquid heating tube, a chemical reaction can be advanced while leading to a supercritical fluid state.

【0016】よって、例えば、種々の反応を種々の条件
で行わせて都合のよい条件を探すという操作が簡単に行
え、有機合成反応を連続的に行わせる際の1ステップと
して、反応の途中に超臨界水反応を挿入することも可能
になる。また、水中での反応には、亜臨界水(200〜
350℃)中での反応と超臨界水(374℃以上)中で
の反応があり、各々異なるメカニズムで反応が進むが、
本発明の装置を反応器として用い、2組をシリーズに並
べて各々を温度制御することで2つの温度領域をプログ
ラム制御しながら反応させることもでき、従来できなか
った化学反応の制御が出来る。
Therefore, for example, an operation of conducting various reactions under various conditions to search for convenient conditions can be easily performed, and as one step in continuously performing an organic synthesis reaction, the reaction is carried out in the middle of the reaction. It is also possible to insert a supercritical water reaction. In addition, for the reaction in water, subcritical water (200 to
There is a reaction in 350 ° C) and a reaction in supercritical water (374 ° C or higher).
By using the apparatus of the present invention as a reactor and arranging two sets in series and controlling the temperature of each, it is also possible to carry out the reaction while controlling the two temperature regions by a program, and it is possible to control a chemical reaction which could not be performed conventionally.

【0017】[0017]

【発明の実施の形態】以下に図面に基づいて本発明の超
臨界流体生成用加熱装置の実施の形態を詳細に説明す
る。図1は、本発明の装置を中心軸線に対して約120
度の角度で切断して示す縦断面斜視図である。図2は、
図1の中心線断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the heating apparatus for generating a supercritical fluid according to the present invention will be described below in detail with reference to the drawings. FIG. 1 shows that the device according to the invention is approximately 120 ° relative to the central axis.
It is a longitudinal section perspective view cut and shown at an angle of degree. FIG.
FIG. 2 is a sectional view taken along the center line of FIG. 1.

【0018】液体加熱管1は、加圧ポンプ(図示せず)
に接続する原料液体導入口Iを一端(図では上部)に有
し、他端(図では下部)に超臨界流体取り出し口Oを有
している。液体の加圧は、市販のポンプを用いて室温で
行い、本発明の加熱装置に導く。なお、図1は、本発明
装置の中心軸線を縦に配置した例を示しているが、縦の
配置に限らず、横方向その他任意の角度方向に自由に配
置出来ることも本発明装置の一つの特長である。
The liquid heating tube 1 is provided with a pressure pump (not shown)
Is provided at one end (the upper part in the figure) and a supercritical fluid outlet O at the other end (the lower part in the figure). The liquid is pressurized at room temperature using a commercially available pump and led to the heating device of the present invention. FIG. 1 shows an example in which the central axis of the device of the present invention is vertically arranged. However, the present invention is not limited to the vertical arrangement, and it is also possible to freely arrange the device in the horizontal direction or any other angle direction. There are two features.

【0019】液体加熱管1の材料としては、SUS31
6、SUS304等のステンレス鋼管、Ni系耐熱合金
(ハステロイ、インコネル=登録商標)管等の耐高温酸
化、耐高温腐食、高温強度、高高温クリープ強度等の化
学的、機械的性質を満たす材料を使用する。液体加熱管
1の外径は1/16〜1/8インチが小〜中規模装置と
して好適と考えられるが、工業的規模では1/4インチ
以上でもよく、特に制限されない。液体加熱管1の内径
は、材料の種類と超臨界流体を生成するための圧力と温
度により適宜定める。
The material of the liquid heating tube 1 is SUS31
6. Materials satisfying chemical and mechanical properties such as high temperature oxidation resistance, high temperature corrosion resistance, high temperature strength, and high temperature creep strength such as stainless steel tubes such as SUS304 and Ni-based heat-resistant alloy (Hastelloy, Inconel (registered trademark)) tubes. use. The outer diameter of the liquid heating tube 1 is considered to be 1/16 to 1/8 inch suitable for a small to medium scale apparatus, but may be 1/4 inch or more on an industrial scale and is not particularly limited. The inner diameter of the liquid heating tube 1 is appropriately determined depending on the type of material and the pressure and temperature for generating a supercritical fluid.

【0020】熱伝導性の良好な金属熱伝達媒体として使
用する最外側の円筒状金属ブロック2、その内側の円筒
状金属ブロック3の外周面にその長さ方向の一端から他
端へ図3に示すように、液体加熱管1がちょうど埋もれ
込む程度のu字状溝12をらせん状に工作機械(例えば
旋盤)により形成する。次に、液体加熱管1となる金属
管を、らせん状のu字状溝12に沿って埋め込みなが
ら、該一端から他端へ金属加工装置を用いて巻き付け
る。こうすることにより、液体加熱管1は、熱伝導性の
良好な円筒状金属ブロック2、3に設けたu字状溝12
の側部および底部に直接面接触することになる。また、
溝の底部と反対側は、熱伝導性の良好な金属円筒体7の
表面と線接触する。好ましくは、流体加熱管1とu字状
溝12は隙間がないように高融点の銀蝋などで隙間を埋
めることにより液体加熱管と金属熱伝達媒体との接触を
良好にし、熱交換効率を高めることができる。
The outermost cylindrical metal block 2 used as a metal heat transfer medium having good heat conductivity, and the outer peripheral surface of the inner cylindrical metal block 3 are arranged from one end in the longitudinal direction to the other end in FIG. As shown, a u-shaped groove 12 is formed by a machine tool (for example, a lathe) in a spiral shape such that the liquid heating tube 1 is just buried. Next, a metal tube serving as the liquid heating tube 1 is wound from one end to the other end using a metal processing device while being embedded along the spiral u-shaped groove 12. By doing so, the liquid heating tube 1 is provided with the u-shaped grooves 12 provided in the cylindrical metal blocks 2 and 3 having good heat conductivity.
In direct surface contact with the sides and bottom of the Also,
The side opposite to the bottom of the groove is in line contact with the surface of the metal cylinder 7 having good thermal conductivity. Preferably, the gap between the fluid heating tube 1 and the u-shaped groove 12 is filled with high melting point silver wax or the like so that there is no gap, so that the contact between the liquid heating tube and the metal heat transfer medium is improved, and the heat exchange efficiency is improved. Can be enhanced.

【0021】図1、図2に示す実施の形態では、液体加
熱管1は、らせん状に巻かれた外側のらせん管の下部か
ら内側の円筒状金属ブロック3の外周面に続けてらせん
状に巻かれており、二重らせん管構造となっているが、
外側のらせん管のみでも本発明の目的は十分に達成でき
る。さらに、3重らせん管構造、4重らせん管構造等の
多重管構造としてもよい。
In the embodiment shown in FIG. 1 and FIG. 2, the liquid heating tube 1 is spirally continued from the lower part of the spirally wound outer spiral tube to the outer peripheral surface of the inner cylindrical metal block 3. It is wound and has a double spiral tube structure,
The object of the present invention can be sufficiently achieved with only the outer spiral tube. Further, a multiple tube structure such as a triple spiral tube structure or a quadruple spiral tube structure may be used.

【0022】液体加熱管1が二重らせん管の場合は、外
側の円筒状金属ブロック2の外周面に外側のらせん管を
埋め込むu字状溝12をらせん状に切り、この溝12に
外側のらせん管を埋め込み、同様に、金属熱伝達媒体と
なる内側の円筒状金属ブロック3の外周面に内側のらせ
ん管を埋め込むu字状溝12をらせん状に切り、この溝
に内側らせん管を埋め込む。内側の円筒状金属ブロック
3の全長は、外側の円筒状金属ブロック2の全長よりや
や短くして、中央に位置させ、両端部に円板状の金属熱
ガード5を装填する。軸方向の温度勾配によりその両端
部において放熱のために生じる影響を金属熱ガード5に
より保護し、両端部近くを通る流体加熱管の均一加熱を
図ることが好ましい。
When the liquid heating tube 1 is a double spiral tube, a u-shaped groove 12 for embedding the outer spiral tube in the outer peripheral surface of the outer cylindrical metal block 2 is cut into a spiral shape. A spiral tube is embedded. Similarly, a u-shaped groove 12 for embedding the internal spiral tube on the outer peripheral surface of the inner cylindrical metal block 3 serving as a metal heat transfer medium is spirally cut, and the internal spiral tube is embedded in this groove. . The entire length of the inner cylindrical metal block 3 is slightly shorter than the entire length of the outer cylindrical metal block 2, and is located at the center, and disk-shaped metal heat guards 5 are loaded at both ends. It is preferable to protect the influence of heat radiation at both ends due to the temperature gradient in the axial direction by the metal heat guard 5 and to achieve uniform heating of the fluid heating tube passing near both ends.

【0023】内側の円筒状金属ブロック3の内側には、
金属熱伝達媒体となる円柱状金属ブロック4を設け、そ
のブロック4の中心軸線上には、超臨界流体取り出し口
につながる液体加熱管1の末端部分が直線状に通る貫通
孔を設け、液体加熱管1を図示のように、上側から下側
へ直線状に挿通させる。らせん管が外側のみの1重の場
合は、円柱状金属ブロックを用い、その中心軸線に貫通
孔を設けて、液体加熱管1の末端部分を、その貫通孔に
一端側から他端側へ直線状にして挿通させる。
Inside the inner cylindrical metal block 3,
A cylindrical metal block 4 serving as a metal heat transfer medium is provided, and a through hole is provided on the central axis of the block 4 so that the end portion of the liquid heating tube 1 connected to the supercritical fluid outlet is linearly passed. The tube 1 is inserted straight from the upper side to the lower side as shown. When the helical tube is a single helical tube only on the outside, a cylindrical metal block is used, and a through hole is provided in the center axis of the helical tube. And insert it.

【0024】さらに、この液体加熱管1の直線部に沿っ
て、ほぼ中央部まで熱電対6を挿入できる孔を開けて、
パイロメータ(図示せず)に接続した温度測定用の熱電
対6を挿入する。
Further, along the straight portion of the liquid heating tube 1, a hole for inserting the thermocouple 6 to a substantially central portion is opened.
A thermocouple 6 for temperature measurement connected to a pyrometer (not shown) is inserted.

【0025】金属熱伝達媒体となる円筒状または円柱状
金属ブロックおよび金属熱ガードの材料としては、真
鍮、ベリリウム銅、リン青銅、アルミ青銅などが好適で
あり、本発明の装置の使用温度範囲を室温から600℃
までとすると真鍮が最適である。銅は、400〜500
℃で使用すると容易に酸化するので高温使用には適さな
い。
As the material of the cylindrical or cylindrical metal block and the metal heat guard serving as the metal heat transfer medium, brass, beryllium copper, phosphor bronze, aluminum bronze and the like are preferable. Room temperature to 600 ° C
Up to then, brass is the best. Copper is 400-500
It is not suitable for high temperature use because it oxidizes easily when used at ° C.

【0026】上記のような構造としたらせん状加熱管構
造体を、外周面に均一加熱手段を設けた真鍮等の銅合金
板からなる熱伝導性良好な金属円筒体7の内周面に該ら
せん状液体加熱管構造体の外周面が接触するように配置
する。
A spiral heating tube structure having the above-described structure is attached to the inner peripheral surface of a metal cylinder 7 having good thermal conductivity made of a copper alloy plate such as brass and provided with uniform heating means on the outer peripheral surface. The helical liquid heating tube structure is arranged so that the outer peripheral surfaces thereof come into contact with each other.

【0027】金属円筒体7の外周には、マイカ板や布状
アスベスト等の絶縁体8を巻きつけ、その上からヒータ
の電熱線としてニクロム線9を撓みがないように、か
つ、なるべく密でムラなく、一方の端から金属円筒体7
の外周全体にらせん状に巻く。巻き終わったら緩まない
様に、ニクロム線9の両端を固定し、その上からもう一
度絶縁体8を巻き付ける。ニクロム線9の両端部は加熱
用電源(図示せず)に接続する。図1において、ニクロ
ム線9を絶縁する絶縁体8はわずかに後退した面での切
断面を示し、ニクロム線9が絶縁体8より飛び出して描
かれている。さらに、ニクロム線9を包む絶縁体8から
なる層の外側には、好ましくは、ニッケル等の金属製輻
射熱反射板10を巻き付けて加熱効率を高め、その外側
を仮想線で示すように断熱材11で十分に包囲する。
An insulator 8 such as a mica plate or cloth-like asbestos is wrapped around the outer periphery of the metal cylinder 7, and a nichrome wire 9 as a heating wire for the heater is placed on the insulator 8 so as not to bend and as dense as possible. Metal cylinder 7 from one end without unevenness
Spirally around the entire circumference. After the winding is completed, both ends of the nichrome wire 9 are fixed so as not to be loosened, and the insulator 8 is wound again from above. Both ends of the nichrome wire 9 are connected to a heating power supply (not shown). In FIG. 1, the insulator 8 that insulates the nichrome wire 9 shows a cut surface at a slightly receded surface, and the nichrome wire 9 is drawn so as to protrude from the insulator 8. Furthermore, a radiant heat reflecting plate 10 made of a metal such as nickel is preferably wound around the outside of the layer composed of the insulator 8 surrounding the nichrome wire 9 to increase the heating efficiency. Sufficiently surround.

【0028】液体加熱管1は、らせん状に巻かれたニク
ロム線9からなる加熱ヒータに対してできるだけ同心円
状に巻かれている様にする。また、多重らせん管の場合
は、外側らせん管と内側のらせん管は直接接触しない様
に巻き、温度勾配の影響を避けるためには、厚さ5mm
以上の金属熱伝達媒体を介して配置されるようにするこ
とが望ましい。なお、ヒータとして電熱線をらせん状に
巻いた具体例を示したが、均一な加熱が達成できる手段
であれば、図1に示す例で上下方向に巻くなどの方法や
面発熱体等を適宜使用できる。
The liquid heating tube 1 is wound as concentrically as possible with respect to a heater composed of a spirally wound nichrome wire 9. In the case of a multiple spiral tube, the outer spiral tube and the inner spiral tube are wound so as not to come into direct contact with each other.
It is desirable to arrange them via the above-described metal heat transfer medium. Although a specific example in which a heating wire is helically wound as a heater is shown, any method that can achieve uniform heating, such as a method such as winding in the vertical direction in the example shown in FIG. Can be used.

【0029】本発明の装置は、超臨界流体生成装置であ
ると同時に、液体に予め反応物を混合しておけば、生成
した超臨界流体中での化学反応を行うこともできる。本
発明の装置は各種の液体に適用可能であり、これらの各
種の液体物質の超臨界条件を表1に示す。
The apparatus of the present invention is a supercritical fluid generating apparatus, and can also perform a chemical reaction in the generated supercritical fluid if a reactant is previously mixed with a liquid. The apparatus of the present invention is applicable to various liquids, and the supercritical conditions of these various liquid substances are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】超臨界にする物質の種類、金属熱伝達媒体
の材料の種類、および液体加熱管の材料の種類によって
加熱の最高温度は異なる。最も条件の厳しい超臨界水へ
の利用を考えると装置の使用可能な最高温度は600℃
程度が必要となるが、本発明の加熱装置は、このような
高温加熱の要件を十分に満たすものである。
The maximum heating temperature differs depending on the type of the substance to be made supercritical, the type of the material of the metal heat transfer medium, and the type of the material of the liquid heating tube. Considering the use of the most severe condition for supercritical water, the maximum usable temperature of the device is 600 ° C.
Although required, the heating device of the present invention sufficiently satisfies such high-temperature heating requirements.

【0032】図4には、本発明の装置を超臨界流体反応
装置として使用する例を示す。超臨界流体反応装置とし
て使用する場合は、水+反応物1を加圧装置2で加圧
し、背圧制御弁4で制御された本発明の加熱装置3で加
熱することにより超臨界水を生成させて所定の反応を進
行させる。反応生成物は、分離装置5において分離す
る。また、図5は、本発明の装置を超臨界流体生成装置
として使用する例を示す。超臨界流体生成装置として使
用する場合は、水6と反応物7をそれぞれ加圧装置2で
加圧し、水6を本発明の加熱装置3で加熱し、反応物7
を本発明の加熱装置3を予熱装置8として使用して予熱
し、背圧制御弁4で制御された反応槽9にそれぞれ導い
て水と反応物とを反応させる。反応生成物は、分離装置
5において分離する。
FIG. 4 shows an example in which the apparatus of the present invention is used as a supercritical fluid reactor. When used as a supercritical fluid reactor, water + reactant 1 is pressurized by a pressurizing device 2 and heated by a heating device 3 of the present invention controlled by a back pressure control valve 4 to generate supercritical water. Then, a predetermined reaction proceeds. The reaction product is separated in the separation device 5. FIG. 5 shows an example in which the device of the present invention is used as a supercritical fluid generating device. When used as a supercritical fluid generator, the water 6 and the reactant 7 are each pressurized by the pressurizing device 2, and the water 6 is heated by the heating device 3 of the present invention, and the reactant 7 is heated.
Is preheated by using the heating device 3 of the present invention as the preheating device 8 and guided to the reaction tanks 9 controlled by the back pressure control valve 4 to react water and reactants. The reaction product is separated in the separation device 5.

【0033】実施例 図1、図2に示す本発明の加熱装置において、真鍮板製
金属円筒体7の内径を40mmφ、全長を130mm、
円筒状金属ブロック2の外径を40mmφ、内径を30
mmφ、全長を130mm、円筒状金属ブロック3の外
径を30mmφ、全長を100mm、断熱材11の層を
加えた装置全体の外径を70mmφとし、SUS316
ステンレス鋼管を液体加熱管1として約7mの長さのも
のを3mmのピッチで巻き、ニクロム線9を2.5mm
のピッチで巻いた装置を使用した。
Embodiment In the heating apparatus of the present invention shown in FIGS. 1 and 2, the inner diameter of the brass plate metal cylinder 7 is 40 mmφ, the total length is 130 mm,
The outer diameter of the cylindrical metal block 2 is 40 mmφ and the inner diameter is 30
SUS316, the overall length of the cylindrical metal block 3 was 30 mmφ, the overall length was 100 mm, and the outer diameter of the entire apparatus including the layer of the heat insulating material 11 was 70 mmφ.
A stainless steel pipe was wound as a liquid heating pipe 1 with a length of about 7 m at a pitch of 3 mm, and a nichrome wire 9 was wound 2.5 mm.
A device wound at a pitch of 1 mm was used.

【0034】高圧力送液ポンプ(日本分光製)で約50
0kgf/cm2 に加圧した水を図1および図2に示す
原料液体導入口Iから液体加熱管1に注入後、一定の圧
力に加圧した状態に保ちながらニクロム線9からなるヒ
ーターに通電した。図示の熱電対6で測定した装置中心
部の温度が最高温度500℃となるまで加熱し、500
℃、500kgf/cm2 の条件の超臨界水を実現し
た。
Approximately 50 with a high-pressure liquid pump (manufactured by JASCO)
After the water pressurized to 0 kgf / cm 2 is injected into the liquid heating tube 1 from the raw material liquid inlet I shown in FIGS. 1 and 2, the heater composed of the nichrome wire 9 is energized while maintaining a constant pressure. did. Heat until the temperature at the center of the device measured by the thermocouple 6 shown reaches the maximum temperature of 500 ° C.
Supercritical water at 500 ° C. and 500 kgf / cm 2 was realized.

【0035】水の臨界点の条件は220kgf/c
2 、374℃であるから、超臨界状態は確実に実現さ
れている。その後、超臨界流体取り出し口Oから超臨界
水を放出しながら(355〜295kgf/cm2 の圧
力で約40分)、図1のA点部分と熱電対6とで温度を
測定したが、両温度とも安定で、変動は見られなかっ
た。このことは、中心軸線に沿って取り出した超臨界流
体は、安定した温度と密度が得られることを意味してお
り、本発明の加熱装置は、室温にある水を約420℃の
超臨界状態にする条件で連続的に流動しても安定した温
度、密度の超臨界水を生成するのに十分な性能をもって
いる。
The condition of the critical point of water is 220 kgf / c
Since m 2 is 374 ° C., the supercritical state is reliably realized. Thereafter, while supercritical water was discharged from the supercritical fluid outlet port O (at a pressure of 355 to 295 kgf / cm 2 for about 40 minutes), the temperature was measured at the point A in FIG. 1 and the thermocouple 6. The temperature was stable and no fluctuation was observed. This means that the supercritical fluid taken out along the central axis can obtain a stable temperature and density, and the heating device of the present invention converts water at room temperature to a supercritical state of about 420 ° C. It has sufficient performance to generate supercritical water with stable temperature and density even if it flows continuously under the following conditions.

【0036】[0036]

【発明の効果】本発明の装置は、下記1〜7に示す通り
の優れた効果をもたらす。 1.液体加熱管を加熱装置内に、同一軸線を中心に同心
円状に、らせん状構造、好ましくは多重らせん構造に配
置することで長い液体加熱管を非常に小型化できる。 2.小型化できるため不必要な熱放出が小さく、エネル
ギー損失が極力押さえられる。 3.金属は、気体(空気)と比べ熱伝導率が約3〜4桁
大きく、熱伝達媒体に用いたとき、小型化が可能なた
め、気体のように熱伝達媒体を撹拌しなくても安定した
温度分布が得られる。 4.熱伝達媒体に金属を用いるため、高温時でも熱伝達
媒体の蒸気の発生が極めて少なく、人体にも環境にも安
全である。 5.発熱体を円筒状のブロックまたは円柱状のブロック
からなる金属熱伝達媒体の外周に接近して巻くため、加
熱装置内の温度勾配は小さくなる。 6.加熱装置の中心軸線に沿った液体加熱管内の超臨界
流体の温度は安定しており、この軸線に沿って取り出し
た超臨界流体は安定した温度と密度が得られ、超臨界流
体化学反応を確実に制御し、進められる。 7.液体加熱管の外面は、腐食性の熱伝達媒体と接触し
ていないために腐食の問題がない。
The apparatus of the present invention has the following excellent effects as shown in 1 to 7. 1. By arranging the liquid heating tubes in the heating device concentrically around the same axis in a helical structure, preferably a multiple helical structure, the long liquid heating tubes can be made very small. 2. Unnecessary heat release is small due to miniaturization, and energy loss is suppressed as much as possible. 3. Metals have a thermal conductivity approximately three to four orders of magnitude higher than gas (air) and can be miniaturized when used as a heat transfer medium, so they are stable without stirring the heat transfer medium like gas. A temperature distribution is obtained. 4. Since metal is used for the heat transfer medium, the generation of steam in the heat transfer medium is extremely small even at high temperatures, and it is safe for the human body and the environment. 5. Since the heating element is wound close to the outer periphery of the metal heat transfer medium composed of a cylindrical block or a columnar block, the temperature gradient in the heating device is reduced. 6. The temperature of the supercritical fluid in the liquid heating tube along the central axis of the heating device is stable. Control and proceed. 7. The outer surface of the liquid heating tube has no corrosion problems because it is not in contact with a corrosive heat transfer medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の装置を中心軸線に対して約1
20度の角度で切断して示す縦断面斜視図である。
FIG. 1 shows the device according to the invention at about 1
It is a longitudinal section perspective view cut and shown by an angle of 20 degrees.

【図2】図2は、図1の中心線断面図である。FIG. 2 is a sectional view taken along the center line of FIG. 1;

【図3】図3は、図2のX部分の断面拡大図である。FIG. 3 is an enlarged cross-sectional view of a portion X in FIG. 2;

【図4】図4は、本発明の装置を超臨界流体反応装置と
して使用する例のブロック図である。
FIG. 4 is a block diagram of an example in which the device of the present invention is used as a supercritical fluid reactor.

【図5】図5は、本発明の装置を超臨界流体生成装置と
して使用する例のブロック図である。
FIG. 5 is a block diagram of an example in which the device of the present invention is used as a supercritical fluid generating device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属管からなる液体加熱管の内部に原料
液体を流し、該原料液体を液体加熱管の外部より加熱し
て超臨界流体を生成するための加熱装置において、該液
体加熱管を、金属熱伝達媒体である円筒状金属ブロック
または円柱状金属ブロックの外周面にその長さ方向の一
端から他端へ連続的に形成したらせん状の溝に沿って該
一端から他端へ巻き付け、超臨界流体取り出し口につな
がる該液体加熱管の末端部分は直線状として、該円筒状
金属ブロックまたは円柱状金属ブロックの中心軸線に設
けた孔の内部を通る構造としたらせん状液体加熱管構造
体とその外周面に設けた加熱手段とからなることを特徴
とする超臨界流体生成用加熱装置。
1. A heating device for flowing a raw material liquid into a liquid heating tube made of a metal tube and heating the raw material liquid from outside the liquid heating tube to generate a supercritical fluid, wherein the liquid heating tube is Winding from one end to the other along a spiral groove formed continuously from one end to the other end in the longitudinal direction on the outer peripheral surface of a cylindrical metal block or a cylindrical metal block as a metal heat transfer medium, A helical liquid heating tube structure having a structure in which the end portion of the liquid heating tube connected to the supercritical fluid outlet is straight and passes through the inside of a hole provided at the center axis of the cylindrical metal block or the cylindrical metal block. And a heating means provided on an outer peripheral surface of the heating device.
【請求項2】 外周面に均一加熱手段を設けた熱伝導性
の良好な金属円筒体の内周面に該らせん状液体加熱管構
造体の外周面が接触するように配置されていることを特
徴とする請求項1記載の超臨界流体生成用加熱装置。
2. A helical liquid heating pipe structure which is arranged so that the outer peripheral surface of the helical liquid heating pipe structure comes into contact with the inner peripheral surface of a metal cylinder having good thermal conductivity provided with uniform heating means on the outer peripheral surface. The heating device for producing a supercritical fluid according to claim 1, wherein
【請求項3】 らせん状液体加熱管構造体は、円筒状金
属ブロックの内側に別の円筒状金属ブロックまたは円柱
状金属ブロックを配置し、各々の外周面に液体加熱管を
連続してらせん状に多重構造に巻かれていることを特徴
とする請求項1または2記載の超臨界流体生成用加熱装
置。
3. The helical liquid heating pipe structure is such that another cylindrical metal block or a columnar metal block is disposed inside a cylindrical metal block, and a liquid heating pipe is continuously formed on the outer peripheral surface of each of the liquid heating pipes. 3. The heating device for generating a supercritical fluid according to claim 1, wherein the heating device is wound in a multiple structure.
【請求項4】 円筒状金属ブロックまたは円柱状金属ブ
ロックの両端部に金属熱ガードを装填したことを特徴と
する請求項1〜3のいずれか一に記載の超臨界流体生成
用加熱装置。
4. The heating apparatus for generating a supercritical fluid according to claim 1, wherein metal heat guards are mounted on both ends of the cylindrical metal block or the cylindrical metal block.
【請求項5】 該加熱手段は、熱伝導性の良好な金属円
筒体の外側にその長さ方向の一端から他端へ連続的にら
せん状に巻かれた電熱線であることを特徴とする請求項
1〜4のいずれか一に記載の超臨界流体生成用加熱装
置。
5. The heating means is a heating wire continuously spirally wound from one end to the other end in the longitudinal direction of a metal cylinder having good heat conductivity. The heating device for generating a supercritical fluid according to claim 1.
【請求項6】 超臨界流体取り出し口につながる末端部
分の直線状の液体加熱管に沿って配置した熱電対によ
り、該直線状の液体加熱管内部の超臨界流体の温度を計
測して加熱装置の温度を制御するようにしたことを特徴
とする請求項1〜5のいずれか一に記載の超臨界流体生
成用加熱装置。
6. A heating device which measures the temperature of a supercritical fluid inside a linear liquid heating tube by means of a thermocouple arranged along a linear liquid heating tube at a terminal portion connected to a supercritical fluid outlet. The heating device for producing a supercritical fluid according to any one of claims 1 to 5, wherein the temperature of the heating device is controlled.
JP19513399A 1999-07-08 1999-07-08 Supercritical fluid generation heating device Expired - Fee Related JP3337438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19513399A JP3337438B2 (en) 1999-07-08 1999-07-08 Supercritical fluid generation heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19513399A JP3337438B2 (en) 1999-07-08 1999-07-08 Supercritical fluid generation heating device

Publications (2)

Publication Number Publication Date
JP2001017851A true JP2001017851A (en) 2001-01-23
JP3337438B2 JP3337438B2 (en) 2002-10-21

Family

ID=16336031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19513399A Expired - Fee Related JP3337438B2 (en) 1999-07-08 1999-07-08 Supercritical fluid generation heating device

Country Status (1)

Country Link
JP (1) JP3337438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336652A (en) * 2004-05-27 2005-12-08 Toyohashi Univ Of Technology Method for surface modification of fiber and apparatus therefor
JP2008509401A (en) * 2004-08-07 2008-03-27 ウオーターズ・インベストメンツ・リミテツド Passive column preheater with features that reduce sample bandwidth expansion
JP2010190467A (en) * 2009-02-17 2010-09-02 Itec Co Ltd Heating device
CN102313356A (en) * 2010-07-02 2012-01-11 株式会社Itec Heating device
JP2012087983A (en) * 2010-10-19 2012-05-10 Tokyo Electron Ltd Fluid heating device and substrate processing apparatus
CN113815213A (en) * 2021-08-10 2021-12-21 安徽安塑管业有限公司 Automatic production line for HDPE hollow wall winding pipe and use method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336652A (en) * 2004-05-27 2005-12-08 Toyohashi Univ Of Technology Method for surface modification of fiber and apparatus therefor
JP4509651B2 (en) * 2004-05-27 2010-07-21 国立大学法人豊橋技術科学大学 Fiber surface modification method and apparatus
JP2008509401A (en) * 2004-08-07 2008-03-27 ウオーターズ・インベストメンツ・リミテツド Passive column preheater with features that reduce sample bandwidth expansion
US8956534B2 (en) 2004-08-07 2015-02-17 Waters Technologies Corporation Passive column pre-heater with sample band spreading reduction feature
JP2010190467A (en) * 2009-02-17 2010-09-02 Itec Co Ltd Heating device
CN102313356A (en) * 2010-07-02 2012-01-11 株式会社Itec Heating device
JP2012013372A (en) * 2010-07-02 2012-01-19 Itec Co Ltd Heating device
CN102313356B (en) * 2010-07-02 2015-10-21 株式会社Itec Heater
JP2012087983A (en) * 2010-10-19 2012-05-10 Tokyo Electron Ltd Fluid heating device and substrate processing apparatus
CN113815213A (en) * 2021-08-10 2021-12-21 安徽安塑管业有限公司 Automatic production line for HDPE hollow wall winding pipe and use method thereof
CN113815213B (en) * 2021-08-10 2023-05-12 安徽安塑管业有限公司 HDPE hollow wall winding pipe automatic production line and use method thereof

Also Published As

Publication number Publication date
JP3337438B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5958273A (en) Induction heated reactor apparatus
US9115913B1 (en) Fluid heater
JP6986082B2 (en) Reactor for hydrothermal oxidation treatment of organic matter in reaction medium
EP0363066A2 (en) Reactors for effecting chemical processes
TW200505576A (en) Method and apparatus for rapid heating of fuel reforming reactants
JP2006061903A (en) High-temperature, high-pressure microreactor/micro heat exchanger
JP3337438B2 (en) Supercritical fluid generation heating device
TW201235628A (en) Heater and related methods therefor
CA1251020A (en) Radiating sleeve for catalytic reaction apparatus
CN213578759U (en) Heating furnace body with water-cooling jacket sleeve
KR20150035995A (en) Device and apparatus for carrying out chemical dissociation reactions at elevated temperatures
CN108469414A (en) A kind of Portable visual heater and cooler device suitable for high-temperature high-voltage reaction
US4608821A (en) Heat exchanger for electrothermal devices
US10151508B2 (en) High pressure, high temperature, on demand water heater
JP3040371B2 (en) Heat exchange device and device using the same
CA2920500C (en) Fluid heater
CN208443721U (en) A kind of Portable visual heater and cooler device suitable for high-temperature high-voltage reaction
Oscarson et al. An isothermal flow calorimeter for high-temperature basic solutions
JP2001232381A5 (en)
CN109641190A (en) Equipment and the equipment are used to preheat the purposes of at least one fluid
CN214413061U (en) Gas electric heater capable of heating at high temperature
JP2001162155A (en) High temperature supercritical reaction device
JP2010227901A (en) Microreactor
US20120282151A1 (en) Reactor for removal of hydrogen from a liquid organic carrier
JPS61275103A (en) Reforming apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees