JP4509651B2 - Fiber surface modification method and apparatus - Google Patents

Fiber surface modification method and apparatus Download PDF

Info

Publication number
JP4509651B2
JP4509651B2 JP2004157118A JP2004157118A JP4509651B2 JP 4509651 B2 JP4509651 B2 JP 4509651B2 JP 2004157118 A JP2004157118 A JP 2004157118A JP 2004157118 A JP2004157118 A JP 2004157118A JP 4509651 B2 JP4509651 B2 JP 4509651B2
Authority
JP
Japan
Prior art keywords
fluid
pipe
fiber
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004157118A
Other languages
Japanese (ja)
Other versions
JP2005336652A (en
Inventor
幸一 藤江
裕之 大門
孝 佐伯
司 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Toyohashi University of Technology NUC, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2004157118A priority Critical patent/JP4509651B2/en
Publication of JP2005336652A publication Critical patent/JP2005336652A/en
Application granted granted Critical
Publication of JP4509651B2 publication Critical patent/JP4509651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、高温高圧水を用いて繊維(特に、炭素繊維)の表面を改質する方法、及びそのための装置に関するものである。   The present invention relates to a method for modifying the surface of a fiber (particularly, carbon fiber) using high-temperature high-pressure water, and an apparatus therefor.

炭素繊維を補強材とする繊維強化樹脂は、軽量であり、かつ強度や弾性率に優れているため、スポーツ、レジャー用品の構成部品、宇宙航空機の構成部品等の幅広い分野にわたって、その用途開発が進められている。このような繊維強化樹脂を製造する際に、炭素繊維とマトリックス樹脂の界面接着性を強化するため、炭素繊維に対して薬剤酸化処理、気相酸化処理、電解酸化処理などの処理が施される。この処理により、炭素繊維の表面には酸素が導入されて活性化され、樹脂との接着性が向上する。
本発明者らは、従来の酸化処理に代えて、超臨界流体または亜臨界流体を用いて炭素繊維の表面改質を行えることを見出してきた。例えば、特開2002−180379には、炭素繊維を超臨界流体または亜臨界流体で処理することにより、表面を改質できることが開示されている。
Fiber reinforced resin using carbon fiber as a reinforcing material is lightweight and has excellent strength and elastic modulus, so it can be used in a wide range of fields such as sports and leisure components and spacecraft components. It is being advanced. When manufacturing such a fiber reinforced resin, in order to reinforce the interfacial adhesion between the carbon fiber and the matrix resin, the carbon fiber is subjected to treatments such as chemical oxidation treatment, vapor phase oxidation treatment, and electrolytic oxidation treatment. . By this treatment, oxygen is introduced and activated on the surface of the carbon fiber, and the adhesion to the resin is improved.
The present inventors have found that the surface modification of carbon fibers can be performed using a supercritical fluid or a subcritical fluid instead of the conventional oxidation treatment. For example, Japanese Patent Application Laid-Open No. 2002-180379 discloses that the surface can be modified by treating carbon fiber with a supercritical fluid or a subcritical fluid.

超臨界流体または亜臨界流体を用いる方法は、炭素繊維の表面改質を行うために非常に有効なものである。しかしながら、回分式(バッチ式)の装置を用いた場合には、十分な生産性を確保することが難しい。この困難を解決するためには、連続的な処理装置が提供されることが望まれるが、未だにそのような装置は開発されていなかった。
本発明は上記事情に鑑みてなされたものであり、その目的は、超臨界流体または亜臨界流体を用いて炭素繊維の表面改質を行う際に、連続的な処理が可能な方法、及びそのための装置を提供することにある。
特開2002−180379号公報
The method using a supercritical fluid or subcritical fluid is very effective for surface modification of carbon fibers. However, when a batch type (batch type) apparatus is used, it is difficult to ensure sufficient productivity. In order to solve this difficulty, it is desired to provide a continuous processing apparatus, but such an apparatus has not yet been developed.
The present invention has been made in view of the above circumstances, and an object thereof is a method capable of continuous treatment when surface modification of carbon fiber is performed using a supercritical fluid or a subcritical fluid, and therefore It is in providing the apparatus of.
JP 2002-180379 A

上記目的を達成するための第1の発明に係る繊維の表面改質方法は、管路の内部に超臨界流体または亜臨界流体を存在させた状態で、前記管路の内部に繊維を通過させることを特徴とする。
本発明で処理される繊維は、プラスチック系繊維、シルク繊維、または炭素繊維(ポリアクリロニトリル(以下、PANという)系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気層成長炭素繊維等のいずれの炭素繊維)を用いることもできる。繊維が炭素繊維の場合には、炭素繊維前駆体を酸化雰囲気中で耐炎化処理し、次いでこの耐炎化繊維を不活性ガス雰囲気中、800℃〜2000℃で焼成し、さらに必要に応じてこれをより高温の不活性ガス中で焼成して得られたPAN系炭素繊維を用いる。一般的には、炭素繊維は、樹脂との結合力を高めるために表面改質の目的で、焼成後更に電解酸化処理、気相酸化処理などの酸化処理を施され、サイズ剤を付与された後に繊維強化樹脂に用いられる。しかしながら、本発明によれば、そのような酸化処理を施すことなく、高温高圧処理を行うことで、表面改質を行うことができる。
「流体」としては、水、メタノール、エタノール、二酸化炭素等が例示されるが、本発明は、これらに限定されるものではない。また、これらの流体のうち、水を用いることが好ましい。
The fiber surface modification method according to the first aspect of the present invention for achieving the above object allows a fiber to pass through the inside of the pipe in a state where a supercritical fluid or a subcritical fluid is present inside the pipe. It is characterized by that.
The fiber to be treated in the present invention may be any of plastic fiber, silk fiber, carbon fiber (polyacrylonitrile (hereinafter referred to as PAN) carbon fiber, cellulosic carbon fiber, pitch carbon fiber, air-growth carbon fiber, etc. Carbon fiber) can also be used. When the fiber is a carbon fiber, the carbon fiber precursor is flameproofed in an oxidizing atmosphere, and then the flameproofed fiber is fired at 800 ° C. to 2000 ° C. in an inert gas atmosphere. PAN-based carbon fiber obtained by firing in a higher temperature inert gas is used. In general, carbon fibers are subjected to oxidation treatment such as electrolytic oxidation treatment and gas phase oxidation treatment after firing for the purpose of surface modification in order to increase the bonding strength with the resin, and are given a sizing agent. Later used for fiber reinforced resin. However, according to the present invention, surface modification can be performed by performing high-temperature and high-pressure treatment without performing such oxidation treatment.
Examples of the “fluid” include water, methanol, ethanol, carbon dioxide and the like, but the present invention is not limited to these. Of these fluids, water is preferably used.

「超臨界流体」とは、状態図で温度、圧力、エントロピー線図の臨界点(例えば、ヘリウムでは−268℃、0.23MPa、二酸化炭素では31.1℃、7.38MPa、水では374.3℃、22.1MPa、エタノールでは243.0℃、6.14MPa)よりも高い温度・圧力を加えた超臨界状態にある流体を意味している。また、「亜臨界流体」とは、臨界点よりも温度または圧力の少なくとも一方が低い状態にある流体を意味しており、圧縮気体と圧縮液体とが共存した状態にある。   “Supercritical fluid” means a critical point of temperature, pressure, and entropy diagram in a phase diagram (for example, −268 ° C. and 0.23 MPa for helium, 31.1 ° C. and 7.38 MPa for carbon dioxide, and 374. It means a fluid in a supercritical state to which a temperature / pressure higher than 3 ° C., 22.1 MPa and ethanol (243.0 ° C., 6.14 MPa) are applied. The “subcritical fluid” means a fluid in which at least one of temperature and pressure is lower than the critical point, and the compressed gas and the compressed liquid coexist.

「管路」とは、その内部空間に超臨界流体または亜臨界流体を存在させつつ、繊維を通過させることが可能な細長い空間を意味している。超臨界流体または亜臨界流体の圧力は、流体の種類にも依るが、大気圧の数倍〜数百倍程度である。このため、大気圧下では、流体を超臨界状態または亜臨界状態とすることは困難である。本発明者らは、管路の径を細く、管路長を長く、及び流体の流量を大きくすることにより、管路内の流体の圧力及び温度を超臨界状態または亜臨界状態に維持できるほど高くすることに成功した。こうして、流体に合わせて、適当な条件を選択することにより、管路内の流体を超臨界状態または亜臨界状態とすることができる。   “Pipe” means an elongated space through which fibers can pass while supercritical fluid or subcritical fluid is present in the internal space. The pressure of the supercritical fluid or subcritical fluid is several times to several hundred times the atmospheric pressure, although it depends on the type of fluid. For this reason, it is difficult to make a fluid into a supercritical state or a subcritical state under atmospheric pressure. The inventors of the present invention can maintain the pressure and temperature of the fluid in the pipeline in a supercritical state or a subcritical state by reducing the diameter of the pipeline, increasing the length of the pipeline, and increasing the flow rate of the fluid. I succeeded in raising it. Thus, by selecting appropriate conditions according to the fluid, the fluid in the pipeline can be brought into a supercritical state or a subcritical state.

本発明によれば、超臨界流体または亜臨界流体を存在させた管路の内部に繊維を通過させることにより、繊維の表面が改質される。この方法は、従来の回分式に比べると、繊維を連続的に処理することができるので、生産性に優れている。   According to the present invention, the surface of the fiber is modified by passing the fiber through the pipe line in which the supercritical fluid or the subcritical fluid is present. This method is superior in productivity because the fiber can be processed continuously as compared with the conventional batch system.

また、上記目的を達成するための第2の発明に係る繊維の表面改質装置は、繊維の導入口と導出口とを備えた管路と、この管路の内部に流体を流入する流体流入機と、前記管路内の流体を超臨界状態または亜臨界状態とする熱源機とを備えたことを特徴とする。
本発明によれば、流体流入機によって管路の内部に流入させられた流体は、熱源機によって管路内において超臨界状態または亜臨界状態となっている。ここで、管路の導入口から導入された繊維を導出口から導出されると、管路内を通過するうちに表面改質処理を施される。このように、本発明の装置を用いることにより、繊維の表面改質を連続的に行うことができる。
The fiber surface modification device according to the second invention for achieving the above object is a pipe having a fiber inlet and outlet and a fluid inflow for flowing a fluid into the pipe. And a heat source device for bringing the fluid in the pipe line into a supercritical state or a subcritical state.
According to the present invention, the fluid introduced into the pipe line by the fluid inflow machine is in a supercritical state or a subcritical state in the pipe line by the heat source unit. Here, when the fiber introduced from the inlet of the pipe is led out from the outlet, the surface modification treatment is performed while passing through the pipe. Thus, by using the apparatus of the present invention, the surface modification of the fiber can be continuously performed.

本発明において、熱源機の作用時期は、(1)流体が管路の内部に流入される前、或いは(2)流体が管路の内部に流入された後のいずれでもよい。(1)の場合には、流体流入機は、超臨界流体または亜臨界流体を管路の内部に流入させることになる。また、(2)の場合には、流体流入機が液体状態の流体を管路の内部に流入させた後に、熱源機によって超臨界流体または亜臨界流体とすることになる。また、熱源機は、上記(1)及び(2)の両方に設けても良い。この場合には、流体が管路の内部に流入される前に超臨界流体または亜臨界流体とされ、更に管内において超臨界流体または亜臨界流体として維持される。   In the present invention, the operation timing of the heat source machine may be either (1) before the fluid flows into the pipe line or (2) after the fluid flows into the pipe line. In the case of (1), the fluid inflow machine causes a supercritical fluid or a subcritical fluid to flow into the pipe. In the case of (2), after the fluid inflow machine causes the fluid in the liquid state to flow into the inside of the pipe, it is changed to a supercritical fluid or a subcritical fluid by the heat source machine. Moreover, you may provide a heat source machine in both said (1) and (2). In this case, the fluid is made a supercritical fluid or a subcritical fluid before flowing into the pipe, and further maintained as a supercritical fluid or a subcritical fluid in the tube.

本発明において、流体流入機が流体を管路の内部に流入させる位置である流入口は、導入口付近、或いは導出口付近に設けることができる。また、流入口は、1個、または2個以上のものを設けることができる。また、一つの流入口に対して、その流入口の導入口側及び導出口側のそれぞれに、流体が管路から流出する流出口を設けることが好ましい。繊維の導入口と導出口が、流体の流出口を兼用することができる。管路の径が全長に渡ってほぼ同一のものを用いる場合には、管路のほぼ中間位置に一つの流入口を設けることができる。   In the present invention, the inlet that is the position where the fluid inflow machine allows the fluid to flow into the pipe line can be provided near the inlet or the outlet. One or two or more inlets can be provided. Moreover, it is preferable to provide the outflow port which a fluid flows out out of a pipe line in each of the inflow port side and the outflow port side of the inflow port with respect to one inflow port. The fiber inlet and outlet can also serve as the fluid outlet. When the pipes having substantially the same diameter over the entire length are used, one inflow port can be provided at a substantially intermediate position of the pipe.

本発明によれば、繊維の表面改質を連続的に効率よく行うことができる。   According to the present invention, the surface modification of fibers can be performed continuously and efficiently.

次に、本発明の実施形態について、図表を参照しつつ詳細に説明するが、本発明の技術的範囲は、下記の実施形態によって限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
本発明において、流体として水を用いる場合には、次のようにして実施することができる。
まず、管路内の水を超臨界状態または亜臨界状態としておく。このとき、水を超臨界状態または亜臨界状態とする工程は、水を管路内に入れる前または後のいずれでも良い。水の臨界点は温度374.4℃、圧力22.1MPaであるので、約300℃〜約500℃、好ましくは約300℃〜約450℃、更に好ましくは約350℃〜約450℃に加熱して、圧力を約15MPa〜約40MPa、好ましくは約20MPa〜約35MPaとし、水を管路内で超臨界状態または亜臨界状態としておく。
Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiments, and various changes can be made without changing the gist thereof. It can be carried out with modification. Further, the technical scope of the present invention extends to an equivalent range.
In the present invention, when water is used as the fluid, it can be carried out as follows.
First, water in the pipeline is set to a supercritical state or a subcritical state. At this time, the step of bringing the water into the supercritical state or the subcritical state may be performed either before or after water is introduced into the pipe. Since the critical point of water is a temperature of 374.4 ° C. and a pressure of 22.1 MPa, it is heated to about 300 ° C. to about 500 ° C., preferably about 300 ° C. to about 450 ° C., more preferably about 350 ° C. to about 450 ° C. The pressure is about 15 MPa to about 40 MPa, preferably about 20 MPa to about 35 MPa, and water is placed in a supercritical state or a subcritical state in the pipe.

次いで、この状態で管路の内部に繊維を通過させる。繊維が、炭素繊維の場合には、繊維が管路内を通過する時間(処理時間)としては、超臨界水を用いる場合には約5分間〜約2時間が好ましく、亜臨界水を用いる場合には約20分間〜約3時間が好ましい。   Next, in this state, the fiber is passed through the inside of the pipe line. When the fiber is a carbon fiber, the time (processing time) for the fiber to pass through the pipe line is preferably about 5 minutes to about 2 hours when supercritical water is used, and when subcritical water is used. Is preferably about 20 minutes to about 3 hours.

以上のような高温処理においては、流体として、水以外に二酸化炭素、メタノール、エタノールなどを使用できる。適当な流体を選択した場合には、その流体の超臨界状態または亜臨界状態付近の温度及び圧力を保持しつつ、繊維を処理できる。但し、扱いやすく、低コストであり、さらに反応性に富んでいることから流体として水を選択することが最も好ましい。なお、処理される繊維の形態には制限はなく、例えば短繊維であっても連続繊維であってもよい。但し、連続処理の観点からは、連続繊維の方が好ましい。また、繊維としては、炭素繊維が好ましい。   In the high-temperature treatment as described above, carbon dioxide, methanol, ethanol or the like can be used as the fluid in addition to water. If an appropriate fluid is selected, the fibers can be processed while maintaining the temperature and pressure near the supercritical or subcritical state of the fluid. However, it is most preferable to select water as the fluid because it is easy to handle, low in cost, and rich in reactivity. In addition, there is no restriction | limiting in the form of the fiber processed, For example, it may be a short fiber or a continuous fiber. However, continuous fibers are preferred from the viewpoint of continuous treatment. Moreover, as a fiber, a carbon fiber is preferable.

次に、実施例を挙げて本発明を具体的に説明する。
<反応装置>
図1には、反応装置の概略を示した。この反応装置には、4台の送液ポンプ1と、ダンパー2と、余熱管3と、管路4a,4b,5が設けられている。管路4aは、送液ポンプ1とダンパー2の間を、管路4bは、ダンパー2と余熱管3の間をそれぞれ連結している。余熱管3の下流(図1において右側)に設けられた管路5は、螺旋状に巻かれている。余熱管3と管路5は、ソルトバス6の内側に浸漬されている。ソルトバス6の内部には適当な液体(例えば、KNO(45%)、NaNO(55%)を用いることができる)が入れられており、内部の温度を約150℃〜約450℃までの適当な温度に設定することができる。流体である水の臨界点温度は374℃であることから、臨界点を挟んで適度な温度条件にすることができる。送液ポンプ1から送られた流体である水は、ダンパー2を通過し、余熱管3及び管路5を流れて、流出口7から排出される。
Next, the present invention will be specifically described with reference to examples.
<Reactor>
FIG. 1 shows an outline of the reaction apparatus. This reaction apparatus is provided with four liquid feed pumps 1, a damper 2, a residual heat pipe 3, and pipe lines 4 a, 4 b and 5. The pipe line 4a connects between the liquid feed pump 1 and the damper 2, and the pipe line 4b connects between the damper 2 and the residual heat pipe 3, respectively. A pipe line 5 provided downstream of the residual heat pipe 3 (on the right side in FIG. 1) is spirally wound. The remaining heat pipe 3 and the pipe line 5 are immersed in the salt bath 6. An appropriate liquid (for example, KNO 3 (45%) or NaNO 3 (55%) can be used) is placed in the salt bath 6, and the internal temperature is about 150 ° C. to about 450 ° C. Can be set to an appropriate temperature. Since the critical point temperature of water, which is a fluid, is 374 ° C., it is possible to obtain an appropriate temperature condition across the critical point. Water, which is a fluid sent from the liquid feed pump 1, passes through the damper 2, flows through the residual heat pipe 3 and the pipe line 5, and is discharged from the outlet 7.

送液ポンプ1には、日本分光製の液クロ用送液ポンプ2台と、島津製作所製の液クロ用送液ポンプ2台を用いた。また、管路4a,4b,5として、ステンレス管(材質:SUS316、外径:1/16inch、内径:0.25mm)を用いた。また、管路4a,4b,5の結合には、日本分光製チーズ(三方)1/16inchを用いた。ダンパー2と余熱管3には、ステンレス管(材質:SUS316、外径:1/2inch、肉厚:2.11mm、長さ:10cm)及び径違いユニオン(Swagelok社製、材質:SUS316、型番:SS-810-6-1ZV-BL)を用いた。管路4aの長さは、液クロ用ポンプ1から接合部Aまでは約15cm、接合部Aから接合部Bまでは約30cm、接合部Bからダンパー2までは約30cmとした。管路4b(ダンパー2から余熱管3まで)の長さは、約1.5mとした。実験時の流量は、それぞれ4台のポンプの総流量とした。また、圧力の試験をする際には余熱管3以降の管路5の長さ、管径を変更して行った。   As the liquid feed pump 1, two liquid chromatographic liquid feed pumps manufactured by JASCO Corporation and two liquid chromatographic liquid feed pumps manufactured by Shimadzu Corporation were used. Further, stainless pipes (material: SUS316, outer diameter: 1/16 inch, inner diameter: 0.25 mm) were used as the pipe lines 4a, 4b, and 5. Further, for the connection of the pipelines 4a, 4b, 5, JASCO made cheese (three-way) 1/16 inch was used. Stainless steel pipe (Material: SUS316, Outer diameter: 1 / 2inch, Wall thickness: 2.11mm, Length: 10cm) and Reducing union (Swagelok, Material: SUS316, Model number: SS) -810-6-1ZV-BL). The length of the pipe 4a was about 15 cm from the liquid chromatography pump 1 to the junction A, about 30 cm from the junction A to the junction B, and about 30 cm from the junction B to the damper 2. The length of the pipe 4b (from the damper 2 to the residual heat pipe 3) was about 1.5 m. The flow rate during the experiment was the total flow rate of 4 pumps. Moreover, when testing the pressure, the length and the pipe diameter of the pipe 5 after the preheat pipe 3 were changed.

<予備実験>
まず、送液ポンプ1から余熱管3の間で、水の流量と圧力との間の関係を確認する試験を行った。余熱管3の下流には管路を設けず、試験温度は室温とした。
結果を図2に示した。総流量が36ml/minとなるまで検討を行ったところ、圧力は1.3MPaまで上昇することが確認された。更に、余熱管3の出口から5cmのところに圧力計を挿入して管内の圧力を測定したところ、送液ポンプ1と圧力計に表示される圧力との間には、ほとんど差違が認められなかった。従って、実験時の反応圧力は、それぞれ4台のポンプに表示される圧力の平均値を用いることとした。以後に示す反応圧力には、この検討で得られた圧力が誤差として含まれているものの、目的とした圧力は30MPa程度であるため、1MPa程度の誤差は問題ないものとした。
<Preliminary experiment>
First, a test for confirming the relationship between the flow rate of water and the pressure between the liquid feed pump 1 and the residual heat pipe 3 was performed. A pipe line was not provided downstream of the residual heat pipe 3, and the test temperature was room temperature.
The results are shown in FIG. When the examination was conducted until the total flow rate reached 36 ml / min, it was confirmed that the pressure increased to 1.3 MPa. Furthermore, when a pressure gauge was inserted 5 cm from the outlet of the residual heat pipe 3 and the pressure in the pipe was measured, there was almost no difference between the liquid pump 1 and the pressure displayed on the pressure gauge. It was. Therefore, the reaction pressure during the experiment was determined by using the average value of the pressure displayed on each of the four pumps. Although the reaction pressure shown below includes the pressure obtained in this study as an error, the target pressure is about 30 MPa, so that an error of about 1 MPa is not a problem.

<温度の影響を確認する実験>
管路5として、管の内径が0.25mm、管の長さが10mを用いた場合の各種温度における流量と圧力の関係について検討を行った。温度として、300℃、350℃、400℃、及び450℃を用いた。また、流量は、2ml/min〜22ml/minの範囲とした。
結果を図3に示した。300℃〜450℃のいずれの温度条件においても、流量が増加するにつれて、圧力が上昇することを確認した。臨界圧力(22.1MPa)、あるいは臨界温度(374℃)以上の条件に限ると、流量と圧力との関係は、いずれの温度条件においても直線関係となることがわかった。
そこで、臨界圧力(22.1MPa)以上の条件に限って、関係式を求めた。関係式は、y:圧力[MPa]、及びx:流量[ml/min]としたところ、下表1に示すものが得られた。
<Experiment to confirm the effect of temperature>
As the pipe 5, the relationship between the flow rate and pressure at various temperatures when the inner diameter of the pipe was 0.25 mm and the length of the pipe was 10 m was examined. As the temperature, 300 ° C., 350 ° C., 400 ° C., and 450 ° C. were used. The flow rate was in the range of 2 ml / min to 22 ml / min.
The results are shown in FIG. It was confirmed that the pressure increased as the flow rate increased under any temperature condition of 300 ° C to 450 ° C. As far as the critical pressure (22.1 MPa) or the critical temperature (374 ° C.) is exceeded, the relationship between the flow rate and the pressure is a linear relationship at any temperature condition.
Therefore, the relational expression was obtained only under the condition of the critical pressure (22.1 MPa) or more. When the relational expressions were y: pressure [MPa] and x: flow rate [ml / min], those shown in Table 1 below were obtained.

Figure 0004509651
上記関係式より、圧力30MPaを得るために必要な流量を各温度について求めたところ、下表2に示す流量が得られた。
Figure 0004509651
From the above relational expression, when the flow rate required to obtain a pressure of 30 MPa was determined for each temperature, the flow rates shown in Table 2 below were obtained.

Figure 0004509651
同様にして、圧力が25MPa、35MPa、及び40MPaとなるために必要な流量を各温度について求めたものを図4に示した。
Figure 0004509651
Similarly, what calculated | required the flow volume required for a pressure to become 25MPa, 35MPa, and 40MPa about each temperature was shown in FIG.

<管径の影響を確認する実験>
管路5(反応管)として、長さ20mの管体を用いた。350℃と450℃の温度条件で、反応管の内径(0.25mm、及び0.5mm)を変えたときの圧力に与える影響について検討を行った。
結果を図5に示した。350℃、0.5mmの条件では、臨界圧力(22.1MPa)以上のデータが得られなかったことから、450℃のデータに基づいて、流量と圧力と間の関係式を求めた。関係式は、y:圧力[MPa]、及びx:流量[ml/min]としたところ、下表3に示すものが得られた。
<Experiment to confirm the effect of pipe diameter>
As the pipe 5 (reaction tube), a 20 m long tube was used. The effect on the pressure when the inner diameter (0.25 mm and 0.5 mm) of the reaction tube was changed under the temperature conditions of 350 ° C. and 450 ° C. was examined.
The results are shown in FIG. Since the data above the critical pressure (22.1 MPa) was not obtained under the conditions of 350 ° C. and 0.5 mm, a relational expression between the flow rate and the pressure was obtained based on the data at 450 ° C. When the relational expressions were y: pressure [MPa] and x: flow rate [ml / min], the results shown in Table 3 below were obtained.

Figure 0004509651
上記関係式より、圧力30MPaを得るために必要な流量を各条件について求めたところ、下表4に示す流量が得られた。
Figure 0004509651
From the above relational expression, when the flow rate required to obtain a pressure of 30 MPa was determined for each condition, the flow rates shown in Table 4 below were obtained.

Figure 0004509651
同様にして、圧力が35MPa、または40MPaとなるために必要な流量を各条件について求めたものを図6に示した。
Figure 0004509651
Similarly, what calculated | required the flow volume required in order that a pressure might be 35 MPa or 40 MPa about each condition was shown in FIG.

<管長の影響を確認する実験>
管路5(反応管)として、管径0.25mmのSUS管を用い、450℃の温度条件で、管長を5m、10m、及び20mに変化させたときの圧力に与える影響について検討を行った。
結果を図7に示した。臨界圧力(22.1MPa)以上の条件に限って、流量と圧力との間の関係式を求めた。関係式は、y:圧力[MPa]、及びx:流量[ml/min]としたところ、下表5に示すものが得られた。
<Experiment to confirm the effect of tube length>
A SUS pipe having a diameter of 0.25 mm was used as the pipe line 5 (reaction pipe), and the influence on the pressure when the pipe length was changed to 5 m, 10 m, and 20 m under a temperature condition of 450 ° C. was examined. .
The results are shown in FIG. The relational expression between the flow rate and the pressure was obtained only under the condition of the critical pressure (22.1 MPa) or more. When the relational expressions were y: pressure [MPa] and x: flow rate [ml / min], the results shown in Table 5 below were obtained.

Figure 0004509651
上記関係式より、圧力30MPaを得るために必要な流量を各管長について求めたところ、下表6に示す流量が得られた。
Figure 0004509651
From the above relational expression, the flow rate required to obtain a pressure of 30 MPa was obtained for each tube length, and the flow rates shown in Table 6 below were obtained.

Figure 0004509651
同様にして、25MPa、30MPa、35MPa、及び40MPaとなるために必要な流量を各管長について求めたものを図8に示した。
Figure 0004509651
Similarly, the flow rates required to reach 25 MPa, 30 MPa, 35 MPa, and 40 MPa for each tube length are shown in FIG.

<結論>
このように、本実施例によれば、管路の内部に流体である水を流入させておき、その水を超臨界状態または亜臨界状態とすることができる。こうして超臨界水または亜臨界水を満たした管路の内部に炭素繊維を通過させることにより、炭素繊維の表面を連続的に改質することが可能となる。
<Conclusion>
As described above, according to the present embodiment, water, which is a fluid, is allowed to flow into the pipe, and the water can be brought into a supercritical state or a subcritical state. Thus, by passing the carbon fiber through the pipe line filled with supercritical water or subcritical water, the surface of the carbon fiber can be continuously modified.

<炭素繊維の表面改質装置>
次に、上記結果を用いて、次に例示するような炭素繊維の表面改質装置を提供することができる。
表面改質装置−1
図9には、表面改質装置10の概要を示した。この装置10には、炭素繊維CFの導入口11Aと導出口11Bを備えた管路11と、この管路11に水を流入する流体流入機12(ポンプ)と、熱源機13が設けられている。熱源機13は、流体流入機12と管路11との間に設けられている。熱源機13を通った水(超臨界水、または亜臨界水)は、管路11のほぼ中央に設けられた流入口14から管路11の内部に流入される。この装置10では、炭素繊維CFの導入口11A及び導出口11Bが水の流出口を兼用した構成となっている。また、管路11の周囲には、断熱体17が巻き付けられている。
<Carbon fiber surface modification device>
Next, using the above result, a carbon fiber surface modification apparatus as exemplified below can be provided.
Surface reformer-1
In FIG. 9, the outline | summary of the surface modification apparatus 10 was shown. The apparatus 10 is provided with a pipe line 11 provided with an introduction port 11A and a discharge port 11B for a carbon fiber CF, a fluid inflow machine 12 (pump) for flowing water into the pipe line 11, and a heat source unit 13. Yes. The heat source device 13 is provided between the fluid inflow device 12 and the pipe line 11. The water (supercritical water or subcritical water) that has passed through the heat source unit 13 flows into the inside of the pipe line 11 from the inlet 14 provided in the approximate center of the pipe line 11. In this apparatus 10, the carbon fiber CF inlet 11 </ b> A and outlet 11 </ b> B are configured to also serve as water outlets. A heat insulator 17 is wound around the pipe 11.

なお、炭素繊維CFは、図示左側の巻取機15から繰り出され、図示右側の巻取機16によって巻き取られる。
この装置10によれば、流体流入機12の駆動によって熱源機13を通った水は、超臨界状態または亜臨界状態となる。この水は、流入口14から管路11の内部に流入された後、導入口11A及び導出口11Bから流出する。このようにして、超臨界水または亜臨界水を存在させた管路11の内部に炭素繊維CFを通過させることにより、炭素繊維CFの表面が改質される。この方法は、従来の回分式に比べると、炭素繊維CFを連続的に処理することができるので、生産性に優れている。
なお、上記断熱体17の代わりに、熱源機を設けることもできる。
The carbon fiber CF is drawn out from the winder 15 on the left side of the drawing and wound by the winder 16 on the right side of the drawing.
According to this device 10, the water that has passed through the heat source device 13 by driving the fluid inflow device 12 is in a supercritical state or a subcritical state. This water flows from the inlet 14 into the pipe 11 and then flows out from the inlet 11A and outlet 11B. In this way, the surface of the carbon fiber CF is modified by allowing the carbon fiber CF to pass through the pipe 11 in which supercritical water or subcritical water is present. This method is superior in productivity because the carbon fiber CF can be continuously processed compared to the conventional batch system.
A heat source machine can be provided instead of the heat insulator 17.

表面改質装置−2
図10及び図11には、表面改質装置20の概要を示した。この装置20には、炭素繊維CFの導入口21Aと導出口21Bとを備えた管路21と、この管路21に水を流入する流体流入機29(ポンプ)が設けられている。管路21は、上下一対の管路形成体22,23が組み付けられることにより構成される。つまり、管路形成体22,23の内面中央には、長さ方向に溝部が凹設されており、管路形成体22,23が組み付けられると、両溝部が整合して管路21が形成されるようになっている。また、管路形成体22、23の内面には、管路21の中央に水を流入させる流入路24が形成されるように溝部が凹設されている。
Surface reformer-2
10 and 11 show an outline of the surface modification apparatus 20. The apparatus 20 is provided with a pipe 21 having an inlet 21A and a outlet 21B for carbon fiber CF, and a fluid inflow machine 29 (pump) for flowing water into the pipe 21. The pipe line 21 is configured by assembling a pair of upper and lower pipe line forming bodies 22 and 23. That is, a groove portion is recessed in the length direction at the center of the inner surface of the pipe formation bodies 22 and 23, and when the pipe formation bodies 22 and 23 are assembled, the both groove portions are aligned to form the pipe passage 21. It has come to be. In addition, a groove portion is formed in the inner surface of the pipe forming bodies 22 and 23 so as to form an inflow path 24 through which water flows into the center of the pipe 21.

管路形成体22,23は、熱伝導性の良好な物質(例えば、ステンレス、銅など)により形成されている。また、両管路形成体22,23の外面のそれぞれには、一対の熱源機25,26が設けられている。熱源機25,26の駆動によって、管路21に流入された水は、管路21の内部で超臨界水または亜臨界水となる。この装置20では、炭素繊維CFの導入口21A及び導出口21Bが超臨界水または亜臨界水の流出口を兼用した構成となっている。また、炭素繊維CFは、図示左側の巻取機27から繰り出され、図示右側の巻取機28によって巻き取られる。   The pipe formation bodies 22 and 23 are made of a material having good thermal conductivity (for example, stainless steel or copper). In addition, a pair of heat source devices 25 and 26 are provided on the outer surfaces of the two pipe formation bodies 22 and 23, respectively. The water flowing into the pipe line 21 by driving the heat source devices 25 and 26 becomes supercritical water or subcritical water inside the pipe line 21. In this apparatus 20, the carbon fiber CF inlet 21A and outlet 21B are configured to also serve as supercritical water or subcritical water outlets. Further, the carbon fiber CF is unwound from the winder 27 on the left side of the drawing and is wound by the winder 28 on the right side of the drawing.

装置20を作動させるには、一対の管路形成体22,23を互いに組み付けた作動位置としておき、熱源機25,26を駆動させて、管路形成体22,23を余熱しておく。ここで、流体流入機29の駆動によって、流入路24(流入口)から流入された水は、管路21の内部で超臨界状態または亜臨界状態となる。この水は、管路21の内部を通った後、導入口21A及び導出口21Bから流出する。このようにして、超臨界水または亜臨界水を存在させた管路21の内部に炭素繊維CFを通過させることにより、炭素繊維CFの表面が改質される。この方法は、従来の回分式に比べると、炭素繊維CFを連続的に処理することができるので、生産性に優れている。   In order to operate the apparatus 20, the pair of pipe forming bodies 22 and 23 are set to an operating position where they are assembled with each other, and the heat source units 25 and 26 are driven to preheat the pipe forming bodies 22 and 23. Here, when the fluid inflow machine 29 is driven, the water that has flowed in from the inflow path 24 (inlet) enters a supercritical state or a subcritical state inside the pipe line 21. This water flows out of the inlet 21A and the outlet 21B after passing through the inside of the pipe 21. In this way, the surface of the carbon fiber CF is modified by passing the carbon fiber CF through the pipe 21 in which supercritical water or subcritical water is present. This method is superior in productivity because the carbon fiber CF can be continuously processed compared to the conventional batch system.

本実施例における反応装置の概略図である。It is the schematic of the reaction apparatus in a present Example. 送液ポンプから余熱管の前までの流量と圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume from a liquid feeding pump to the front of a preheat pipe, and a pressure. 温度を変化させたときの流量と圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume when changing temperature, and a pressure. 所定の圧力を得るために必要な流量と温度との関係を示すグラフである。It is a graph which shows the relationship between the flow volume required in order to obtain a predetermined pressure, and temperature. 管路の内径を変化させたときの流量と圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume when changing the internal diameter of a pipe line, and a pressure. 所定の圧力を得るために必要な流量と管内径との関係を示すグラフである。It is a graph which shows the relationship between the flow volume required in order to obtain a predetermined pressure, and a pipe internal diameter. 管長の変化させたときの流量と圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume and pressure when changing pipe length. 所定の圧力を得るために必要な流量と管長との関係を示すグラフである。It is a graph which shows the relationship between the flow volume required in order to obtain a predetermined pressure, and a pipe length. 表面改質装置−1の構成を示す図である。It is a figure which shows the structure of the surface modification apparatus-1. 表面改質装置−2において、管路形成体を開放したときの様子を示す斜視図である。It is a perspective view which shows a mode when the pipe line formation body is open | released in the surface modification apparatus-2. 表面改質装置−2において、管路形成体を閉止したときの様子を示す斜視図である。In surface modification device-2, it is a perspective view showing a mode when a pipe line formation object is closed.

符号の説明Explanation of symbols

10,20…表面改質装置
11,21…管路
11A,21A…導入口
11B,21B…導出口
12,29…流体流入機
13,25,26…熱源機
14,24…流入口
CF…炭素繊維(繊維)
DESCRIPTION OF SYMBOLS 10,20 ... Surface reformer 11, 21 ... Pipe line 11A, 21A ... Inlet 11B, 21B ... Outlet 12, 29 ... Fluid inflow machine 13, 25, 26 ... Heat source machine 14, 24 ... Inlet CF ... Carbon Fiber (fiber)

Claims (4)

管路の中央に流入口を設け、この流入口から前記管路に流体を流入し、この流体が前記管路の内部において超臨界流体または亜臨界流体として存在する状態で、前記管路の内部に繊維を通過させることを特徴とする繊維の表面改質方法。 Line center provided an inlet of, in a condition in which the fluid flows from the inlet to the conduit is present as Oite supercritical fluid or subcritical fluid the fluid within the interior of the conduit, the conduit A method for modifying the surface of a fiber, wherein the fiber is allowed to pass inside. 前記流体が水であることを特徴とする請求項1に記載の繊維の表面改質方法。 The fiber surface modification method according to claim 1, wherein the fluid is water. 繊維の導入口と導出口とを備えた管路と、この管路の内部に流体を流入する流体流入機と、前記管路の中央に設けられて前記管路の内部に前記流体を流入する流入口と、前記管路内の流体を超臨界状態または亜臨界状態とする熱源機とを備えたことを特徴とする繊維の表面改質装置。 A pipe having a fiber inlet and outlet, a fluid inflow machine for flowing a fluid into the pipe , and a fluid which is provided at the center of the pipe and flows into the pipe A fiber surface reforming apparatus comprising: an inflow port; and a heat source device for bringing a fluid in the pipe line into a supercritical state or a subcritical state. 前記流体が水であることを特徴とする請求項3に記載の繊維の表面改質装置。
4. The fiber surface modification device according to claim 3, wherein the fluid is water.
JP2004157118A 2004-05-27 2004-05-27 Fiber surface modification method and apparatus Expired - Lifetime JP4509651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157118A JP4509651B2 (en) 2004-05-27 2004-05-27 Fiber surface modification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157118A JP4509651B2 (en) 2004-05-27 2004-05-27 Fiber surface modification method and apparatus

Publications (2)

Publication Number Publication Date
JP2005336652A JP2005336652A (en) 2005-12-08
JP4509651B2 true JP4509651B2 (en) 2010-07-21

Family

ID=35490525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157118A Expired - Lifetime JP4509651B2 (en) 2004-05-27 2004-05-27 Fiber surface modification method and apparatus

Country Status (1)

Country Link
JP (1) JP4509651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741414B (en) * 2014-01-25 2015-09-09 侯梦斌 A kind of subcritical dyeing preparation of piece goods equipment and technology utilizing the high alcohol that boils to make medium
CN115262277B (en) * 2022-08-01 2023-04-14 浙江科技学院 Alkali lignin subcritical water treatment modified carbon fiber and method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160479A (en) * 1998-11-26 2000-06-13 Toray Ind Inc Textile-processing agent, production of fibrous structure and textile material for industrial material
JP2000302788A (en) * 1999-04-19 2000-10-31 Tosoh Akzo Corp Production of aluminoxane
JP2001017851A (en) * 1999-07-08 2001-01-23 Japan Science & Technology Corp Heater for producing supercritical fluid
JP2001239146A (en) * 2000-02-29 2001-09-04 Shinwa Kako Kk Supercritical fluid reactor having wall of inorganic composite material
JP2002180369A (en) * 2000-12-15 2002-06-26 Mitsubishi Rayon Co Ltd Processing method for carbon fiber
JP2002180379A (en) * 2000-12-15 2002-06-26 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528914B2 (en) * 1973-01-17 1977-03-12

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160479A (en) * 1998-11-26 2000-06-13 Toray Ind Inc Textile-processing agent, production of fibrous structure and textile material for industrial material
JP2000302788A (en) * 1999-04-19 2000-10-31 Tosoh Akzo Corp Production of aluminoxane
JP2001017851A (en) * 1999-07-08 2001-01-23 Japan Science & Technology Corp Heater for producing supercritical fluid
JP2001239146A (en) * 2000-02-29 2001-09-04 Shinwa Kako Kk Supercritical fluid reactor having wall of inorganic composite material
JP2002180369A (en) * 2000-12-15 2002-06-26 Mitsubishi Rayon Co Ltd Processing method for carbon fiber
JP2002180379A (en) * 2000-12-15 2002-06-26 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP2005336652A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US5340384A (en) Vacuum degassing
JP5633576B2 (en) Method for producing porous hollow fiber membrane
TWI378207B (en)
TWI586931B (en) Heat exchanger pipe system
JP7028457B2 (en) Flow-through reactor for continuous quenching of peroxide mixture and method including it
TW200817077A (en) Gas removal device
JP4509651B2 (en) Fiber surface modification method and apparatus
US20210269337A1 (en) Multifunctional continuous hydrothermal oxidation experiment system and use method therefor
DE60108869D1 (en) PIPE REACTOR WITH GAS INJECTOR FOR CATALYTIC REACTIONS IN THE GAS PHASE
JP2005336331A (en) Method for producing recycled carbon fiber
US20190168178A1 (en) Apparatus and Method for Mixing Fluids with Degradational Properties
KR102105225B1 (en) Thermal processing apparatus
JP5452552B2 (en) Water separation system
JP6090658B2 (en) Waste liquid treatment equipment
US11926536B2 (en) Method for starting up hot ultrapure water production system, and hot ultrapure water production system
JP2016065657A (en) Temperature adjustment device for chemical
JPS6183898A (en) Heat exchanger
WO2024027702A1 (en) Method for modifying entire metal workpiece, and gas guide assembly and device for modification
CA1039038A (en) Process for producing a reverse osmosis module
JP6387633B2 (en) Method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube
JP3484392B2 (en) Pipe inner surface treatment method
CN109621856B (en) Heating system of difluoro monochloro methane reactor
JP3521364B2 (en) Degassing device and degassing method
JP6052357B2 (en) Passivation method
JPH0471635A (en) Feeder for low-temperature liquefied gas of low particle content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250