JP3639396B2 - Rotor position adjustment method and rotor position adjustment apparatus for screw compressor - Google Patents

Rotor position adjustment method and rotor position adjustment apparatus for screw compressor Download PDF

Info

Publication number
JP3639396B2
JP3639396B2 JP34161596A JP34161596A JP3639396B2 JP 3639396 B2 JP3639396 B2 JP 3639396B2 JP 34161596 A JP34161596 A JP 34161596A JP 34161596 A JP34161596 A JP 34161596A JP 3639396 B2 JP3639396 B2 JP 3639396B2
Authority
JP
Japan
Prior art keywords
torque
rotors
rotor
timing gear
screw compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34161596A
Other languages
Japanese (ja)
Other versions
JPH10184572A (en
Inventor
健一 高橋
浩之 松野
博康 小幡
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP34161596A priority Critical patent/JP3639396B2/en
Priority to US08/879,609 priority patent/US5910001A/en
Priority to EP97110243A priority patent/EP0816683B1/en
Priority to DE69724706T priority patent/DE69724706T2/en
Publication of JPH10184572A publication Critical patent/JPH10184572A/en
Application granted granted Critical
Publication of JP3639396B2 publication Critical patent/JP3639396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はケ−シング内に雄ロ−タと雌ロ−タを有し、これら両ロ−タが各ロ−タにそれぞれ締まり嵌めで固定したタイミングギヤによって所定の微少間隙を保持しながら回転するスクリュウ圧縮機のロ−タ間位置調整方法及び装置に係わり、特に、両ロ−タ間の微少間隙を自動的に所望なものとするスクリュウ圧縮機のロ−タ間位置調整方法及び装置に関する。
【0002】
【従来の技術】
従来のスクリュウ圧縮機のロ−タ間位置調整方法は、特開平1−155089号公報に記載されているように、少なくとも一方のタイミングギヤの無い状態で、いずれか一方のロ−タにブレ−キを掛けながら他方のロ−タを正逆両方向に回転させ、その回転中にエンコ−ダなどで測定した雄雌各ロ−タの回転位相差を用いて両ロ−タ間の微少間隙を設定(タイミング調整あるいは振り分け調整とも云う)している。
【0003】
この微少間隙の設定はスクリュウ圧縮機の組立工程で実行され、一方のタイミングギヤを拘束しながら、他方のタイミングギヤと当該タイミングギヤが固定されているロ−タとの間に圧油を印加して両者間の締まり嵌めを緩め、該他方のタイミングギヤの歯面をハンマで叩くことによって、他方のタイミングギヤと当該タイミングギヤが固定されているロ−タとの間で相対的な位置ずれを生じさせ、シム(厚さゲ−ジ)を両ロ−タ間に挿入して両ロ−タ間の微少間隙が所望の値になっているかどうかを確認(シム計測)し、ハンマ叩きとシム計測を繰り返して両ロ−タ間の微少間隙を所望な値にしていくことが行なわれていた。
【0004】
【発明が解決しようとする課題】
上記従来技術では、手作業で両ロ−タ間の微少間隙設定(振り分け調整)を行なうために、シム計測に時間が掛かるだけでなく、ハンマ叩きが作業者の熟練度で左右されて振り分け調整の精度が乱れ、振り分け調整の信頼度が低く、結果としてロ−タ当りや圧縮性能がでないといった問題があった。
【0005】
本発明の目的は、両ロ−タ間の微少間隙を自動的に短時間で所望なものとすることができて振り分け調整の信頼度が高く圧縮性能も優れたスクリュウ圧縮機のロ−タ間位置調整方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明の特徴は、ケ−シング内に雄ロ−タと雌ロ−タを有し、これら両ロ−タが各ロ−タにそれぞれ締まり嵌めで固定された一対のタイミングギヤによって微少間隙を保持しながら回転するスクリュウ圧縮機の、上記両ロ−タ間の微少間隙を設定値に調整するロ−タ間位置調整方法において、一方のタイミングギヤを拘束しながら他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して指令値に基づいたトルクを間歇的に印加し、該間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆方向に印加し、該正逆方向のトルク印加の際の上記両ロ−タの相対位置の中間値を求め、該中間値と上記両ロ−タ間の微少間隙の設定値との偏差から次ぎの間歇的なトルク印加の指令値を求めることにある。
【0007】
本発明の他の特徴は、ケ−シング内に雄ロ−タと雌ロ−タを有し、これら両ロ−タが各ロ−タにそれぞれ締まり嵌めで固定したタイミングギヤによって微少間隙を保持しながら回転するスクリュウ圧縮機の、上記両ロ−タ間の微少間隙を設定値に調整するロ−タ間位置調整装置において、一方のタイミングギヤを拘束しながら他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して指令値に基づいたトルクを間歇的に印加する間歇トルク印加手段と、上記間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆に印加する正逆トルク印加手段と、上記正逆のトルク印加の際の上記両ロ−タの相対位置の中間値を求める相対位置中間値算出手段と、上記中間値と上記両ロ−タ間の微少間隙の設定値との偏差から、上記間歇トルク印加手段で次ぎに印加する間歇的トルクの指令値を求める間歇的トルク演算手段とを備えたことにある。
【0008】
本発明者らの検討によると、スクリュウ圧縮機組立の際、一方のタイミングギヤを拘束しながら、他方のタイミングギヤと当該タイミングギヤが固定されているロ−タとの間に圧油を印加して両者間の締まり嵌めを緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タでトルクを加え、両ロ−タ間の微少間隙を設定値になるようにすると、サ−ボが効いている状態では目標位置に位置決めされている(微少間隙が所望の設定値になっている)が、サ−ボを切ると両ロ−タ間の微少間隙が目標位置からずれてしまい、スクリュウ圧縮機を所望な設定値で組み立てられないことが確認された。
【0009】
その原因として、他方のタイミングギヤと当該タイミングギヤが固定されているロ−タとの間に圧油を印加して両者間の締まり嵌めを緩めたとは云うものの、他方のタイミングギヤと当該タイミングギヤが固定されているロ−タとの間には依然として摩擦があって高い締め付け力が生じており、サ−ボモ−タでトルクを印加している状態では当該タイミングギヤが固定されているロ−タは弾性変形をしており、従って、サ−ボを切ると弾性変形が開放されてロ−タ本来の形に戻ろうとし、両ロ−タ間の微少間隙が目標位置からずれてしまうことになると考えられる。
【0010】
そこで、他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して間歇的にトルクを印加して、トルクを印加していない間にロ−タ本来の形に戻し、その時の位置を基に次の間歇的なトルク印加を行なうことにした。
【0011】
この場合、サ−ボモ−タ系における静止摩擦力が本来の形に戻ろうとするロ−タの拘束力となって、ロ−タは本来の形に戻り切れず、目標とする両ロ−タ間の所望な微少間隙と調整後の実際の両ロ−タ間の微少間隙の間に誤差を生ずることも確認された。
【0012】
従って、間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆に印加してこの正逆のトルク印加の際の上記両ロ−タの相対位置の中間値を求める。この中間値は、サ−ボモ−タ系における静止摩擦力がロ−タに与える正逆方向の残留応力の中間値に相当し、弾性変形をしていない状態にあるときのロ−タの位置と見做せるので、この中間値と上記両ロ−タ間の所望の微少間隙(設定値)との偏差から次ぎの間歇的なトルク印加の指令値を求めることにより、他方のタイミングギヤが設けられているロ−タは弾性変形をしていない状態から両ロ−タ間の微少間隙が目標位置になるようになされ、両ロ−タ間の微少間隙を自動的に短時間で所望なものとすることができて振り分け調整の信頼度高く圧縮性能が優れたスクリュウ圧縮機を得ることができる。
【0013】
【発明の実施の形態】
以下、本発明を図面に示した一実施形態に従って説明する。
図1は、スクリュウ圧縮機及びそのロ−タ間位置調整装置のブロック図を示しており、同図において、1は、スクリュウ圧縮機のケ−シングであり、このケ−シングに、雄ロ−タ2と雌ロ−タ3をボ−ルベアリング4、5、ロ−ラベアリング6A、6B、7A、7Bを介してスラスト方向並びにラジアル方向に支持する。8A、8B、9A、9Bはシ−リング、10は雄ロ−タ2の吐出側軸端部(図1では上端)に締まり嵌めで固定した斜歯のMタイミングギヤ、11は雌ロ−タ3の吐出側軸端部(同じく、図1では上端)に締まり嵌めで固定した斜歯のFタイミングギヤ、12は雄ロ−タ2の吸引側軸端部(図1では下端)に締まり嵌めで固定したピニオンギヤである。
【0014】
スクリュウ圧縮機の実使用中にはピニオンギヤ12を何等かの手段で駆動することによって雄ロ−タ2とMタイミングギヤ10が回転され、同じにMタイミングギヤ10によってFタイミングギヤ11が駆動されて雌ロ−タ3が雄ロ−タ2と逆の方向に回転する。また、図示していないが、両タイミングギヤ10、11があるケ−シング1の端面部にボ−ルベアリング4に掛かる推力を受けるブラケットが取り付けられてい。さらにスクリュウ圧縮機は大抵のところ水平に設置されるが、図1では紙面の都合上、長手方向を上下にして示している。
【0015】
図2は、図1に示したスクリュウ圧縮機におけるロ−タ及びタイミングギヤの微少間隙の状況をモデルで示しており、Mタイミングギヤ10とFタイミングギヤ11の噛み合っている個所(一点鎖線円イで示す部分)を拡大して一点鎖線円甲に示し、雄ロ−タ2と雌ロ−タ3が噛み合っている個所(一点鎖線円ロで示す部分)を拡大して一点鎖線円乙に示している。前進側において両タイミングギヤ10、11の間隙B1は無く、後進側に間隙B2がある。また、両ロ−タ2、3の前進側および後進側のそれぞれに微少間隙G1、G2が設定される。微少間隙G1、G2は雄ロ−タ2に対するMタイミングギヤ10の固定位置をずらすことで変化する。
【0016】
どの位置で固定したら良いかについては、特開平1−155089号公報に記載されているように、例えば、雄ロ−タ2からMタイミングギヤ10を外し、Fタイミングギヤ11を介して雌ロ−タ3にブレ−キを掛けながら雄ロ−タ2を正逆両方向に回転させ、その回転中に各ロ−タ2、3に連結したエンコ−ダ21、22で各ロ−タ2、3の回転位相差を測定する(なお、この作業を計測作業と呼ぶ)。そして、この測定結果を用いて所望の圧縮性能が得られるような両ロ−タ2、3の前進側および後進側のそれぞれに微少間隙G1、G2を得て、その目標位置になるようにMタイミングギヤ10を雄ロ−タ2に締まり嵌めで固定する(また、この作業を調整作業と呼ぶ)。
【0017】
図3は、スクリュウ圧縮機におけるロ−タ及びタイミングギヤの微少間隙を所望の振り分け調整位置にした状況を示している。
【0018】
図1に戻って、23はピニオンギヤ12を駆動するギヤで、この駆動ギヤ23はサ−ボモ−タであるダイレクトドライブモ−タ(以下、DDモ−タと略記する)24で回転される。DDモ−タ24は雄ロ−タ2のMタイミングギヤ10が設けられていない下端側に設置されて、ピニオンギヤ12を介して雄ロ−タ2に間歇的にトルクを印加する。25は、ギヤ26を介してFタイミングギヤ11を拘束し或いはブレ−キを掛けるサ−ボモ−タである。
【0019】
本発明のロ−タ間位置調整装置は、次の機能を持つ複数の手段から構成される。
【0020】
(1)一方のタイミングギヤを拘束しながら他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して指令値に基づいたトルクを間歇的に印加する間歇トルク印加手段
(2)上記間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆に印加する正逆トルク印加手段
(3)上記正逆のトルク印加の際の上記両ロ−タの相対位置の中間値を求める相対位置中間値算出手段
(4)上記中間値と上記両ロ−タ間の微少間隙の設定値との偏差から、上記間歇トルク印加手段で次ぎに印加する間歇的トルクの指令値を求める間歇的トルク演算手段。
【0021】
また、上記機能を持つ複数の手段を、中央制御装置(以下、MPUと略記する)30と、そのメモリに記憶保持されたロ−タ間位置調整プログラムによっても実現出来る。
【0022】
このロ−タ間位置調整プログラムによれば、各ロ−タ2、3に連結したエンコ−ダ21、22の出力パルスはそれぞれを分割するインタ−ポレ−タ31、32を介してカウンタ33に入り、MPU30で各ロ−タ2、3の回転位相差が演算される。34は計測作業時にサ−ボアンプ35を介してDDモ−タ24を正逆両方向に回転させるコントロ−ラ、36は調整作業時にMPU30から出される位置指令をDA変換し、サ−ボアンプ35を介してDDモ−タ24を駆動し雌ロ−タ3に対し雄ロ−タ2が所望の間隙を持つように雄ロ−タ2を駆動するDA変換器、37は計測作業時或いは調整作業時にMPU30から出されるトルク指令をDA変換しサ−ボアンプ38を介してサ−ボモ−タ25を駆動するDA変換器である。
【0023】
41はMPU30での処理状況などを表示するモニタ、42は必要に応じて計測作業時或いは調整作業時の各種デ−タを出力するプリンタである。51は計測作業時或いは調整作業時に雄ロ−タ2に固定したMタイミングギヤ10を配管52を介して油圧ポンプ53から送られて来る圧油で締まり嵌めを緩める圧入治具、54は調整作業時に雄ロ−タ2に対しMタイミングギヤ10が回転しないようにMタイミングギヤ10をケ−シング1に固定(拘束)する治具である。
【0024】
以下、図4に示した本発明のソフト(ロ−タ間位置調整プログラム)の一実施形態のフロ−に基づいて、図1に示したロ−タ間位置調整装置を用いてスクリュウ圧縮機のロ−タ間位置調整を行う方法を説明する。
【0025】
先ず、ステップ(以下、Sと略記する)1において、Mタイミングギヤ10が雄ロ−タ2に固定されていない圧縮機本体にエンコ−ダ21、22やサ−ボモ−タ24、25など電気系の諸機器を接続する。次にS2で計測作業を行なう。
【0026】
この計測作業はコントロ−ラ34を用い、サ−ボモ−タ24の位置決め制御で行なう。詳細は特開平1−155089号公報などに記載されているようなものであるので、説明は省略する。
【0027】
次に、雄ロ−タ2にMタイミングギヤ10を焼き嵌めにより仮固定しておいてから圧入治具51を雄ロ−タ2の吐出側軸端部(図1では上端)に取り付ける
(S3)。圧入治具51を雄ロ−タ2に固定した状況を図5に示した。
【0028】
図5の状況に至るには、圧入治具51におけるピストン51aの下端ネジ部を雄ロ−タ2の上端部にねじ止めする。また、Mタイミングギヤ10に圧入治具51のシリンダ51bをねじ止めする。そして、配管52をピストン51aの上端部にねじ止めする。Mタイミングギヤ10、ピストン51a及びシリンダ51bで油圧室51cが区画される。ピストン51aの上端部から油圧室51cに連通する導入孔51dがあって、図1に示した油圧ポンプ53から圧油が油圧室51cに供給される。この圧油供給は図4におけるS4であり、油圧室51cの圧油は雄ロ−タ2に対するMタイミングギヤ10の焼き嵌め部の内径を押し広げ、また、油圧室51cにおけるMタイミングギヤ10の端面に印加される下方向での油圧とシリンダ51bの端面に印加される上方向での油圧の差圧で、Mタイミングギヤ10とシリンダ51bは雄ロ−タ2に対し下方向に移動し、Mタイミングギヤ10がボ−ルベアリング4に当って移動が止まり、図5の形になる。
【0029】
なお、Mタイミングギヤ10、Fタイミングギヤ11は斜歯であるから、図5の状態まで移動する時には斜歯に沿って相互に回転しなければならない。しかし、Fタイミングギヤ11は雌ロ−タ3と固定されているためにMタイミングギヤ10が回転すると雄、雌両ロ−タ2、3同士が当って回転は止まる。そのため、Mタイミングギヤ10が雄ロ−タ2に対し回転することになるが、互いの回転摩擦力により、タイミングギヤ10、11同士の接触点とロ−タ2、3同士の接触点間でねじれを生じ、図5の状態になっても摩擦力によりねじれ(歪)の開放は行なわれず、歪が残留している。
【0030】
次に、図4のS5でタイミングギヤ10、11間のバックラッシュ、即ち、間隙を計測する。この計測はサ−ボモ−タ24で雄ロ−タ2を拘束しておいてサ−ボモ−タ25でタイミングギヤ11をわずかに駆動し、タイミングギヤ10とのバックラッシュをエンコ−ダ21、22の出力パルス位相差を得て、MPU30で演算して求める。
【0031】
S2とS4で両ロ−タ2、3や両タイミングギヤ10、11の間隙が計測できたので、所望の圧縮性能から図3に示すような所望の振り分け位置、即ち、G1、G2が与えられて、間隙G1、G2とする両ロ−タ2、3の位置関係になるように調整作業に入る。
【0032】
調整作業の準備として、S6で図1に示す固定治具54を用いタイミングギヤ10をケ−シング1に固定する。
【0033】
調整作業はS7でDA変換器36を介してサ−ボモ−タ24のトルク制御を行なう。この時、Fタイミングギヤ11がタイミングギヤのバックラッシュ間で回転しないように、サ−ボモ−タ25で一方向にトルクを掛けてタイミングギヤ同士を接触させることにより拘束している。
【0034】
次に、サ−ボモ−タ24のトルク制御について詳しく説明する。
図6は、Mタイミングギヤ10と雄ロ−タ2との締まり嵌め固定を緩める状況を示しており、本発明者らが実験から得たものである。図6において、横軸は図5に示した油圧室51cに油圧ポンプ53から印加する油圧、縦軸は図1に示したDDモ−タ24で雄ロ−タ2に回転トルクを印加した時、油圧に対しMタイミングギヤ10が雄ロ−タ2との摩擦力に抗して如何なるトルクで回転を始めるかの相互回転トルクを示している。
【0035】
つまり、油圧室51cに油圧を印加しMタイミングギヤ10と雄ロ−タ2との締まり嵌め固定を緩めたとは云うものの、Mタイミングギヤ10と雄ロ−タ2の間には摩擦があって高い締め付け力が生じており、この締め付け力によって雄ロ−タ2はMタイミングギヤ10に回転が拘束されて弾性変形していることが分かる。さらに、ボ−ルベアリング4、ロ−ラベアリング6A、6Bと雄ロ−タ2の間や雄ロ−タ2からDDモ−タ24の間には静止摩擦力が存在している。
【0036】
この事実に基づいて、本発明では図4のS7において、図7に示すようにDDモ−タ24により雄ロ−タ2に間歇的(ステップ状)にトルクを印加している。トルク指令値VはMPU30がスクリュウ圧縮機毎の両ロ−タ2、3間の間隙振り分け目標(目標位置)や間歇的なトルク印加の間に駆動系などでの静止摩擦力以上で間歇的に印加される各トルク(図7中の(a))より小さい正逆トルク(図7中の(b),(c))印加したときの上記両ロ−タの相対位置の中間値との偏差並びに図6に示した特性曲線を演算して決定される。
【0037】
図8は、図7に示すように間歇的にトルクを印加した場合の雄ロ−タ2の回転移動(変位)を示している。図中、曲線θ1はエンコ−ダ21とエンコ−ダ22それぞれの検出結果の差であり、曲線θ2は雄ロ−タ2内で弾性変形が開放されて回転が戻った場合における雄ロ−タ2の変位を包絡線で示したものである。
【0038】
図8において、(d)は間歇的な印加トルク(a)に対応した雄ロ−タ2の回転移動(変位)、(e)および(f)はそれぞれ正逆トルク(b)および(c)に対応した雄ロ−タ2の回転移動である。また、(i)は雄ロ−タ2の回転移動(e)および(f)の中間値である。
【0039】
間歇的にトルクを印加した後、図4のS8でMPU30においてエンコ−ダ21、22の出力よりこの中間値(i)を得て、曲線θ2で得られる雄ロ−タ2の変位から目標の振り分け位置になっているかどうかを確認し、目標の振り分け位置に到達していなければ、この中間値(i)を基準として、つまり、雄ロ−タ2の位置と目標位置の偏差から次に印加するトルク指令値を演算する。そして、S7に戻って、次の間歇的トルクを印加行なう。従って、曲線θ2で示しているように、間歇的なトルク印加と正逆トルク印加に沿って、雄ロ−タ2は目標位置に駆動されて行く。なお、図7の点線は目標位置に対する許容範囲を示している。図4のS8で雄ロ−タ2が許容範囲に入り目標位置になったと判断するとS9に移る。S7、S8間を繰り返えすことによって図3の間隙B1+B2が間隙G1+G2の間に納まり、その結果、両ロ−タ2、3間、両タイミングギヤ10、11間及び雄ロ−タ2とMタイミングギヤ10間にS4で生じていた全ての歪が開放される。
【0040】
なお、S7で目標の振り分け位置に到達していない場合の変位を基準として次に印加するトルク指令値を演算するようにし、S8では雄ロ−タ2の変位から目標の振り分け位置になっているかどうかを確認だけをするようにしてもよい。この場合、何回ぐらい間歇的なトルク印加を行なえば許容範囲に入るかは経験的に分かるので、作業者が、予めS8に移行する時期を指定しておけば良い。そして、S8からS7に戻ってきた場合はS7を一回処理する度にS8に移ることにしておけばよい。
【0041】
さて、S9において図1に示した圧入治具51や固定治具54を取り外して、S10に移り、タイミングギヤの間隙(バックラッシュ)を再度計測する。
【0042】
この計測は、S5やS7でS4dでのMタイミングギヤ10固定時にMタイミングギヤ10とFタイミングギヤ11や雄ロ−タ2との間で生じている可能性がある歪が開放され、また両ロ−タ2、3が目標位置に振り分けられたことにより、Mタイミングギヤ10とFタイミングギヤ11の間が自由になっているので、S5での計測手法と同様な手法でM、F両タイミングギヤ10、11間の間隙計測を行なうものである。
【0043】
そして、S11でMPU30でS2、S10での計測結果から最終振り分け目標位置を決め直し、S12で再度圧入治具51を設け、S13でS4と同様に圧入治具51を介してMタイミングギヤ10に圧油を供給し雄ロ−タ2に対する締まり嵌め固定を緩める。ここで図示は省略したがS5、S6と同様にタイミングギヤバックラッシュ計測、固定治具54でMタイミングギヤ10をケ−シング1に固定して、S14、S15でS7、S8と同様な処理をして両ロ−タ2、3をS11で決めた最終振り分け目標位置とする。
【0044】
最後に、S16で圧入治具51や固定治具54を取外しMタイミングギヤ10を雄ロ−タ2との締まり嵌め固定をして、確認のためのM、F両タイミングギヤ10、11間の間隙計測をS17で実施する。必要に応じてS18でプリンタ42でハ−ドコピ−を取って、S19においてエンコ−ダ21、22などの調整装置を取外し、一連の処理は終了する。
【0045】
以上述べたように、圧入治具51や固定治具54を取付け・取外しは別としてロ−タ間位置調整をMPU30で自動的に、しかも、弾性変形の無い状態で実行させることができる。
【0046】
図4のS7やS14において、図7では、正逆トルクの印加を正方向のトルク印加(b)の次ぎに逆方向のトルク印加(c)としているが、これは図8に示す雄ロ−タ2の回転移動(e)および(f)の中間値(i)を得るものであるから、逆方向のトルク印加(c)を先にし、正方向のトルク印加(b)を後としてもよい。
【0047】
【発明の効果】
以上説明したように本発明によれば、両ロ−タ間の微少間隙を自動的に短時間で所望なものとすることができて振り分け調整の信頼度高く圧縮性能が優れたスクリュウ圧縮機を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態になるスクリュウ圧縮機のロ−タ間位置調整装置のブロック図である。
【図2】図1に示したスクリュウ圧縮機における、ロ−タ及びタイミングギヤの微少間隙の状況を示すモデル図である。
【図3】図1に示したスクリュウ圧縮機における、ロ−タ及びタイミングギヤの微少間隙を所望の振り分け調整位置にした状況を示す図である。
【図4】本発明の一実施形態になるスクリュウ圧縮機のロ−タ間位置調整処理のソフトフロ−図である。
【図5】図4に示したソフトフロ−において、他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩める状況を示す図である。
【図6】図5に示した他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩める状況を説明するための図である。
【図7】図4のソフトフロ−において、他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して間歇的にトルクを印加する状況を説明するための図である。
【図8】図7に示した間歇的トルク印加において他方のタイミングギヤが設けられているロ−タの位置とその目標位置の関係を示す図である。
【符号の説明】
1…ケ−シング、2…雄ロ−タ、3…雌ロ−タ、4、5…ボ−ルベアリング、6A、6B、7A、7B…ロ−ラベアリング、8A、8B、9A、9B…シ−リング、10…Mタイミングギヤ、11…Fタイミングギヤ、12…ピニオンギヤ、21、22…エンコ−ダ、23…駆動ギヤ、24…DDモ−タ、25…サ−ボモ−タ、26…ギヤ、30…MPU、31、32…インタ−ポレ−タ、33…カウンタ、34…コントロ−ラ、35、38…サ−ボアンプ、36、37…DA変換器、41…モニタ、42…プリンタ、51…圧入治具、51a…ピストン、51b…シリンダ、51c…油圧室、51d…導入孔、52…配管、53…油圧ポンプ、54…固定治具
[0001]
BACKGROUND OF THE INVENTION
The present invention has a male rotor and a female rotor in the casing, and both the rotors rotate while holding a predetermined minute gap by a timing gear fixed to each rotor with an interference fit. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for adjusting a position between a rotor of a screw compressor, and more particularly, to a method and an apparatus for adjusting a position between a rotor of a screw compressor that automatically makes a minute gap between both rotors desired. .
[0002]
[Prior art]
A conventional method for adjusting the position between the rotors of a screw compressor is disclosed in Japanese Patent Application Laid-Open No. 1-155089, in which at least one timing gear is not provided, and either one of the rotors is braked. Rotate the other rotor in both forward and reverse directions while applying a key, and use the rotational phase difference between the male and female rotors measured during the rotation to create a small gap between the two rotors. Setting (also referred to as timing adjustment or distribution adjustment).
[0003]
The setting of this minute gap is executed in the assembly process of the screw compressor. While restraining one timing gear, pressure oil is applied between the other timing gear and the rotor to which the timing gear is fixed. By loosening the interference fit between the two and hitting the tooth surface of the other timing gear with a hammer, the relative positional deviation between the other timing gear and the rotor to which the timing gear is fixed is reduced. Then, a shim (thickness gauge) is inserted between the rotors to check whether the minute gap between the rotors is the desired value (shim measurement), hammering and shim Repeating the measurement has been performed to make the minute gap between the rotors a desired value.
[0004]
[Problems to be solved by the invention]
In the above-mentioned prior art, since the minute gap between the rotors is manually set (distribution adjustment), not only does it take time for shim measurement, but also the hammer hit is affected by the skill level of the operator and the distribution adjustment is performed. There is a problem that the accuracy of the distribution is disturbed, the reliability of the distribution adjustment is low, and as a result, there is no rotor contact or compression performance.
[0005]
It is an object of the present invention to automatically set a minute gap between both rotors in a short time, and to ensure reliable distribution adjustment and excellent compression performance between the rotors of a screw compressor. It is to provide a position adjusting method.
[0006]
[Means for Solving the Problems]
A feature of the present invention that achieves the above object is that a pair of timings have a male rotor and a female rotor in the casing, and both the rotors are fixed to the respective rotors with an interference fit. In the position adjustment method between the rotors of the screw compressor that rotates while holding the minute gap with the gear, the minute gap between the two rotors is adjusted to a set value. The fixing by the interference fit with the rotor of the gear is loosened, and the torque based on the command value is intermittently applied to the rotor provided with the other timing gear via the servo motor. During intermittent torque application, a torque smaller than each torque applied intermittently above the static friction force in the drive system by the servomotor is applied in the forward and reverse directions, and the torque is applied in the forward and reverse directions. Relative position of both rotors Obtains an intermediate value, the intermediate value and the both Russia - in determining the command value of the intermittent torque application deviations from the next with a minute gap setting between data.
[0007]
Another feature of the present invention is that there are a male rotor and a female rotor in the casing, and these rotors hold a minute gap by a timing gear fixed to each rotor with an interference fit. In the rotor position adjusting device for adjusting the minute gap between the two rotors to a set value, the rotor of the other timing gear is restrained while restricting one timing gear. An intermittent torque applying means for loosely fixing the other timing gear and intermittently applying a torque based on the command value to the rotor provided with the other timing gear via a servo motor; Forward / reverse torque applying means for applying forward and reverse torque smaller than each torque intermittently applied to the servomotor during the application of static torque, which is greater than the static friction force in the drive system. The above when applying torque The relative position intermediate value calculating means for obtaining the intermediate value of the relative position of the rotor, and the difference between the intermediate value and the set value of the minute gap between the two rotors are then applied by the intermittent torque applying means. And an intermittent torque calculating means for obtaining a command value of the intermittent torque.
[0008]
According to the study by the present inventors, when assembling the screw compressor, while restraining one timing gear, pressure oil is applied between the other timing gear and the rotor to which the timing gear is fixed. Then, loosen the interference fit between the two, apply torque with a servo motor to the rotor on which the other timing gear is provided, and set the minute gap between the two rotors to the set value. When the servo is in effect, it is positioned at the target position (the minute gap is at the desired setting value), but when the servo is turned off, the minute gap between the rotors will deviate from the target position. Thus, it was confirmed that the screw compressor could not be assembled at a desired set value.
[0009]
The reason for this is that although pressure oil was applied between the other timing gear and the rotor to which the timing gear is fixed to loosen the interference fit between the other timing gear and the timing gear, There is still friction between the fixed rotor and a high tightening force, and when the servo motor is applying torque, the timing gear is fixed. The rotor is elastically deformed, so when the servo is cut, the elastic deformation is released to return to the original shape of the rotor, and the minute gap between the rotors is displaced from the target position. It is thought that it becomes.
[0010]
Therefore, a torque is intermittently applied to the rotor provided with the other timing gear via the servo motor, and the rotor is restored to its original shape while the torque is not applied. Based on this position, the following intermittent torque application was performed.
[0011]
In this case, the static frictional force in the servo motor system becomes the restraining force of the rotor that tries to return to its original shape, and the rotor does not return to its original shape. It was also confirmed that an error occurred between the desired fine gap between the two and the actual fine gap between the adjusted rotors.
[0012]
Therefore, during intermittent torque application, a torque smaller than each of the torques applied intermittently above the static friction force in the drive system by the servomotor is applied in the forward and reverse directions. In this case, an intermediate value of the relative positions of the two rotors is obtained. This intermediate value is equivalent to the intermediate value of the residual stress in the forward and reverse directions given to the rotor by the static friction force in the servo motor system, and the position of the rotor when it is not elastically deformed. Therefore, the other timing gear is provided by obtaining the next intermittent torque application command value from the deviation between this intermediate value and the desired minute gap (set value) between the two rotors. The rotor is not elastically deformed so that the minute gap between the two rotors becomes the target position, and the minute gap between the two rotors is automatically obtained in a short time. Thus, a screw compressor with high reliability of distribution adjustment and excellent compression performance can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described according to an embodiment shown in the drawings.
FIG. 1 shows a block diagram of a screw compressor and a position adjustment device between the rotors. In FIG. 1, reference numeral 1 denotes a case of the screw compressor. The rotor 2 and the female rotor 3 are supported in the thrust direction and the radial direction via the ball bearings 4 and 5 and the roller bearings 6A, 6B, 7A and 7B. 8A, 8B, 9A, 9B are sealing, 10 is an oblique M timing gear fixed to the discharge side shaft end (upper end in FIG. 1) of the male rotor 2 by an interference fit, and 11 is a female rotor An oblique F timing gear fixed to the discharge side shaft end portion 3 (also the upper end in FIG. 1) with an interference fit, and 12 is an interference fit to the suction side shaft end portion (the lower end in FIG. 1) of the male rotor 2 Pinion gear fixed with
[0014]
During actual use of the screw compressor, the male rotor 2 and the M timing gear 10 are rotated by driving the pinion gear 12 by any means, and the F timing gear 11 is similarly driven by the M timing gear 10. The female rotor 3 rotates in the opposite direction to the male rotor 2. Although not shown, a bracket for receiving a thrust applied to the ball bearing 4 is attached to an end surface portion of the case 1 where both the timing gears 10 and 11 are provided. Furthermore, the screw compressor is usually installed horizontally, but in FIG. 1, the longitudinal direction is shown up and down for the sake of space.
[0015]
FIG. 2 shows a model of the minute gap between the rotor and the timing gear in the screw compressor shown in FIG. 1, where the M timing gear 10 and the F timing gear 11 are engaged with each other (the one-dot chain line circle Enlarged part is shown on the dot-and-dash line circle A, and the part where the male rotor 2 and female rotor 3 are engaged (the part indicated by the dashed-dotted line circle B) is enlarged and shown on the dashed-dotted line circle B ing. There is no gap B1 between the timing gears 10 and 11 on the forward side, and there is a gap B2 on the reverse side. Further, minute gaps G1 and G2 are set on the forward side and the reverse side of the rotors 2 and 3, respectively. The minute gaps G1 and G2 change by shifting the fixed position of the M timing gear 10 with respect to the male rotor 2.
[0016]
As to which position should be fixed, as described in Japanese Patent Laid-Open No. 1-155089, for example, the M timing gear 10 is removed from the male rotor 2, and the female rotor is connected via the F timing gear 11. The male rotor 2 is rotated in both forward and reverse directions while a brake is applied to the rotor 3, and the rotors 2, 3 are connected by the encoders 21, 22 connected to the rotors 2, 3 during the rotation. Is measured (this operation is called measurement operation). Then, by using this measurement result, the minute gaps G1 and G2 are obtained on the forward side and the reverse side of the rotors 2 and 3 so that a desired compression performance can be obtained, and M is set so as to be the target position. The timing gear 10 is fixed to the male rotor 2 with an interference fit (this operation is also called an adjustment operation).
[0017]
FIG. 3 shows a situation in which the minute gap between the rotor and the timing gear in the screw compressor is set to a desired distribution adjustment position.
[0018]
Returning to FIG. 1, reference numeral 23 denotes a gear for driving the pinion gear 12, and the drive gear 23 is rotated by a direct drive motor (hereinafter abbreviated as DD motor) 24 which is a servo motor. The DD motor 24 is installed on the lower end side of the male rotor 2 where the M timing gear 10 is not provided, and intermittently applies torque to the male rotor 2 via the pinion gear 12. A servo motor 25 restrains or brakes the F timing gear 11 through the gear 26.
[0019]
The inter-rotor position adjusting apparatus of the present invention is composed of a plurality of means having the following functions.
[0020]
(1) While restraining one timing gear, the other timing gear is loosened by an interference fit with the rotor, and the rotor provided with the other timing gear is connected via a servo motor. Intermittent torque applying means for intermittently applying a torque based on the command value (2) During the intermittent torque application, the torque is intermittently applied more than the static friction force in the drive system by the servo motor. Forward / reverse torque applying means (3) for applying a torque smaller than each torque forward and reverse Relative position intermediate value calculating means (4) for obtaining an intermediate value of the relative positions of the rotors when applying the forward and reverse torques Intermittent torque calculating means for obtaining a command value of an intermittent torque to be applied next by the intermittent torque applying means from a deviation between the intermediate value and a set value of a minute gap between the rotors;
[0021]
A plurality of means having the above functions can also be realized by a central control unit (hereinafter abbreviated as MPU) 30 and an inter-rotor position adjustment program stored and held in its memory.
[0022]
According to this inter-rotor position adjustment program, the output pulses of the encoders 21 and 22 connected to the rotors 2 and 3 are sent to the counter 33 via the interpolators 31 and 32 for dividing the output pulses. Then, the MPU 30 calculates the rotational phase difference between the rotors 2 and 3. Reference numeral 34 denotes a controller for rotating the DD motor 24 in both forward and reverse directions via a servo amplifier 35 during measurement work, and 36 denotes a DA conversion of a position command issued from the MPU 30 during adjustment work. The D / A converter 37 for driving the male rotor 2 so that the male rotor 2 has a desired gap with respect to the female rotor 3 by driving the DD motor 24, 37 during measurement work or adjustment work This DA converter converts the torque command output from the MPU 30 from DA to drive the servo motor 25 via the servo amplifier 38.
[0023]
Reference numeral 41 denotes a monitor that displays the processing status of the MPU 30, and 42 denotes a printer that outputs various data during measurement work or adjustment work as necessary. 51 is a press-fitting jig for loosening the interference fitting with the pressure oil sent from the hydraulic pump 53 via the pipe 52 to the M timing gear 10 fixed to the male rotor 2 at the time of measurement work or adjustment work, and 54 is the adjustment work. This is a jig for fixing (constraining) the M timing gear 10 to the casing 1 so that the M timing gear 10 does not rotate with respect to the male rotor 2 sometimes.
[0024]
Hereinafter, based on the flow of the embodiment of the software (rotor position adjustment program) of the present invention shown in FIG. 4, the position adjustment device of the screw compressor shown in FIG. A method for adjusting the position between the rotors will be described.
[0025]
First, in step (hereinafter abbreviated as “S”) 1, electric power such as encoders 21 and 22 and servo motors 24 and 25 are connected to a compressor body in which the M timing gear 10 is not fixed to the male rotor 2. Connect various devices. Next, measurement work is performed in S2.
[0026]
This measurement operation is performed by positioning control of the servo motor 24 using the controller 34. Details are as described in Japanese Patent Application Laid-Open No. 1-155089, and the description thereof is omitted.
[0027]
Next, after temporarily fixing the M timing gear 10 to the male rotor 2 by shrink fitting, the press-fitting jig 51 is attached to the discharge-side shaft end portion (upper end in FIG. 1) of the male rotor 2 (S3). ). The situation where the press-fitting jig 51 is fixed to the male rotor 2 is shown in FIG.
[0028]
In order to reach the situation of FIG. 5, the lower end screw portion of the piston 51 a in the press-fitting jig 51 is screwed to the upper end portion of the male rotor 2. Further, the cylinder 51 b of the press-fitting jig 51 is screwed to the M timing gear 10. Then, the pipe 52 is screwed to the upper end portion of the piston 51a. A hydraulic chamber 51c is defined by the M timing gear 10, the piston 51a, and the cylinder 51b. There is an introduction hole 51d communicating with the hydraulic chamber 51c from the upper end of the piston 51a, and pressure oil is supplied to the hydraulic chamber 51c from the hydraulic pump 53 shown in FIG. This pressure oil supply is S4 in FIG. 4, and the pressure oil in the hydraulic chamber 51c expands the inner diameter of the shrink fit portion of the M timing gear 10 with respect to the male rotor 2, and the M timing gear 10 in the hydraulic chamber 51c The M timing gear 10 and the cylinder 51b move downward relative to the male rotor 2 by the differential pressure between the downward hydraulic pressure applied to the end face and the upward hydraulic pressure applied to the end face of the cylinder 51b. The M timing gear 10 hits the ball bearing 4 to stop moving, and the shape shown in FIG. 5 is obtained.
[0029]
Since the M timing gear 10 and the F timing gear 11 are inclined teeth, they must rotate with each other along the inclined teeth when moving to the state shown in FIG. However, since the F timing gear 11 is fixed to the female rotor 3, when the M timing gear 10 rotates, the male and female rotors 2, 3 hit each other and stop rotating. For this reason, the M timing gear 10 rotates with respect to the male rotor 2, but between the contact points of the timing gears 10, 11 and the contact points of the rotors 2, 3 due to the mutual rotational friction force. Even if the twist occurs, the twist (strain) is not released by the frictional force even in the state of FIG. 5, and the strain remains.
[0030]
Next, the backlash between the timing gears 10 and 11, that is, the gap is measured in S5 of FIG. In this measurement, the male rotor 2 is restrained by the servo motor 24, the timing gear 11 is slightly driven by the servo motor 25, and the backlash with the timing gear 10 is detected by the encoder 21, 22 output pulse phase differences are obtained and calculated by the MPU 30.
[0031]
Since the gaps between the rotors 2 and 3 and the timing gears 10 and 11 can be measured at S2 and S4, the desired distribution positions as shown in FIG. 3, ie, G1 and G2, are given from the desired compression performance. Thus, the adjustment work is started so that the positional relationship between the rotors 2 and 3 as the gaps G1 and G2 is obtained.
[0032]
As preparation for adjustment work, the timing gear 10 is fixed to the casing 1 by using the fixing jig 54 shown in FIG.
[0033]
In the adjustment operation, torque control of the servo motor 24 is performed via the DA converter 36 in S7. At this time, the F timing gear 11 is restrained by contacting the timing gears by applying torque in one direction by the servo motor 25 so that the timing gear 11 does not rotate between backlashes of the timing gear.
[0034]
Next, torque control of the servo motor 24 will be described in detail.
FIG. 6 shows a situation in which the interference fit fixing between the M timing gear 10 and the male rotor 2 is loosened, and the present inventors obtained from an experiment. In FIG. 6, the horizontal axis represents the hydraulic pressure applied from the hydraulic pump 53 to the hydraulic chamber 51c shown in FIG. 5, and the vertical axis represents the rotational torque applied to the male rotor 2 by the DD motor 24 shown in FIG. The mutual rotation torque of the M timing gear 10 with respect to the hydraulic pressure at which the M timing gear 10 starts rotating against the frictional force with the male rotor 2 is shown.
[0035]
That is, although the hydraulic pressure is applied to the hydraulic chamber 51c and the interference fit between the M timing gear 10 and the male rotor 2 is loosened, there is friction between the M timing gear 10 and the male rotor 2. It can be seen that a high tightening force is generated and the male rotor 2 is elastically deformed by the rotation of the M timing gear 10 due to the tightening force. Further, a static frictional force exists between the ball bearing 4 and the roller bearings 6A and 6B and the male rotor 2 and between the male rotor 2 and the DD motor 24.
[0036]
Based on this fact, in the present invention, torque is applied intermittently (stepped) to the male rotor 2 by the DD motor 24 as shown in FIG. The torque command value V is intermittently greater than the static friction force in the drive system or the like during the gap distribution target (target position) between the rotors 2 and 3 for each screw compressor and intermittent torque application. Deviation from the intermediate value of the relative position of both rotors when forward and reverse torque ((b), (c) in FIG. 7) smaller than each applied torque ((a) in FIG. 7) is applied Further, it is determined by calculating the characteristic curve shown in FIG.
[0037]
FIG. 8 shows the rotational movement (displacement) of the male rotor 2 when torque is intermittently applied as shown in FIG. In the figure, the curve θ1 is the difference between the detection results of the encoder 21 and the encoder 22, and the curve θ2 is the male rotor when the elastic deformation is released and the rotation returns in the male rotor 2. The displacement of 2 is indicated by an envelope.
[0038]
In FIG. 8, (d) is the rotational movement (displacement) of the male rotor 2 corresponding to the intermittently applied torque (a), and (e) and (f) are forward and reverse torques (b) and (c), respectively. Is the rotational movement of the male rotor 2 corresponding to. (I) is an intermediate value between the rotational movements (e) and (f) of the male rotor 2.
[0039]
After applying torque intermittently, the intermediate value (i) is obtained from the outputs of the encoders 21 and 22 in the MPU 30 in S8 of FIG. 4, and the target value is determined from the displacement of the male rotor 2 obtained by the curve θ2. It is confirmed whether or not the distribution position has been reached. If the target distribution position has not been reached, the intermediate value (i) is used as a reference, that is, the deviation is applied next from the position of the male rotor 2 and the target position. The torque command value to be calculated is calculated. Then, returning to S7, the next intermittent torque is applied. Therefore, as shown by the curve θ2, the male rotor 2 is driven to the target position along with intermittent torque application and forward / reverse torque application. In addition, the dotted line of FIG. 7 has shown the tolerance | permissible_range with respect to a target position. If it is determined in S8 of FIG. 4 that the male rotor 2 has entered the allowable range and has reached the target position, the process proceeds to S9. By repeating S7 and S8, the gap B1 + B2 in FIG. 3 is accommodated in the gap G1 + G2, and as a result, between the rotors 2 and 3, between the timing gears 10 and 11, and between the male rotors 2 and M. All the distortions generated in S4 between the timing gears 10 are released.
[0040]
Note that the torque command value to be applied next is calculated based on the displacement when the target distribution position has not been reached in S7, and whether the target distribution position is reached from the displacement of the male rotor 2 in S8. Only confirmation may be made. In this case, since it is empirically known how many times intermittent application of torque is performed, it is sufficient for the operator to specify the timing for shifting to S8 in advance. And when it returns to S7 from S8, it should just move to S8 whenever it processes S7 once.
[0041]
In S9, the press-fitting jig 51 and the fixing jig 54 shown in FIG. 1 are removed, and the process proceeds to S10, and the timing gear gap (backlash) is measured again.
[0042]
In this measurement, the distortion that may have occurred between the M timing gear 10 and the F timing gear 11 or the male rotor 2 when the M timing gear 10 is fixed in S4d in S5 or S7 is released. Since the rotors 2 and 3 are assigned to the target positions, the space between the M timing gear 10 and the F timing gear 11 is free. Therefore, both the M and F timings are used in the same manner as the measurement method in S5. The gap between the gears 10 and 11 is measured.
[0043]
Then, in S11, the final allocation target position is determined again from the measurement results in S2 and S10 by the MPU 30, and the press-fitting jig 51 is provided again in S12. Pressure oil is supplied to loosen the interference fit with the male rotor 2. Although not shown here, the timing gear backlash measurement is performed in the same manner as in S5 and S6, the M timing gear 10 is fixed to the casing 1 with the fixing jig 54, and the same processing as S7 and S8 is performed in S14 and S15. Then, both rotors 2 and 3 are set as the final distribution target positions determined in S11.
[0044]
Finally, in S16, the press-fitting jig 51 and the fixing jig 54 are removed, and the M timing gear 10 is fitted and fixed to the male rotor 2 so that the M and F timing gears 10 and 11 for confirmation are connected. The gap measurement is performed in S17. If necessary, the hard copy is taken by the printer 42 in S18, the adjusting devices such as the encoders 21 and 22 are removed in S19, and the series of processes is completed.
[0045]
As described above, the position adjustment between the rotors can be automatically performed by the MPU 30 apart from the attachment / detachment of the press-fitting jig 51 and the fixing jig 54, and in a state without elastic deformation.
[0046]
In S7 and S14 of FIG. 4, in FIG. 7, the forward / reverse torque is applied in the reverse direction (c) after the forward torque application (b). Since the intermediate value (i) of the rotational movements (e) and (f) of the motor 2 is obtained, the reverse direction torque application (c) may be preceded and the forward direction torque application (b) may be subsequent. .
[0047]
【The invention's effect】
As described above, according to the present invention, a screw compressor that can automatically make a minute gap between both rotors desired in a short time, has high reliability of distribution adjustment, and has excellent compression performance. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inter-rotor position adjusting device for a screw compressor according to an embodiment of the present invention.
FIG. 2 is a model diagram showing a state of a minute gap between a rotor and a timing gear in the screw compressor shown in FIG.
3 is a view showing a situation in which a minute gap between a rotor and a timing gear is set to a desired distribution adjustment position in the screw compressor shown in FIG. 1. FIG.
FIG. 4 is a software flow diagram of a position adjustment process between rotors of a screw compressor according to an embodiment of the present invention.
FIG. 5 is a diagram showing a situation in which the fixation by the interference fitting with the rotor of the other timing gear is loosened in the soft flow shown in FIG. 4;
6 is a view for explaining a situation in which the fixation by the interference fit with the rotor of the other timing gear shown in FIG. 5 is loosened. FIG.
7 is a diagram for explaining a situation in which torque is intermittently applied to a rotor provided with the other timing gear via a servo motor in the soft flow of FIG. 4;
8 is a diagram showing the relationship between the position of the rotor where the other timing gear is provided and its target position in the intermittent torque application shown in FIG. 7; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Casing, 2 ... Male rotor, 3 ... Female rotor, 4, 5 ... Ball bearing, 6A, 6B, 7A, 7B ... Roller bearing, 8A, 8B, 9A, 9B ... -Ring, 10 ... M timing gear, 11 ... F timing gear, 12 ... Pinion gear, 21, 22 ... Encoder, 23 ... Drive gear, 24 ... DD motor, 25 ... Servo motor, 26 ... Gear , 30 ... MPU, 31, 32 ... Interpolator, 33 ... Counter, 34 ... Controller, 35, 38 ... Servo amplifier, 36, 37 ... DA converter, 41 ... Monitor, 42 ... Printer, 51 ... Press-fit jig, 51a ... Piston, 51b ... Cylinder, 51c ... Hydraulic chamber, 51d ... Introduction hole, 52 ... Piping, 53 ... Hydraulic pump, 54 ... Fixing jig

Claims (5)

ケ−シング内に雄ロ−タと雌ロ−タを有し、これら両ロ−タが各ロ−タにそれぞれ締まり嵌めで固定された一対のタイミングギヤによって微少間隙を保持しながら回転するスクリュウ圧縮機の、上記両ロ−タ間の微少間隙を設定値に調整するロ−タ間位置調整方法において、
一方のタイミングギヤを拘束しながら他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して指令値に基づいたトルクを間歇的に印加し、該間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆方向に印加し、該正逆方向のトルク印加の際の上記両ロ−タの相対位置の中間値を求め、該中間値と上記両ロ−タ間の微少間隙の設定値との偏差から次ぎの間歇的なトルク印加の指令値を求めることを特徴とするスクリュウ圧縮機のロ−タ間位置調整方法。
A screw which has a male rotor and a female rotor in the casing, and these rotors rotate while holding a minute gap by a pair of timing gears fixed to the respective rotors with an interference fit. In the method for adjusting the position between the rotors of the compressor, the minute gap between the two rotors is adjusted to a set value.
While restraining one timing gear, loosen the other timing gear by tightening it with the rotor, and set the other timing gear to the command value via the servo motor. Torque is applied intermittently, and during the intermittent torque application, torque smaller than each torque applied intermittently above the static friction force in the drive system by the servo motor is forward and reverse. The intermediate value of the relative positions of the two rotors when applying the torque in the forward and reverse directions is obtained, and the next value is determined from the deviation between the intermediate value and the set value of the minute gap between the two rotors. A method for adjusting a position between rotors of a screw compressor, wherein a command value for intermittent torque application is obtained.
請求項1に記載のスクリュウ圧縮機のロ−タ間位置調整方法において、正逆のトルク印加は、逆方向のトルク印加後に正方向のトルクを印加することを特徴とするスクリュウ圧縮機のロ−タ間位置調整方法。2. The screw compressor rotor adjusting method according to claim 1, wherein the forward / reverse torque is applied by applying the forward torque after applying the reverse torque. Position adjustment method. 請求項1に記載のスクリュウ圧縮機のロ−タ間位置調整方法において、間歇的なトルク印加と正逆のトルク印加は、他方のタイミングギヤが設けられているロ−タの当該タイミングギヤが設けられている端部の反対側の端部に印加されることを特徴とするスクリュウ圧縮機のロ−タ間位置調整方法。2. The method of adjusting the position between the rotors of a screw compressor according to claim 1, wherein intermittent torque application and forward / reverse torque application are provided by the timing gear of the rotor provided with the other timing gear. A method for adjusting a position between rotors of a screw compressor, wherein the position is applied to an end opposite to the end of the screw compressor. 請求項1に記載のスクリュウ圧縮機のロ−タ間位置調整方法において、他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して間歇的にトルクを印加する際に、該他方のタイミングギヤを拘束していることを特徴とするスクリュウ圧縮機のロ−タ間位置調整方法。In the method for adjusting the position between the rotors of the screw compressor according to claim 1, when the torque is intermittently applied to the rotor provided with the other timing gear via the servo motor, A method of adjusting a position between rotors of a screw compressor, wherein the other timing gear is restrained. ケ−シング内に雄ロ−タと雌ロ−タを有し、これら両ロ−タが各ロ−タにそれぞれ締まり嵌めで固定したタイミングギヤによって微少間隙を保持しながら回転するスクリュウ圧縮機の、上記両ロ−タ間の微少間隙を設定値に調整するロ−タ間位置調整装置において、
一方のタイミングギヤを拘束しながら他方のタイミングギヤのロ−タとの締まり嵌めによる固定を緩め、該他方のタイミングギヤが設けられているロ−タにサ−ボモ−タを介して指令値に基づいたトルクを間歇的に印加する間歇トルク印加手段と、
上記間歇的なトルク印加の間に上記サ−ボモ−タによる駆動系での静止摩擦力以上で間歇的に印加される各トルクより小さいトルクを正逆に印加する正逆トルク印加手段と、
上記正逆のトルク印加の際の上記両ロ−タの相対位置の中間値を求める相対位置中間値算出手段と、
上記中間値と上記両ロ−タ間の微少間隙の設定値との偏差から、上記間歇トルク印加手段で次ぎに印加する間歇的トルクの指令値を求める間歇的トルク演算手段とを備えたことを特徴とするスクリュウ圧縮機のロ−タ間位置調整装置。
The screw compressor has a male rotor and a female rotor in the casing, and both the rotors rotate while holding a minute gap by a timing gear fixed to each rotor with an interference fit. In the inter-rotor position adjusting device for adjusting the minute gap between the two rotors to a set value,
While restraining one timing gear, loosen the other timing gear by tightening it with the rotor, and set the other timing gear to the command value via the servo motor. Intermittent torque application means for intermittently applying a torque based on the torque;
A forward / reverse torque applying means for applying forward and reverse torque smaller than each torque intermittently applied at or above the static friction force in the drive system by the servomotor during the intermittent torque application;
A relative position intermediate value calculating means for obtaining an intermediate value of the relative positions of the two rotors when applying the forward and reverse torques;
Intermittent torque calculating means for obtaining a command value of the intermittent torque to be applied next by the intermittent torque applying means from the deviation between the intermediate value and the set value of the minute gap between the rotors. An apparatus for adjusting a position between rotors of a screw compressor.
JP34161596A 1996-07-03 1996-12-20 Rotor position adjustment method and rotor position adjustment apparatus for screw compressor Expired - Fee Related JP3639396B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34161596A JP3639396B2 (en) 1996-12-20 1996-12-20 Rotor position adjustment method and rotor position adjustment apparatus for screw compressor
US08/879,609 US5910001A (en) 1996-07-03 1997-06-20 Method for adjusting engaged clearance between rotors of screw compressor and apparatus therefor
EP97110243A EP0816683B1 (en) 1996-07-03 1997-06-23 Method for adjusting engaged clearance between rotors of screw compressor and apparatus therefor
DE69724706T DE69724706T2 (en) 1996-07-03 1997-06-23 Method and system for setting the engagement gap between the rotors of a screw rotor compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34161596A JP3639396B2 (en) 1996-12-20 1996-12-20 Rotor position adjustment method and rotor position adjustment apparatus for screw compressor

Publications (2)

Publication Number Publication Date
JPH10184572A JPH10184572A (en) 1998-07-14
JP3639396B2 true JP3639396B2 (en) 2005-04-20

Family

ID=18347460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34161596A Expired - Fee Related JP3639396B2 (en) 1996-07-03 1996-12-20 Rotor position adjustment method and rotor position adjustment apparatus for screw compressor

Country Status (1)

Country Link
JP (1) JP3639396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110848133B (en) * 2019-11-27 2021-06-08 海门市晶盛真空设备有限公司 Screw assembly of dry screw vacuum pump

Also Published As

Publication number Publication date
JPH10184572A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP4009760B2 (en) Screw member tightening method
EP0816683B1 (en) Method for adjusting engaged clearance between rotors of screw compressor and apparatus therefor
US4027530A (en) Simplified apparatus for and method of tightening fasteners
JPS59110922A (en) Transmitter for revolving torque
US20040020320A1 (en) Roller turret including rollers mounted on support portions of roller shafts, which are eccentric with respect to stud portions fixed in holes in turret body, and method of manufacturing the roller turret
CN112088073B (en) Articulated robot and method for estimating gas reduction state of gas spring thereof
JP2003014056A (en) Rotation transmission device, toothed rotor used for it, and manufacturing method for rotation transmission device
JP3639396B2 (en) Rotor position adjustment method and rotor position adjustment apparatus for screw compressor
US6485274B2 (en) Displacement machine for compressible media
JP3301918B2 (en) Rotor position adjustment method for screw compressor
JP3670816B2 (en) Screw compressor test method
JP2003254841A (en) Method of measuring bearing preload, and method of isolating corresponding tooth of respective gear
JP2844471B2 (en) Gerotor gear set and design method thereof
JP2008267608A (en) Manufacturing method of rotation transmission device
JP3670785B2 (en) Method and apparatus for adjusting rotor clearance of screw compressor
JPH04232395A (en) Method and device for adjusting rotor clearance
JP7169516B2 (en) Gear pump manufacturing method
JP7525629B2 (en) Machine Tools
JP3523247B2 (en) Inner revolution type differential gear reducer
JP2880333B2 (en) Adjustment device for rotor pump timing gear
JPH0979165A (en) Inter-rotor gap adjusting method for screw compressor
JPS62255030A (en) Pre-load adjustment control device for rotating shaft
JP3132740B2 (en) Gear meshing method in gear processing equipment
JPS5867987A (en) Clearance adjusting method between rotors of screw fluid machine
US20220241844A1 (en) Method for obtaining face teeth on an inner ring of a wheel hub and associated tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees