JP3639073B2 - Defect observation method for silicon wafer - Google Patents

Defect observation method for silicon wafer Download PDF

Info

Publication number
JP3639073B2
JP3639073B2 JP35648096A JP35648096A JP3639073B2 JP 3639073 B2 JP3639073 B2 JP 3639073B2 JP 35648096 A JP35648096 A JP 35648096A JP 35648096 A JP35648096 A JP 35648096A JP 3639073 B2 JP3639073 B2 JP 3639073B2
Authority
JP
Japan
Prior art keywords
silicon wafer
wafer
defects
observed
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35648096A
Other languages
Japanese (ja)
Other versions
JPH10189676A (en
Inventor
リー ツォン
一日児 鹿島
淳 吉川
好生 桐野
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP35648096A priority Critical patent/JP3639073B2/en
Publication of JPH10189676A publication Critical patent/JPH10189676A/en
Application granted granted Critical
Publication of JP3639073B2 publication Critical patent/JP3639073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、シリコンウエーハの欠陥観察方法に関し、特にSIMOX(Separation by Implanted Oxygen)ウエーハの品質評価に最適なシリコンウエーハの欠陥観察方法に関するものである。
【0002】
【従来の技術】
SIMOX(Separation by Implanted Oxygen)ウエーハは、例えばULSI等の製造に用いられる。
【0003】
このSIMOXウエーハの表面のシリコン層は、非常に薄肉である。このため、SIMOXウエーハに通常のエッチングを行っても、形成されるピットは相当小さなものとなる。また、その密度が小さくなると、追加のエッチングを施しても計数が容易でなかった。
【0004】
従来、シリコン層と埋め込み酸化物層の界面付近における欠陥を検出するため、断面試料を作製して、様々な分析手段が試されてきた。
【0005】
【発明が解決しようとする課題】
しかしながら、両層の界面付近では欠陥密度が小さく、そのサイズも小さいため、欠陥を直接的に観察することは難しかった。
【0006】
このように、SIMOXウエーハにおいて、表面シリコン層と埋め込み酸化物層の界面付近における欠陥の有無を知り、ウエーハの品質を評価する確実な方法は、これまでのところ確立されていない。
【0007】
このため、SIMOXウエーハの品質は、ULSIを形成した後のデバイス欠陥として、すなわち完成品の欠陥として事後的・間接的に知る以外に方法がなかったのである。
【0008】
このような従来技術の問題点に鑑み、本発明は、特にSIMOXウエーハの表面シリコン層と埋め込み酸化物層の界面付近における欠陥の有無を的確に知ることが可能なシリコンウエーハの欠陥観察方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本願第1発明は、シリコンウエーハを洗浄した後、水素分圧10mmH2O〜30atmの雰囲気中、800℃〜1300℃で1分間以上アニール処理してシリコンウエーハに含まれる欠陥を成長させ、しかる後に、シリコンウエーハの欠陥を観察することを特徴とするシリコンウエーハの欠陥観察方法を要旨としている。
【0010】
【実施例】
本発明のシリコンウエーハの欠陥観察方法は、シリコン単結晶格子に含まれる水素原子と結晶欠陥との相互作用を利用し、欠陥自体を強制的に拡大することによって、欠陥を直接的に観察できる構成になっている。以下、その詳細を説明する。
【0011】
高純度シリコン結晶中では、水素は大部分原子状態で存在し、高温での水素原子濃度は、次の一般式で表される。
【0012】
【数1】

Figure 0003639073
前記数式1において、PH2は雰囲気中での水素分圧、kはBoltzmann 定数、Tは熱力学温度である。シリコン結晶中に入っている水素原子は、シリコン表面層と埋め込み酸化物層との界面付近で、酸化物と化学反応を行うが、この反応が最も生じ易い場所(選択的にエッチングされる場所)はおそらく微小欠陥の付近であると考えられる。
【0013】
さて、前記反応における生成物の一つは水であるが、シリコン中での水の存在確率は小さく、その拡散速度は不明である。しかし、生成された水は埋め込み酸化物中やシリコン層との界面で拡散可能であり、微小欠陥の付近で凝集状態になることが判った。
【0014】
そこで、本発明者達は、水素原子の選択的エッチングと、生成物の水の凝集との両方を積極的に利用して微小欠陥を拡大することによって、微小欠陥を直接的に観察できることを見出したのである。観察装置としては、通常の微分光学顕微鏡やX線トポグラフ等を用いることができる。
【0015】
本発明の評価方法は、シリコンウエーハを洗浄し、その後、水素分圧10mmH2O〜30atmの雰囲気中、800℃〜1300℃で1分間以上アニール処理し、しかる後に、微小欠陥を観察することを特徴としている。
【0016】
水素分圧を10mmH2O以上30atm以下とした理由を述べる。水素分圧が10mmH2O未満の場合には、前記数式1からも分かるようにシリコン格子間における水素濃度も低くなり、埋め込み酸化物との反応速度が遅くなるからである。また、水素分圧を30atm以下としたのは、30atmを超える水素分圧を実現するためには大掛かりな熱処理装置を必要としコスト高となるからである。
【0017】
処理温度を800℃〜1300℃とした理由を述べる。処理温度が800℃未満の場合には、水素とシリコン酸化物との反応が生じ難いからである。また、処理温度が1300℃を超える場合には、石英炉芯管の寿命が短くなり、その結果コスト高となるからである。
【0018】
以下、本発明の実施例1を説明する。
【0019】
先ず、6インチのシリコンウエーハに対して酸素イオンを1.8×1018cm-2の密度で注入し、さらに酸化雰囲気で1350℃6時間のアニール処理を行い、その後、表面の酸化膜を除去してSIMOXウエーハを得た。この試料の埋め込み酸化物層の厚さは360nm、その上層にあるシリコン表層の厚さは180nmであった。
【0020】
実施例1では、このSIMOXウエーハを標準的に洗浄した後で、水素100%、1気圧の雰囲気中で1200℃2時間の熱処理を行った。
【0021】
他方、前記水素処理を行わない以外は実施例1のウエーハと全く同じウエーハを準備し、比較例1とした。
【0022】
そして、実施例1及び比較例1のウエーハを、微分干渉顕微鏡で観察した。
【0023】
図1は、実施例1のウエーハの粒子構造を示す顕微鏡写真である。この写真から明らかなように、実施例1のウエーハには欠陥が観察された。この欠陥の密度を微分干渉顕微鏡で計数したところ、1〜2個/cm2であった。
【0024】
これに対して、比較例1のウエーハでは、微分干渉顕微鏡で欠陥が観察されなかった。ここで注意すべきは、比較例1のウエーハにおいても、実施例1と同密度の微細な欠陥が存在していたはずであるが、微分干渉顕微鏡ではこれを観察できなかった点である。すなわち、実施例1では、微細な欠陥をある程度成長させることによって、これが観察可能になったのである。
【0025】
さらに、実施例1及び比較例1のウエーハの欠陥を、X線トポグラフによって観察した。
【0026】
その結果、実施例1のウエーハの欠陥の密度は、十数個/cm2であった。従って、実施例1のウエーハには、微分顕微鏡で観察できなかった欠陥が存在していたことが分かる。観察できなかった欠陥は、水素処理で成長したにも拘らず表面シリコン層を貫通しなかったものと考えられる。
【0027】
一方、比較例1のウエーハをX線トポグラフによって観察したが、やはり欠陥は観察されなかった。
【0028】
このように、本発明方法によれば、従来は事実上検出困難であったシリコンウエーハの欠陥を検出することが可能となる。
【0029】
【発明の効果】
本発明方法によれば、特にSIMOXウエーハの欠陥を視覚的に観察することが可能である。従って、デバイス工程を施しデバイス欠陥として事後的にウエーハ欠陥を知る前に、予めSIMOXウエーハの品質を評価し、欠陥の有無を知ることができる。
【0030】
なお、本発明は前述の実施例に限定されない。例えば、本発明方法は、Si/SiO2/Si構造の接着ウエーハについても適用可能である。
【図面の簡単な説明】
【図1】 本発明の実施例のシリコンウエーハの粒子構造を示す電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a defect observation method for a silicon wafer, and more particularly to a defect observation method for a silicon wafer that is optimal for quality evaluation of a SIMOX (Separation by Implanted Oxygen) wafer.
[0002]
[Prior art]
A SIMOX (Separation by Implanted Oxygen) wafer is used for manufacturing, for example, ULSI.
[0003]
The silicon layer on the surface of this SIMOX wafer is very thin. For this reason, even if normal etching is performed on the SIMOX wafer, the pits to be formed are considerably small. In addition, when the density is small, counting is not easy even if additional etching is performed.
[0004]
Conventionally, in order to detect defects near the interface between the silicon layer and the buried oxide layer, various analysis means have been tried by preparing a cross-sectional sample.
[0005]
[Problems to be solved by the invention]
However, near the interface between the two layers, the defect density is small and the size is small, so it is difficult to directly observe the defects.
[0006]
Thus, a reliable method for evaluating the quality of a wafer by knowing the presence or absence of defects in the vicinity of the interface between the surface silicon layer and the buried oxide layer in a SIMOX wafer has not been established so far.
[0007]
For this reason, there is no method other than knowing the quality of the SIMOX wafer as a device defect after the ULSI is formed, that is, as a defect of the finished product.
[0008]
In view of such problems of the prior art, the present invention provides a defect observation method for a silicon wafer that can accurately know the presence or absence of defects, particularly in the vicinity of the interface between the surface silicon layer and the buried oxide layer of the SIMOX wafer. The purpose is to do.
[0009]
[Means for Solving the Problems]
In the first invention of this application, after the silicon wafer is cleaned, defects contained in the silicon wafer are grown by annealing at 800 ° C. to 1300 ° C. for 1 minute or more in an atmosphere having a hydrogen partial pressure of 10 mmH 2 O to 30 atm. The gist of the method for observing defects in a silicon wafer is characterized by observing defects in the silicon wafer later.
[0010]
【Example】
The defect observation method for a silicon wafer according to the present invention is a configuration in which defects can be directly observed by forcibly expanding defects by utilizing the interaction between hydrogen atoms contained in a silicon single crystal lattice and crystal defects. It has become. Details will be described below.
[0011]
In high-purity silicon crystals, hydrogen is mostly present in an atomic state, and the hydrogen atom concentration at a high temperature is represented by the following general formula.
[0012]
[Expression 1]
Figure 0003639073
In Equation 1, P H2 is the hydrogen partial pressure in the atmosphere, k is the Boltzmann constant, and T is the thermodynamic temperature. The hydrogen atoms contained in the silicon crystal undergo a chemical reaction with the oxide near the interface between the silicon surface layer and the buried oxide layer, but this reaction is most likely to occur (where it is selectively etched). Is probably near the microdefect.
[0013]
Now, one of the products in the reaction is water, but the probability of water in silicon is small and its diffusion rate is unknown. However, it was found that the generated water can be diffused in the buried oxide or at the interface with the silicon layer, and becomes agglomerated in the vicinity of minute defects.
[0014]
Accordingly, the present inventors have found that microdefects can be directly observed by enlarging microdefects by actively utilizing both selective etching of hydrogen atoms and product water aggregation. It was. As an observation apparatus, a normal differential optical microscope, an X-ray topograph, or the like can be used.
[0015]
According to the evaluation method of the present invention, a silicon wafer is cleaned, and then annealed at 800 ° C. to 1300 ° C. for 1 minute or more in an atmosphere with a hydrogen partial pressure of 10 mmH 2 O to 30 atm , and then a minute defect is observed. It is characterized by.
[0016]
The reason why the hydrogen partial pressure is set to 10 mmH 2 O to 30 atm will be described. This is because when the hydrogen partial pressure is less than 10 mmH 2 O, the hydrogen concentration between the silicon lattices becomes low as can be seen from Equation 1, and the reaction rate with the buried oxide becomes slow. The reason why the hydrogen partial pressure is set to 30 atm or less is that, in order to realize a hydrogen partial pressure exceeding 30 atm , a large heat treatment apparatus is required and the cost is increased.
[0017]
The reason why the processing temperature is set to 800 ° C. to 1300 ° C. will be described. This is because when the treatment temperature is less than 800 ° C., the reaction between hydrogen and silicon oxide hardly occurs. Further, when the processing temperature exceeds 1300 ° C., the life of the quartz furnace core tube is shortened, resulting in high cost.
[0018]
Embodiment 1 of the present invention will be described below.
[0019]
First, oxygen ions are implanted into a 6-inch silicon wafer at a density of 1.8 × 10 18 cm −2 , and further annealed in an oxidizing atmosphere at 1350 ° C. for 6 hours, and then the surface oxide film is removed. As a result, a SIMOX wafer was obtained. In this sample, the thickness of the buried oxide layer was 360 nm, and the thickness of the silicon surface layer thereabove was 180 nm.
[0020]
In Example 1, after this SIMOX wafer was cleaned as standard, heat treatment was performed at 1200 ° C. for 2 hours in an atmosphere of 100% hydrogen and 1 atm.
[0021]
On the other hand, a wafer exactly the same as that of Example 1 was prepared except that the hydrogen treatment was not performed, and Comparative Example 1 was obtained.
[0022]
The wafers of Example 1 and Comparative Example 1 were observed with a differential interference microscope.
[0023]
FIG. 1 is a photomicrograph showing the particle structure of the wafer of Example 1. As apparent from this photograph, defects were observed in the wafer of Example 1. The density of the defects was counted with a differential interference microscope and found to be 1 to 2 / cm 2 .
[0024]
On the other hand, in the wafer of Comparative Example 1, no defect was observed with the differential interference microscope. It should be noted here that even in the wafer of Comparative Example 1, fine defects having the same density as in Example 1 should have existed, but this could not be observed with a differential interference microscope. That is, in Example 1, this became observable by growing a minute defect to some extent.
[0025]
Furthermore, the defects of the wafers of Example 1 and Comparative Example 1 were observed by X-ray topography.
[0026]
As a result, the density of defects in the wafer of Example 1 was 10 / cm 2 . Therefore, it can be seen that the wafer of Example 1 had defects that could not be observed with the differential microscope. It is considered that the defects that could not be observed did not penetrate the surface silicon layer despite growing by hydrogen treatment.
[0027]
On the other hand, when the wafer of Comparative Example 1 was observed by X-ray topography, no defects were observed.
[0028]
As described above, according to the method of the present invention, it is possible to detect a defect of a silicon wafer that has been practically difficult to detect.
[0029]
【The invention's effect】
In particular, according to the method of the present invention, it is possible to visually observe defects in a SIMOX wafer. Therefore, before the device process is performed and the wafer defect is subsequently known as a device defect, the quality of the SIMOX wafer can be evaluated in advance to know the presence or absence of the defect.
[0030]
In addition, this invention is not limited to the above-mentioned Example. For example, the method of the present invention can be applied to a bonded wafer having a Si / SiO 2 / Si structure.
[Brief description of the drawings]
FIG. 1 is an electron micrograph showing the particle structure of a silicon wafer according to an embodiment of the present invention.

Claims (4)

シリコンウエーハを洗浄した後、水素分圧10mmH2O〜30atmの雰囲気中、800℃〜1300℃で1分間以上アニール処理してシリコンウエーハに含まれる欠陥を成長させ、しかる後に、シリコンウエーハの欠陥を観察することを特徴とするシリコンウエーハの欠陥観察方法。After the silicon wafer is cleaned, defects contained in the silicon wafer are grown by annealing at 800 ° C. to 1300 ° C. for 1 minute or more in an atmosphere having a hydrogen partial pressure of 10 mmH 2 O to 30 atm , and then the silicon wafer has a defect. A method for observing defects in a silicon wafer, characterized in that 観察対象のシリコンウエーハが、埋め込み酸化物層を有するSIMOX(Separation by Implanted Oxygen)ウエーハであることを特徴とする請求項1に記載のシリコンウエーハの欠陥観察方法。  2. The method for observing defects in a silicon wafer according to claim 1, wherein the silicon wafer to be observed is a SIMOX (Separation by Implanted Oxygen) wafer having a buried oxide layer. アニール処理後のシリコンウエーハを微分干渉顕微鏡で観察することを特徴とする請求項1又は2のいずれか1項に記載のシリコンウエーハの欠陥観察方法。  The silicon wafer defect observation method according to claim 1 or 2, wherein the annealed silicon wafer is observed with a differential interference microscope. アニール処理後のシリコンウエーハをX線トポグラフで観察することを特徴とする請求項1又は2のいずれか1項に記載のシリコンウエーハの欠陥観察方法。  The silicon wafer defect observation method according to claim 1, wherein the annealed silicon wafer is observed by X-ray topography.
JP35648096A 1996-12-26 1996-12-26 Defect observation method for silicon wafer Expired - Fee Related JP3639073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35648096A JP3639073B2 (en) 1996-12-26 1996-12-26 Defect observation method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35648096A JP3639073B2 (en) 1996-12-26 1996-12-26 Defect observation method for silicon wafer

Publications (2)

Publication Number Publication Date
JPH10189676A JPH10189676A (en) 1998-07-21
JP3639073B2 true JP3639073B2 (en) 2005-04-13

Family

ID=18449233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35648096A Expired - Fee Related JP3639073B2 (en) 1996-12-26 1996-12-26 Defect observation method for silicon wafer

Country Status (1)

Country Link
JP (1) JP3639073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862312B1 (en) * 2002-06-29 2008-10-13 주식회사 하이닉스반도체 Method for measuring wafer defect in semiconductor device

Also Published As

Publication number Publication date
JPH10189676A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
EP0966034B1 (en) Method of manufacturing silicon-on-insulator substrate
JP2014508405A5 (en)
TW201250838A (en) Methods for reducing the metal content in the device layer of SOI structures and SOI structures produced by such methods
JP4460671B2 (en) Silicon semiconductor substrate and manufacturing method thereof
TW201024479A (en) Annealed wafer and method for producing annealed wafer
JPH11168106A (en) Treatment method of semiconductor substrate
TW557496B (en) Epitaxial wafer and its manufacturing method
JP2005340348A (en) Manufacturing method of simox substrate and simox substrate obtained thereby
JPH10150048A (en) Semiconductor substrate
JP3639073B2 (en) Defect observation method for silicon wafer
JP2010287885A (en) Silicon wafer and method of manufacturing the same
JPS60247935A (en) Manufacture of semiconductor wafer
JP2005057295A (en) Method of manufacturing single-crystal silicon wafer, silicon wafer of this kind, and use thereof
Stacy et al. Metal Decorated Defects in Heat‐Treated Silicon Wafers
JPH08213403A (en) Semiconductor substrate and manufacture thereof
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPH06252154A (en) Silicon wafer
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JP2019149471A (en) Evaluating method of gettering ability of semiconductor wafer and manufacturing method of semiconductor wafer using the same
JP2010040638A (en) Method of manufacturing soi substrate
JP3565068B2 (en) Heat treatment method for silicon wafer and silicon wafer
JP2652344B2 (en) Silicon wafer
JP3238957B2 (en) Silicon wafer
JPH0897221A (en) Manufacture of silicon wafer, and silicon wafer
JP4029378B2 (en) Annealed wafer manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees